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. Abstract . eigenspaces to capture.
We achieve two goals in this paper: (1) to build a novel ggo.ong principal component analysis (PCA) amounts to a

appearance-based object representation that takes into ac- ~ A .
count variations in contrast often found in training images; rotation of input coordinate axes and as such, PCA does not

(2) to develop a robust appearance-based detection schengtgfine a probability density model for the input data. How-
that can handle outliers such as occlusion and structurecever, eigenspaces can also be derived from the perspective of
noise. To build the representation, we decompose the inpiensity estimation [4, 7, 12]. The advantage in estimating the
ensemble into two subspaces: a principal subspasthi— ¢ density is that it allows for the design pfobabilistic

subspackand its orthogonal complemerdt—of-subspage . . .
Before computing the principal subspace, we remove any gdnethods to detect, recognize and/or classify test images as

pendency on contrast that the training set might exhibit. Toappearances of known objects. In particular, one strategy for
account for pixel outliers in test images, we model the residobject representation is to divide the signal space into a prin-

ual signal in the out-of-subspace by a probabilistic mixture cipal subspace and its orthogonal complement and then build

model of an inlier distribution and a uniform outlier distribu- -
tion. The mixture model, in turn, facilitates the robust estima-pmb"’lbIIIty models separately for the two subspaces. The de-

tion of the within-subspace coefficients. We show our method€ction strategy then is to apply a threshold on the likelihood
ology leads to an effective classifier for separating images o@issigned by the combined density model to a test image [4].

eyes from non-eyes extracted from the FERET dataset. The third key observation, as noted in [5], is that the vari-
1 Introduction ance estimatper—pixelgiven by the eigenspace density mod-

Eigenspace representations enable an approximate bgiS for the residual signal in the out-of-subspace is overly
compact encoding of object-specific ensembles, such as @nservative. We defer the actual details of variance estima-
database of face images or images of a gesturing hand, usifi§n used in our appearance-based detector to a later section.
a small set of orthonormal basis images. The basis set is ob- In this paper we build on and extend the work done ad-
tained by finding the principal components (PCA) of the im-dressing the three issues mentioned. While we follow the
age ensemble. The basis images span a subspace, also cafgf@tegy of splitting the signal space into a principal subspace
the eigenspace, and a linear combination of these basis in#nd its orthogonal complement, we depart from the usual in
ages can be used to approximately reconstruct images in tiggveral ways. First, we explicitly model any variations that
input ensemble. Eigenspace representations have proven tg training set might exhibit with contrast. This allows us
be useful in various contexts such as coding [9], appearancéo build an eigenspace that is invariant to contrast changes.
based detection and recognition [13, 4, 6], and tracking [1]. Also, we assume that only a small fraction of the training im-

Our work builds upon three key observations regardinggges have outliers, while we apply no such restriction on the
eigenspace representation. First, eigenspace methods involl&st images.
least squares approximations which are notoriously sensitive Our second contribution is to invoke a novel mixture model
to large outliers. Hence, it is important to account for out-formulation for the out—of-subspace residual signal. The
liers both for training and testing eigenspace methods [1, 11mixture model consists of an inlier component and a uniform
A related issue is one of variation in the image contrast thaoutlier distribution. We use a Gaussian distribution for the in-
is often found in the training data. Contrast is measured aber but other densities such as Laplace can be used as well, as
the deviation from the average brightness. In general, imlong as they provide a good fit to the out—of-subspace residu-
ages with a range of different contrasts will have the propertyals. The mixture coefficients are updated using just one itera-
that the images with higher contrasts will have a larger varition of expectation maximization (EM) algorithm. The result-
ance. If some images have much larger variance than otherigig pixel ownership probabilities are then used for a weighted
then these images will dominate over others in the computdeast-square computation of the within—subspace coefficients.
tion of the eigenspace. Often a contrast normalization stefdVe show that on a database of eye images cropped from the
such as histogram equalization is performed. Such a methdeERET database of facial images, our contrast-invariant, ro-
is unlikely to highlight object-specific structure that we wish bust eigenspace representation leads to an effective classifier.



