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Abstract

We introduce a new method that characterizes typical
local image features (e.g., SIFT [9], phase feature [3]) in
terms of their distinctiveness, detectability, and robustness
to image deformations. This is useful for the task of classi-
fying local image features in terms of those three properties.
The importance of this classification process for a recogni-
tion system using local features is as follows: a) reduce the
recognition time due to a smaller number of features present
in the test image and in the database of model features; b)
improve the recognition accuracy since only the most use-
ful features for the recognition task are kept in the model
database; and c) increase the scalability of the recognition
system given the smaller number of features per model. A
discriminant classifier is trained to select well behaved fea-
ture points. A regression network is then trained to provide
quantitative models of the detection distributions for each
selected feature point. It is important to note that both the
classifier and the regression network use image data alone
as their input. Experimental results show that the use of
these trained networks not only improves the performance
of our recognition system, but it also significantly reduces
the computation time for the recognition process. *

1. Introduction

In the last few years, there has been a growing interest in
recognition systems using local image features. In order to
be useful for those systems, local image features must have
the following three properties: distinctiveness, detectability,
and robustness to image deformations. Although current lo-
cal image features have been carefully designed to have all
of the above properties (e.g., [3, 9]), it is impossible to guar-
antee that every local image feature in an image possesses
those three properties. Consequently, the presence of unre-
liable features (i.e., features without one or more of those
properties) can damage the performance of the recognition
system in terms of recognition accuracy. Moreover, unreli-
able features increase the total number of features present
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in the test and model images, which not only increases the
time to process a test image, but also decreases the scala-
bility of the system. Therefore, it is important to character-
ize and select local image features in terms of distinctive-
ness, robustness, and detectability in order to: a) decrease
the time to process a test image, b) improve the recognition
performance, and c) improve the scalability of the recogni-
tion system.

The central point of this paper is to provide a discrimi-
nant classifier to select well behaved features. Afterward, a
regression network is trained to provide quantitative models
of the distinctiveness, detectability, and robustness for each
local image feature selected by the classifier. It is important
to note that the input for both trained networks consists of
image data alone. In order to train both networks we use
a set of foreground and a set of background features along
with synthetic image deformations. We show empirically
that this training data is sufficient to model true image de-
formations.

Some attention has been devoted to the problem of esti-
mating feature distributions. In [2] the authors estimate the
distribution of the feature similarities with respect to back-
ground features, thus estimating the distinctiveness of the
feature. The appearance variation of features is explored
in several works (e.g. [7, 13, 14]) where the parameters
of a function that describes how a particular image feature
varies are estimated using an exponential distribution. Ad-
ditionally, other works try to estimate the detectability and
discriminating power of a feature by calculating how often
it appears in the learning stage (e.g., [11, 13]).

Methods to classify local image features are presented
in[1, 7, 6, 12, 16]. Specifically, in [12], robust features
are selected by verifying how their feature values vary with
deformations, and unique features are filtered by checking
how distinguishable they are when compared to the other
training image features (i.e., two features are discarded as
ambiguous if they lie too close to each other in the fea-
ture space). Alternatively, in [6], the authors select features
based exclusively on their discriminating power using ei-
ther a support vector machine or a Gaussian mixture model
classifier based on either mutual information or likelihood.
Other related methods are described in [1, 7, 16], where a



clustering algorithm selects the features that appear more
often during the training stage. However, none of the meth-
ods above try to explicitly estimate the robustness, distinc-
tiveness, and detectability distributions in order to properly
classify each feature, as we propose here.

We apply our classifier and regression networks to both
the phase-based [3] and SIFT [9] features, where similar
results are obtained. We also use this classification proce-
dure as a preprocessing step of our recognition system in-
troduced in [5]. Empirical results show that this classifier
significantly decreases the time to process test images and
also improves the recognition accuracy.

2. Feature Probability Distributions

This section introduces a method to quantitatively esti-
mate the distinctiveness, detectability, and robustness prop-
erties of local image features. The main purpose of this
quantitative estimation is to train our classifier and regres-
sion networks, which will be introduced in Section 3.

