
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Tutorial Exercise 7: Circulations and Polynomial Reductions

1. Existence of a Circulation. On slide 7 of the lecture notes on circulations and flows we stated:

Characterization. Given a circulation problem (V,E, c, d) there does not exist a circulation
iff there exists a partition (A,B) of the vertices V (i.e., with B = V \A) such that

∑

v∈B d(v) >
cap(A,B).

The capacity of this partition (A,B) is defined to be cap(A,B) ≡
∑

e∈A2B c(e), where A2B ≡ {e ∈ E | e =
(u, v), u ∈ A, v ∈ B}. Note this is similar to the capacity of s-t cuts except, for circulations, A and B

are not restricted to contain s and t, respectively. Also, note that cap(A,B) is not generally equal to
cap(B,A).)

Soln 1. Let G′ = (V ′, E′) be the corresponding s-t flow problem described on slide 5 of lecture notes
linked above. Then V ′ = V ∪ {s, t} and E′ is E, plus all edges (s, u) for vertices u ∈ V with d(u) < 0,
and all edges (w, t) for vertices w ∈ V with d(w) > 0. The capacity of these added edges s are c((s, u)) =
−d(u) > 0. Similarly, each (w, t) edge has capacity c((w, t)) = d(w) > 0. Also from the lecture notes,
we know that the circulation (V,E, c, d) does not exist iff the max flow of this G′ is less than D, where
D =

∑

{w∈V | d(w)>0}−d(w) =
∑

{u∈V | d(u)<0}−d(u).

Show ⇒ direction. Suppose there does not exist a circulation. Then, from the lecture notes, we know
that the s-t flow problem G′ must have a max flow with value ν(f) < D (so some of the edges leaving s

cannot be saturated).

Let f be a max flow for G′, and consider a minimum capacity s-t cut (A′, B′). By the definition of s-t
cuts, s ∈ A′ and t ∈ B′. And by the max-flow min-cut theorem, we have ν(f) = cap(A′, B′), so we have
D > cap(A′, B′).

Define A = A′\{s} and B = B′\{t}. Then it follows that (A,B) is a partition of the vertices V of the
circulation problem. We are left with showing that this partition has the desired property. First note, by
the construction of A′ and B′ we have

D > cap(A′, B′),

=

∑

{e=(s,w)∈E′ |w∈B}

c(e)

+

∑

{e=(u,v)∈E |u∈A, v∈B}

c(e)

+

∑

{e=(u,t)∈E′ |u∈A}

c(e)

 ,

=

∑

{w∈B | d(w)<0}

−d(w)

+ cap(A,B) +

∑

{u∈A | d(u)>0}

d(u)

 . (1)

But expanding the demand D gives the following,

D =
∑

{u∈V | d(u)>0}

d(u),

=
∑

{u∈A | d(u)>0}

d(u) +
∑

{w∈B | d(w)>0}

d(w), since (A,B) is a partition of V . (2)

Combining (2) with (1) and cancelling common terms gives

∑

{w∈B | d(w)>0}

d(w) >

∑

{w∈B | d(w)<0}

−d(w)

+ cap(A,B), (3)

so the desired result, namely
∑

{w∈B} d(w) > cap(A,B), now follows.

Show ⇐ direction. Suppose (A,B) is a partition of the vertices V of the circulation problem such that
∑

{w∈B} d(w) > cap(A,B). Define A′ = A ∪ {s} and B′ = B ∪ {t}, and the s-t flow problem G′ as above.

Then (A′, B′) is an s-t cut for G′.

1

http://www.cs.toronto.edu/~jepson/csc373/lectures/maxFlowAppPart2_4pp.pdf

Moreover, working backwards through inequalities (3), (2), and (1), respectively, we find that all these
inequalities must all hold. Therefore, cap(A′, B′) < D.

By the weak duality property, the value of the maximum flow ν(f) must satisfy ν(f) ≤ cap(A′, B′) and
therefore ν(f) < D. Since the the sum of capacities of edges leaving s is cap({s}, V ′{s}) = D, the max
flow of G′ does not have a flow which saturates all the edges leaving s. Therefore, by the result in the
lecture notes (slide 5), a circulation for (V,E, c, d) does not exist. �

2. Picturing What Poly-Reductions Tell Us. Suppose X(s) and Y (s) are two decision problems. We
would like to know if these problems have a polynomial time solution or are they inherently exponential?
That is, can X(s) be solved with a deterministic algorithm that runs in O(|s|q) time, for some constant
q? That is, is X(s) ∈ P? Or is it the case that, for every constant q > 0, the worst case runtime of
any deterministic algorithm for solving X(s) is necessarily Ω(|s|q)? We refer to this latter class as E (for
exponential).