2 Database each eye image in the FERET dataset. It is clear from the

We generated an eye database by Cropping eye regioﬁigure that\/ﬂ is ”nearly inCI’eaSing with the mean coeffi-
from the FERET face database [2]. The original face im-cient. This is confirmed by the non-zero slope of the straight
ages were scaled and rotated so that, in the warped imagée fit to the data going through the origin (black line in
the left and right eyes have a horizontal separatiozqdix- ~ Fig. 2(Left)). Note, the straight line fit may be biased in a
els. These warped images were then croppedotoc 25 ~ small way by the outliers in the eye images.
regions centered on each eye. The images vary in contrast To balance the variances across different image contrasts,
along with changes of the person, the lighting, position, posélefine rescaled images ak.(Z) = [Ti(Z) — diD(F) —

(eg. open/closed eyes), and the occasional reflection fromsz(:E')]/s(mk), wheres(my,) is a scaling factor. Itis con-
glasses. The resulting eye database contad36d images venientto assume a minimum value for the left-over variance,
(Fig. 1). For non-eyes, we ran an interest point detector osay due to independent pixel noise, and use this in the esti-
many natural images and collected those image patches passate for scaling:s(my) = /o2, + f(mx). The red curve

ing a suitable threshold [8]. The database of non-eyes corin Fig. 2a is obtained withf(my) = p x m32, wherep is
sisted 0f3839 images. Next, we use this database to explorghe slope of the straight line fit (black line in Fig. 2(Left))

the representation issues. and all points on the red curve will have a variance of one
(Fig. 2(Middle)).
3 Contrast Model Fig. 2(Right) reveals the property of non-eyes show in red,

Contrast is the variation in image intensities around a meamwhile the eyes are drawn in green. The vertical axis is indica-
brightness value. We need to estimate the brightness variive of the variance that could not be explained by the DC and
ation that is due to the underlying signal, and not due tdhe mean images alone. Observe the non-eye images exhibit
noise. We accomplish this by using two components, namelg strong dependency with the mean coefficient. This behav-
a constant “DC” component and a component in the direcior is consistent with what we know about the statistics of
tion of mean of the training set. We define the training setatural images. In particular, assuming that the mean eye im-
as{Ty (%)}, whereK is the total number of training im- age is dominated by low—frequency information, the spatial
ages andl; (%) is the the gray value at pixel positiohin  structure in natural images that could not be explained by the
the ™ training image. The DC componefit(Z) is given by ~ DC and the mean eye image is very likely to possess informa-
D(#) = 1/v/N, whereN is the total number of pixels in the tion at higher frequencies. As shown in [10], there are strong
image,Z corresponds to a pixel position afit Z) is chosen  correlations between wavelet amplitudes for the same image
to be unit length. The mean imadé (%) is taken to be the position across scale and orientation in a space-frequency de-
mean image of the training set minus their DC componentszgomposition. Thus a high value for the mean coefficient must
that is M (7) = %= Zle [T (%) — D(Z)(T(%), D(Z))].  give rise to a high value for the high—frequency components

Here the inner product is defined by(T, (%), D(Z)) =  inthe left—over signal.

>z Ti(Z)D(Z), where the sum is over all the pixel positions

ands,, is chosen to make/ (Z) a unit vector. 4 Principal Subspace and its Complement
Define the components @f.(Z) in the directions of DC Once the images are rescaled inth,(Z) for k =

and the mean vector af, = (7x(7), D(%)) andmy,, = 1 ... K, we first trim the database by removing extreme

(T).(%), M (Z)) respectively. To study contrast dependency,images that either have a low or negative mean image coeffi-
we project out the mean and DC vectors from the training segient and/or very large left-over variances. Most of the these
and observe the relationship between léfe-over variance  extreme images have identifiable problems, such as the eye
given by L, = + Do [T%(Z) — diD(T) — mkM(f)}z, being closed, not centered, having a different scale, or hav-
and the mean component; . ing reflections from glasses. For the database we consider
It is possible that the spatial structure of eye images, whiclhere they constitute only a small fraction of the input data.
we wish to capture with the PCA basB; (%), changes as We then use singular value decomposition (SVD) to perform
the mean componeni,, increases. Alternatively, these ba- principal component analysis. Lé&;(z) ando; denote the
sis images may stay roughly the same and only the variatiohasis images and singular values obtained from the SVD over
of their components given by, ; = (T}, B;) increases with  the trimmed dataset (Fig. 3).
the mean component,. Indeed, if the variation of the mean ~ Suppose we approximate the normalized images$z)
component is primarily due to lighting and imaging effects, with just the firstn PCA basis images. We compute the
then we might assume that the underlying signal is invariantesidual signaky (%) in the complement space as,(7¥) =
to contrast. In this case we would expect the PCA basis im{A; (%) — Y_"_, ¢ ; B;(%)], where the expansion coefficient
ages to be independentof, and only the variance of com- ¢, ; = (A4, (Z), B;(¥)) andn is taken to be much less than
ponents:;, ; to scale as a function of,. the total number of training images. We can now de-
In Fig. 2(Left) we plot\/L;, vs the mean coefficient for fine the residual variance to B¢,(z) = + Zle ex(Z). It
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Figure 1: Database of eye (top) and non-eye (bottom) images.
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Figure 2: Characterizing the eye (green) and non-eye (red) spaces.