Our method of estimating the feature distributions fol-
lows up on the approach described in [18], where the au-
thors use the probability distributions P, and Py that
correspond to the true positive and false positive distri-
butions, respectively, for the problem of road tracking.
Writing the local feature vector at image position x; as
f;, we describe the probability distribution for robust-
ness Pon(sy¢(fi,f,); ), i.e., the probability of observing
feature similarity s¢(f;,f,) € [0,1] given that the fea-
ture £, is a true match for the feature f;, and distinctive-
ness Posi(sy(f1,1,); f;), i.e., the probability of observing
sy(fi, £,) given that the feature f, is a false match for the
feature f;. Moreover, the detectability Pyet(x;) is the proba-
bility that an interest point is detected in the test image near
the location corresponding to x; of feature f;.

Our main goal is to estimate the parameters in a para-
metric model of Py, and Py, along with the value of Py,
directly from image data alone. To train these models, we
make use of a training set formed using a fixed set of fore-
ground and background features, along with synthetic im-
age deformations.

The set of foreground images 7 has 30 images, and the
set of background images R contains 240 images, where
T NR = 0. The images in 7 and R are common images
of faces, objects, landscapes, etc. Given an image I, € T,
the set of local features extracted from this image is O(1),
and the set of interest points detected in the image Iy is
denoted as Z(I;). Moreover, the set of features extracted
from the background images is represented by O(R), which
has roughly 10, 000 features. The Py (s (fi,.)), f;) of each
feature f; € O(I;) is computed from the histogram of fea-
ture similarities {s;(f;, f,)|f, € O(R)}. On the other hand,
Pon(sz(f1,.), 1) is computed from the histogram of feature
similarities with respect to an image deformationd € DF,
where DF is a set of synthetic image deformations 2, as in

2Here, we consider the following synthetic deformations: global lin-

{s;(fi,f.a)|fi.a € O(I1,a)}, where f 4 is the correspond-
ing feature to f; in the synthetically deformed image fk,d.
We observe that these distributions can be adequately ap-
proximated by the beta parametric distribution,

Ps(z;a,b) =

if z € (0,1) and
a,b>0

0, otherwise.

1 a—1 _ b—1
fOI ta—l(l_t)b—ldtw (]' x) )

(1)
This distribution is defined within the range [0, 1] (i.e., the
same range of sz(.)), and, empirically, it represents a rea-
sonable fit to the robustness and distinctiveness distribu-
tions. In Fig. 1, we see the approximation of the histograms
above with the beta distribution using the phase features,
where the feature similarity sz(.) is the phase correlation
(see [3] for details). Similar results are observed in Fig. 2
using the SIFT features [9], where the similarity function is
computedas s(f;, f,) = 1—MUAEL.T) \where min(a, b)
returns the minimum value between a and b, 7 represents an
arbitrary maximum threshold for Euclidian distance (here,
we consider 7 = 250). Note that the beta distribution al-
ways represents a good fit for the Py distribution (see third
rows of Figures 1-2). However, sometimes the beta distri-
bution might not be a good approximation to the P, distri-
butions. It is important to mention that the features present-
ing a P,y distribution that is closely approximated by the
beta distribution are the most useful features for the system
(e.g., see first column, second row of Figures 1-2). On the
other hand, features that present a P,, distribution poorly
approximated by the beta distribution are the unreliable fea-
tures (e.g., see second row, second column of Figures 1-2).
Therefore, since the system only keeps the useful features,
which generally show P, distributions well approximated
by the beta distribution, we can conclude that their parame-
ters are reasonably accurate.