(a) What do we learn about the possible classifications of X and Y if we show X ≤p Y ? For example, it
could be the case that both X and Y have polytime solutions. We can depict this pair of possibilities
as the line segment in the figure below.

Draw all other possible pairs in the figure above. Are any pairs ruled out? Explain.

Soln 2a. There are three edges, in the form of a Z. That is, the only pair that is ruled out is X(s)
in E and Y (s) in P . The reason is that, given a polynomial reduction showing X ≤p Y and Y ∈ P ,
then this reduction actually provides a polynomial time algorithm for solving X.

(b) In the lectures we showed

3-SAT ≤p INDEPENDENT-SET ≡p VERTEX-COVER ≤p SET-COVER

If any of these turn out to have a polytime solution, which others must also have polytime solutions?
Similarly, if any of these are shown to be in E, as defined above, which others must be in E? Briefly
explain.

Soln 2b. Suppose you plot the possiblities as in the figure above, with one column for each of
the decision problems, and with the problems given in the order listed above. In each column we
place a vertex either row P or E to denote the class of the runtime necessary for the solution, and
connect vertices in neighbouring columns with an edge. Each feasible placement of vertices gives a
path with three edges. From the argument in part (1a) we know this path can increase (i.e., go from
row P to E) only as you move to the right. Note the edge between INDEPENDENT-SET and
VERTEX-COVER must always be horizontal, due to their ≡p relationship.

For example if, on the far right, the vertex for SET-COVER is in row P then all the other vertices
must be in P. Alternatively, if the vertex for 3-SAT is in E (which, by the way, is the consensus view)
then all the vertices must be E.

3. Set Packing with Sets. The set packing decision problem is defined in a similar way to the definition
provided below. Here we have only replaced the notion of a collection/family/list of subsets F with a
simple set of subsets F :

SetPack: Given a universe set U , a set of subsets F = {Sj | Sj ⊆ U, 1 ≤ j ≤ m}, and an integer k, does
there exist C ⊆ F with |C| ≥ k such that no two distinct elements Si, Sj ∈ C intersect (i.e., for all Si, Sj

in C with Si 6= Sj we have Si ∩ Sj = ∅)?

(a) Denote the independent set decision problem by IndepSet. Show IndepSet ≤p SetPack.

(b) Show SetPack ≤p IndepSet.

2

https://en.wikipedia.org/wiki/Set_packing

(c) Define searchSetPack to be the search problem for set packing. That is, given U and F as in the
Set-Packing decision problem, find a subset C ⊆ F such that |C| is the maximum possible and no
two distinct elements in C intersect.

Prove that searchSetPack ≤p SetPack.

Hint 1: You need to first find k∗, the maximum possible size |C|. Then find the elements of C.

Hint 2: For finding the elements of C it is useful to write a loop invariant stating that the current
solution “is promising”.

Solution for Q3:

3a Soln. We will show that the set packing (with sets) problem is a generalization of the independent set
problem.

The input provided to IndepSet is an undirected graph G = (V,E) and an integer k. We will measure
the size of this input to be |s| = |V | + |E| (you can define anything reasonable here, but it is critical to
specify |s| in order to make the argument that various algorithms are poly-time in |s|).

The independent set problem concerns the existence of a subset of the vertices, say C ⊂ V , such that
|C| ≥ k and no two vertices in C share an edge. Note that we can express this latter constraint in terms
of the sets of edges ending at each vertex, i.e.,

Sv = {e = (u, v) | for some u ∈ V and e ∈ E}. (4)

This observation forms the basis of the poly-time reduction.

One difficulty we might anticipate in using these Sv’s as the individual sets in a packing is that there can
be multiple empty sets in this construction. Indeed Sv = ∅ for any vertex v that is not an endpoint for
any edges in E. Moreover, multiple such vertices can participate in an independent set. For example, if
we define F to be the set of all such Sv then, in the case of a graph with no edges, we have F = {∅} and
so |F | = 1. Meanwhile, the maximum independent set for this case consists of all V .

Another possible difficulty is that for cases in which u, v ∈ V , with u and v endpoints of only the one edge
e = (u, v), then Su = Sv = {e}. Here again, the sets Sv would not be in one to one correspondence with
the set of vertices.

The issue here is simply that instead of considering a list of subsets (or a “collection” of subsets), where
the subscript v on Sv matters, here we are treating Sv simply as an element of the set F .