is easy to show that/, (¥) satisfies the relation¥,,(¥) =  strategy gives a detection ratedaf’; and a false target rate of
Z;V . (B (x)gj) whereN is the total number of pixels. 6%. Also, observe the increase in separation of the eye-space
The residual variance is the estimate of the unexplained sigfom the non-eye space with the addition of eigenbases.

nal at each pixel because of the approximation of input WIﬂ‘B Mixture Model for Out-of—Subspace Signal
only n basis [5]. Although the residual variances at nearby 5008 is 7 least-square measure and hence its computati
o q putation

pixels are likely to be correlated, we ignore this correlation. is suspect when test images have pixel outliers. What we
5 Detection Strategy need is a robust method to compute the out—of—subspace vari-
) _.ances. We achieve this by invoking a mixture model for the

In order to detect a test image as an eye, we expand it 'But of-subspace signal, i.e. @6g) = e;.(7 /\/7 If
terms of the DC and mean images, along with the firBCA there were no outliers, normalizing (%) by dividing it with
basis images. The\tweS are trlroese statistics to consider for detec 7V,,.(%) will cause the out—of-subspace signal d@3 to
tion, namely,m, Sj WISandS Heremy, is the coefficient e nit variance. Because pixel outliers destroy this prop-
of the mean images;™ is t2he within—subspace statistic given oy \we account for them with an explicit outlier model.
by SF® = 377 (cr,j/0j)” andSpos = 5 37 €3 (%) / Vi (2). The mixture model contains an inlier component and a
Notice thatS¥'s measures the squared expansion coefficientsiniform outlier distribution. We choose a zero-mean, unit-
cx,; compared to the squares of the singular vattgesrvhere variance Gaussian dis'[ribu'[iof\of(oos,C (2);0, 1) as an inlier
af- is also just the variance ef, ; across the training set. In to explain the object-specific signal in the out-of-subspace.
addition SP° measures the variance of what we call the outIn particular, the probability for an out-of-subspace sig-
of—subspace signal, which is the residual signdl¥) nor-  nal value of oog(Z) is taken to be independent of pixel
malized to have unit variance by division withV,, (Z). position and is expressed agoos;(Z)) = (1 — mo) x

The variance plot drawn in Fig. 2(Right) showgS9°s N(OOSC(*) 1) + mo x U, wherer, and1 — 7, are the
computed with just the DC and the mean images and it ignixing coeff|C|ents for the outlier distributidd and the inlier
clear from the figure that the feature spacesSff® andm,, ~distribution/\ respectively. Now, the only unknown parame-
are amenable to a simple classification strategy. In particulaters of the mixture model are the mixing coefficients and the
we use the constraint that, > mm:,, Wwheremm, is a small  outlier probability.
positive value. Negative values of;, correspond to contrast ~ Assuming a uniform distribution over the possible range
reversals and small positive values fay, generate a mean Of gray levels|0, 255], the best case of an outlier that nearly
image component which varies only by a few gray levels. Ad-0oks like an eye| |mage with a mem can be shown to have
ditionally, we apply a contrast invariant threshold of the forma Va|Uepo(003f = my+/Vn(%)/256 for all 0os.(Z) €
arctan(my, v/Sp%) < Toos, Which requires that eyes be be- [-128/my\/V,, ,128/mk\/ n( )] and0 otherwise. We
low a line drawn through the origin. The true detection andtreat out—of—space signal as independent of image position
rejection rates are shown in Fig. 4 for three different choicesind hence, we sét = my, [/ V.. (Z) /N | /256.
for the total number of eigenbasis used,= 0, 5, and20. We update the mixing coefficients in two steps. First, we
Using just the DC and the mean images=£ 0), this simple  begin with an initial guess fofry. Then for each pixel in
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Figure 3: Eigenbasis for the eye space, arranged from left to right in a decreasing order of the input variance captured. The first
sub-image on the left is the mean image.
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Figure 4: Separation of the eye and the non-eye clouds in the feature sp&g¥ e m, with the addition of5 (Left) and
20 (Middle) eigenbasis. The true detection (green) and rejection (red) rates are drawn on the right using lines annotated with
diamonds ¢ = 0), crossesr = 5) and circles ¢ = 20).

the out-of-subspace signal of a test image we compute an : 4

ownership probability given byr;(00s,(Z)) = (1 — mp) X | _

N (005,(%);0,1) /((1 — 7o) x N'(008,(F);0,1) + mo X U). — ST e e

This leads to a new value for, given by: 7mp = 1 — !I?F&u- '..i ﬁ

+ Zle 71(008;(Z)). A high value forr; (00s;(Z)) implies T el

that the out—of-subspace signal at pixel posifiognbeing ac- ~ Figure 5: Ownership maps (Bottom) assigned by the mixture

counted mostly by the inlier component of the mixture model.model to the Gaussian inlier component for images with out-
In the second step, we use the ownership responsibilitiekers (Top).
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