The method of moments (MM) provides a good estimate
of the beta parameters a and b [17]. It is based on the first
and second moments, namely p5 and ag, of the histograms
for Py and P,,. The parameters (a, b) of the fitted beta
distribution are then

_ pe(1—2us+p3) _pgb
b= 202 Ly anda= L. ()

Finally, in order to determine Py of @ model feature po-
sition x; € Z(I},), we have to investigate how stable this po-
sition is with respect to the deformations d € DF. Specif-
ically, let C(x;) be the set of deformations for which a cor-
responding interest point can be found in the original image
I, so C(X[) = {leX] € I(Ik’d) S.t. ||Xj - M(d)xl -
b(d)|| < €} with € fixed at 2.0 pixels (as measured in the
image fk,d, which is downsampled according to scale), and
M (d) and b(d) represent the spatial warp for the deforma-
tion d. Hence the detectability probability is denoted by

ear and non-linear brightness changes, Gaussian noise, loca brightness
changes, rotation, scale, shear, and sub-pixel translation.
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Figure 1. Approximation of distinctiveness and robust-
ness histograms using the beta distribution for the phase
features [3] (each column shows a different local phase
feature). The Py of the features in the first and second
columns are 87%, and 67%, respectively. The two num-
bers after the legend "Betauwm’ are the estimated parameters
a and b, respectively (see Eq. 2).
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= DF| 3

F det(xl)

3. Local Feature Classification

The objectives of our local feature classification are: a)
provide a classifier that selects the well behaved features
from an image, and b) build a regression network that pro-
vides a quantitative model of robustness, distinctiveness,
and detectability of the features selected by the classifier.
The classifier is important because it selects the well be-
haved features, which improves the accuracy of the recogni-
tion system; it also reduces the time to process a test image
and improves the scalability of this system due to a smaller
number of features to process. The quantitative models
provided by the regression network is important during the
probabilistic verification stage of a recognition system since
it determines precisely the behavior of each local feature to
be processed.

We implement a supervised learning scheme using two
feed-forward neural networks (NN), one for the classifier,
and another for the regression, where the target functions
are obtained from the feature probability distributions in-
troduced in Section 2. Both neural networks are fast, use
available image data, and are many orders of magnitude
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Figure 2. Approximation of distinctiveness and robust-
ness histograms using the beta distribution for the SIFT fea-
tures [9]. The Py of the features in the first and second
columns are 87%, and 63%, respectively. See Fig. 1 for
details about this Figure.

more efficient than simply directly evaluating each feature
point using synthetic image deformations. The target func-
tion of a feature f; for the regression network is the @ and b
parameters of the Pyn(f;) and Py (f;) distributions, and the
Pyet(x;) value. For the classifier, the target function is a bi-
nary function, where the output is one if the feature is well
behaved, and zero otherwise. Specifically, we have

]., |f aon(fl) > Tonbon(fl), and
boff(fl) > Toffaoff(fl)a and
Pdet(xl) > p%

0, otherwise,

ta'Ifgtatclassifier(fl) =

(4)
where 7o, Toff, and p are arbitrary constants. Intuitively,
these conditions represent the following properties: a) high
robustness aon(f) > Tonbon(f) (the mode of the P, distri-
bution gets closer to one for aqn > bon); b) high distinctive-
ness bosr(f) > 7orraor(f) (the mode of the Py distribution
gets closer to zero for boss > aof); and c) high detectability
Pyer(x) > p%. As a result, we obtain a subset of features
O*(I1) C O(Iy) that have the three properties above.

For the classification task of a local feature f; we trained
a neural network using Netlab [10], where the input layer
received the filter responses used to build the local image
feature from its location x; and scale A. For the phase-based
feature, we use the following filter responses as the input for
the classifier:



e (G2, H> values (i.e., the steerable filter responses as
described in [8], which are the building blocks of the
phase feature). These values are extracted at three
neighboring scales A, A/v/2, and A\v/2 from the sam-
pling points of the feature as shown in [3];

e I, I, (i.e., horizontal and vertical image derivatives
used to detected the interest points) within a 5x5 win-
dow around x;;

e eigenvalues p; and py also used to detect interest
points and the cornerness function ¢(x;) described in

[3];

e deviation between the local wavelength of the feature
and the local frequency tuning of the filter, denoted
by |log(I(x, A)) — log(\)| at the scales A, A\/+/2, and
A2, where I(.) computes the local wavelength of the
feature at image position x; and scale A (see [4] for
details).