It is therefore convenient to include the specific endpoint vertex in each of the subsets to be used for
packing. That is, we define

Fv = {v} ∪ Sv, and F = {Fv | v ∈ V }. (5)

Here there is exactly one element of F for every v, so |F | = |V |. And we define the universe set to be
U = V ∪ E.

Claim: For the above construction of U and F we have IndepSet(G, k) iff SetPack(U,F, k). Note we
use the same k for both problems.

Assuming this Claim for the moment, note that, given the input (G, k) of the IndepSet problem, we can
construct U and F in at most O(|V ||E|) time. By our definition of |s| above, this is bounded by O(|s|2)
time. In addition, according to the claim, we require only one call to SetPack(U,F, k) to determine the
answer for IndepSet(G, k). Therefore, by the definition of a poly-time reduction, we have IndepSet(G, k)
≤p SetPack(U,F, k), as desired.

Proof of Claim:

=⇒ Suppose IndepSet(G, k) is true. Let C ⊆ V be an independent set of size |C| ≥ k. Define
FC = {{v} ∪ Sv | v ∈ C}. Then by (4) and (5) we have |FC | = |C| ≥ k. Let Fa and Fb be any two distinct

3

elements in FC , that is, a 6= b. Since a, b ∈ C and C is an independent set, there are no edges in E which
have both a and b as endpoints. Therefore Sa∩Sb = ∅. It now follows from (5) that Fa∩Fb = ∅. Therefore
FC is a set packing, and we’ve already shown |FC | = |C| ≥ k, so SetPack(U,F, k) is true.

⇐= Suppose SetPack(U,F, k) is true. Then there exists a set-packing of size at least k. Since the
elements of F are in one to one correspondence with the elements of V we can, without loss of generality,
write such a set packing as FC = {{v} ∪ Sv | v ∈ C} where C ⊆ V and |C| = |FC | ≥ k.

Given any two distinct vertices a and b in C, i.e., with a 6= b, we know Fa and Fb are distinct elements in
F and, by the definition of the set packing problem, we know Fa ∩ Fb = ∅. Now, by the definition of Fv,
this implies Sa ∩ Sb = ∅. That is, a and b cannot be endpoints of the same edge in E.

Since this is true for any such a 6= b in C, we conclude that C is an independent set. Recall |C| = |FC | ≥ k,
so C is an independent set of G of size at least k. Therefore IndepSet(G, k) is true.

3b Soln. Left to the reader.

3c Soln. We wish to have searchSetPack(U,F) return a maximum size subset M ⊆ F such that, for each
distinct pair of elements Mi and Mj in M , we have Mi ∩Mj = ∅.

Define the size of the input to be |s| = |U |+ |F | (again, make any reasonable choice, but make that choice
clear). By using binary search on k and calling SetPack(U,F, k) at most O(log(|F |)) ⊂ O(log(|s|)) times,
determine the maximum size k∗ = |M | for a set-packing M (details omitted). Given this k∗ we then
execute the following:

Suppose F = {F1, F2, . . . , Fm}, in any order, where m = |F |.
Initialize M ← ∅ and k ← k∗

for j = 1..m:
Loop Invariant: LI(j): There exists a maximum set-packing T ⊂ F , with |T | = k∗

such that, Fi ∈ T iff Fi ∈M for 1 ≤ i < j (i.e., M is promising).
Moreover |M | = k∗ − k.
if k == 0:

break # No more elements to find.
C ← (

⋃

Mi∈M Mi) # Elements covered so far.
if Fj ∩ C = ∅:

Determine whether there exists a solution T ′ = M ∪ Fj ∪ T ′
j+1 of size k∗,

with T ′
j+1 ⊆ {Fj+1, . . . , Fm} and |T

′
j+1| = k∗ − |M | − 1 = k − 1.

C ′ ← C ∪ Fj

F ′ = {Fi | j < i ≤ m and Fi ∩ C ′ = ∅}.
if SetPack(U,F ′, k − 1):

k ← k − 1
M ←M ∪ Fj

return M

Here we only sketch the remainder of the proof. We use induction to prove the loop invariant LI(j) for
j = 0, 1, . . . , J , where J is the index j for which the break statement is executed or, if the break is not
executed, then J = m + 1. In the latter case, we define LI(m + 1) as the loop invariant after the mth

execution of the loop.

The proof of the loop invariant follows an “is promising” style proof (as discussed in the lectures on greedy
algorithms). In the situations where you need to switch from the optimal solutions T in the loop invariant
LI(j) to a new optimal solution (i.e., use an exchange argument, or“switch horses” in mid-proof) use the
T ′ described in the algorithm above.

4

