
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Tutorial Exercise 8: Self reduction of Vertex-Cover

A polynomial reduction of the Vertex-Cover search problem to the decision problem is as follows.

def S = findMinVC(G)
# Given undirected graph G = (V, E) find a minimum sized vertex cover S.
# A polynomial reduction using Vertex-Cover.
# Input size: |s| = |V |+ |E|.

# Step 1: Use binary search to solve for minimum size k∗ of a vertex cover.
k∗ = min{k ∈ [0, |V | ] | Vertex-Cover(G, k) is true}
# Requires O(log(|V |)) calls to Vertex-Cover.

S ← {}
if k∗ == 0: # Input graph G must have no edges.

return S

Vr ← V ; Er ← E # “Remaining” graph to find a min cover for.
for v in V :

# Loop Invariant: All edges in E\Er are covered by vertices in S, and
# Gr = (Vr, Er) has a Vertex-Cover of minimum size k∗ − |S|.

k ← k∗ − |S|
# We must cover all edges in the remaining graph Gr with only k vertices.

# Build subgraph G′ of Gr, with v and all edges terminating at v removed.
V ′ ← Vr\{v}
Er,v ← {e ∈ Er | e has endpoint v }
E′ ← Er\Er,v

G′ ← (V ′, E′)

if Vertex-Cover(G′, k − 1):
# We can safely add v to S, since G′ can be covered in k − 1 vertices
S ← S ∪ {v}
if |S| == k∗

break
Vr ← V ′

Er ← E′

Assertion: |S| == k∗

return S

Proof of correctness. A simple inductive proof shows the loop invariant must be true. Details omitted.
The remaining issue is that to show that when the loop terminates, the assertion at the end is true. That
is, is it true that the loop can only exit with the break statement, rather than simply having the for loop
exhausting the list of vertices? Note the loop cannot terminate with |S| > k∗ (since |S| grows by only one
each time the body of the if statement is executed).

1. Question: Complete the proof sketch. Either complete the sketch of this correctness proof or provide
a counter-example that shows the above algorithm is incorrect. Hint: Consider enhancing the loop invariant.
Soln. The key to proving this is to enhance the loop invariant. Suppose (v1, v2, . . . , vn) is the order the vertices
in V are iterated over in the for loop. That is, we could replace the for loop with a loop over j = 1, 2, . . . , n,
where n = |V | and, at each stage, v = vj .
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Loop Invariant v2 LI(j): All edges in E\Er are covered by vertices in S, Gr = (Vr, Er) has a
Vertex-Cover of minimum size k∗ − |S|. Moreover, on iteration j where v = vj , there exists a
minimum sized cover C of G such that, for all 1 ≤ i ≤ j, vi ∈ S iff vi ∈ C.

We will next prove this loop invariant LI(j − 1) is true at the beginning of each iteration j = 1, . . . , n, and
after the nth iteration LI(n) is true, where in all cases here we are assuming the loop has not yet reached the
break statement.
Base Case. Upon initialization, S = ∅, j = 1, and it follows that LI(0) is true.
Induction step. Suppose j ∈ {1, 2, . . . , n} and suppose LI(j − 1) is true. Let C be as in the loop invariant
(v.2). Note that here we know C and therefore we know S up to this point j − 1, so we can reconstruct the
graph Gr = (Vr, Er) from these choices for vertices in S (i.e., delete all vertices in S from the original graph
and all edges terminating at any vertex in S).
Then there are two major cases. Either vj ∈ C or not.
Case 1. Assume vj ∈ C. Let G′ be the graph formed from Gr, in the body of the loop. Consider the
test Vertex-Cover(G′, k − 1). Since vj ∈ C it follows that this test must be true. That is, the remaining
elements in C, namely C ∩ V ′, must cover all the edges in G′. Moreover, |C| = k∗ and |S ∪ {vj}| = |S| + 1,
so |C ∩ V ′| = k − 1. Therefore the algorithm must add vj to S and the loop invariant LI(j) follows.
Case 2. Assume vj /∈ C. Then there are two sub-cases, both of which involve the G′ and k computed in the
beginning of the jth execution of the loop body. The two cases are then, either Vertex-Cover(G′, k − 1) is
false (Case 2a below) or it is true (Case 2b).
Case 2a. Suppose vj /∈ C and Vertex-Cover(G′, k − 1) is false. Then, according to the algorithm, vj is
not added to S at this step. And the loop invariant LI(j) must be true.
Case 2b. Suppose vj /∈ C and Vertex-Cover(G′, k − 1) is true. Then, according to the algorithm, vj will
be added to S. In particular, the updated S will not be a subset of C, so here we need to use an exchange
argument. Specifically we need to argue that there is a another minimum cover, say W , that will satisfy the
loop invariant.
We construct a suitable minimum-sized vertex cover W as follows. Since Vertex-Cover(G′, k − 1) is true,
let W2 be a vertex cover for G′ of size k− 1. From LI(j − 1) it follows that all the edges in E\(E′ ∪Er,v) are
covered by S, and all the edges in Er,v are covered by vj . Therefore W = S ∪ {vj} ∪W2 is a vertex cover for
G. Moreover, since these three sets of vertices are disjoint (since they come from vertices vi with i < j, i = j,
and i > j, respectively),

|W | = |S|+ 1 + (k − 1),

= |S|+ (k∗ − |S|), since the algorithm defines k = k∗ − |S|,

= k∗.

Finally, note that with this definition of W , the loop invariant LI(j − 1) ensures that, for each i such that
1 ≤ i < j, vi ∈ W iff vi ∈ S. Since W contains vj , it follows that, for each i such that 1 ≤ i ≤ j, vi ∈ W iff
vi ∈ S ∪ {vj}, where the latter is just the updated S.
Therefore, if we use this minimum-sized vertex cover W as C in LI(j), it follows that LI(j) is true for this
case as well. �
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