These filter responses form a 272-dimensional local fea-
ture vector, which is nevertheless related to the original 72-
dimensional local phase feature. For SIFT, we also trained
this neural net using the 160-dimensional feature as de-
scribed in [9]. Basically, the SIFT feature consists of the
image gradients around the neighborhood of the feature po-
sition x; at two neighboring scales A and 2.

The neural network ideally produces logistic output of 0
if the feature should be filtered out, and 1 otherwise. There-
fore, the target function for each feature f; in this supervised
learning problem is 1 if f; € O*(I;) (see Eq. 4), and 0 oth-
erwise. The constants for target function (4) of this classi-
fier are assigned as follows: for the phase features, we have
Ton = 7.5, Tost = 3, and p = 75%; and for the SIFT fea-
tures, we have 7o, = 7.5, 7ot = 0.5, and p = 50%. The
values of these constants were selected to provide a good
balance between the number of features selected by the clas-
sifier and their robustness, detectability, and distinctiveness
properties. The training algorithm is the standard error back
propagation with weight decay, using scaled conjugate gra-
dient for the optimization. Also, we used 300 units for the
simple hidden layer.

The input for the regression problem is the same as the
one for the classification problem, but recall that the target
values are the two parameters for the Py, (sf(f;, £,); f;) dis-
tribution, the two parameters for the Pyt (s ¢ (1, f5); f;) dis-
tribution, and the Pyet(x;). As a result, we have five linear
output units. Moreover, a feature f; is part of the training set
only if f; € O*(I;). We also used the Netlab package [10]
for this problem.

For the classification network, the training set has
roughly 200, 000 features and the test set has around 25, 000
features for the phase feature. Fig. 3 shows the ROC curve
for the classification task of the phase and SIFT features
computed using the test cases. It is important to note that
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Figure 3. ROC curve that shows the classifier perfor-
mance on the test set using the phase and SIFT features.
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Figure 4. Performance of the regression algorithm to pre-
dict the Pon and Pyt parameters, and Py Value for the phase
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the percentage of phase features present in an image pro-
cessed at wavelength A = 8 is reduced from 3.2% to 0.6%
of the total image size. For SIFT, the percentage of fea-
tures that is kept in an image processed at scale A = 8 is
reduced from 0.3% to 0.12%. These percentages are func-
tion of the constants selected for the target function (4). For
the regression problem, the training set has approximately
50,000 features and the test set has roughly 5,000 features
for the phase features. Fig. 4 shows the actual values of
the Py, and Pys parameters, and Pyer compared to the out-
put of the regression network for the test cases for the phase
features, and Fig. 5 shows the same results for the SIFT
features.

4. Experiments

Recall that the training set is built using the sets of fore-
ground and background images, and the synthetic image
deformations. The main reason why synthetic image de-
formations are used for learning the feature probability dis-
tributions is to allow for a complete control over the corre-
sponding feature positions in the deformed images. Ideally,
this learning procedure should be done on real image de-
formations that would produce a better estimation of those
distributions. However, that would require a knowledge of
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the feature positions of the model in the images contain-
ing the deformed model. The question to be answered here
is whether the densities learned over the sequence of arti-
ficially deformed images are applicable to actual deforma-
tions of the model image.

Our quantitative evaluation of local feature performance
consists of the following steps:

e Take a sequence of N images {/;};c1,..., v} CONtain-
ing the model to be studied under real image deforma-
tions. Effectively, a model is a region present in all
those images (e.g., someone’s face).

e Extract the local features from the model image I; to
form the set O(I1). Learn the probability distribu-
tions (i.e., Pon, Py, and Pyet) Of each feature present
in O(1I;) using the scheme described in Section 2.

e Extract the features of each subsequent test image,
which produces O(I;) for ¢ > 1 (for brevity, let
O0; = 0(L;)).

e Find the correspondences between the set of model
features O, and each set of test features O; fori > 1,
separately, as follows:

N = {(fi,f)|f € O, £ € O1, 55(f1, 1) > 75},
where 7, = 0.75, and each feature f; € ©; can match
at most one feature in f; € O,. With these correspon-
dences, use RANSAC [15] to estimate the affine trans-
formation to align the model features in O; to the test
image features in O;. Note that this will give a rough
approximation of the deformation that took place be-
tween these two images.

e Use the computed affine transform to compute the ap-
proximate positions of the features from I to I;, for
i > 1, so that its possible to compute the ROC curves
for all model features O(I4).

Figure 6.
an affine deformation. The first column shows the model,
and the remaining images present the deformed model con-
tour using the affine transform computed using the matches
depicted on the second rows as the red dots. The whole
sequence contains 30 images.

Real image deformations approximated by

With the ROC curves computed with the artificial image de-
formations, it is possible to verify how well they approx-
imate the ROC produced by the real image deformations.
We show one case of the experiment described above in
Figures 6 and 7. Notice that the ROC curves produced by
the artificially deformed images are generally better than the
ones yielded by the real deformations. This could have been
caused by numerous processes, which include: the com-
puted affine transform used to determine the approximate
positions of the features from I to I; is not sufficiently pre-
cise; or the set of artificial deformations are not a reliable
approximation of the real deformations. However, we see
that the curves for the filtered set of features is always bet-
ter than the sets of all and rejected features. This indicates
that the learning process can be considered relatively reli-
able since it can be generalized for small real deformations.

We also assess the performance of the recognition sys-
tem described in [5] using the classification and regression
networks proposed in Section 3. We only ran the experi-
ments using this recognition model with the phase features.
Note that the system in [5] does not make use of a classifier
or a regression net. The idea is to use the classifier network
as a fast preprocessing step to select the well behaved fea-
tures coming from an image. This classifier can be used in
a model image, where the features are to be stored in the
model database, and in a test image. Only the features clas-
sified as well behaved by the classifier need to be processed
by the regression net since the probabilistic verification of
the system uses the quantitative model of robustness, dis-
tinctiveness, and detectability of these features. Two im-
age sequences were used (see Fig. 8). Table 1 shows the
recognition performance for the sequences of Fig. 8, re-
spectively. Notice the significantly better performance in
terms of true/false positives and false negatives matched in
both sequences. Table 2 shows the time spent (in seconds)
in the main activities of the recognition system run on a
state-of-the-art PC computer. Notice the substantial reduc-
tion in computation time per frame achieved with the use of
the classifier.
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Figure 8. Sequences used to assess the performance of the
recognition system. The contour (first column) represents
the model to be matched in the respective sequences.

Table 1. Performance of the recognition system in terms
of true positive (TP), false positive (FP), and false negative
(FN) produced in the sequences of Fig. 8 (with and without
the neural net (NN) classifier).

Kevin Sequence Sequence length | TP | FP | FN
with NN classifier 120 120 | O 0
without NN classifier 120 108 | 5 12
Dudek Sequence Sequence length | TP | FP | FN
with NN classifier 140 133 | 0 7
without NN classifier 140 106 | O 34

5. Summary and Conclusions

We proposed a discriminant classifier that selects well
behaved local image features, and a regression network to

Table 2. Average time performance per frame (in sec-
onds) of each step of the recognition algorithm with and
without the neural net (NN) classifier.

with NN classifier | without NN classifier
Database search 1 40
Outlier rejection 2 120
Verification 5 600
Total 8 760

estimate their quantitative models of distinctiveness, de-
tectability, and robustness. The classifier and the regressor
are shown to produce good classification and estimation re-
sults for the phase [3] and SIFT [9] features. Finally, exper-
imental results using the recognition system introduced in
[5] clearly show that the use of the classifier and regression
networks improve its recognition accuracy and significantly
reduces the time to process a test image.
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