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Abstract
We achieve two goals in this paper: (1) to build a novel
appearance-based object representation that takes into ac-
count variations in contrast often found in training images;
(2) to develop a robust appearance-based detection scheme
that can handle outliers such as occlusion and structured
noise. To build the representation, we decompose the input
ensemble into two subspaces: a principal subspace (within–
subspace) and its orthogonal complement (out–of–subspace).
Before computing the principal subspace, we remove any de-
pendency on contrast that the training set might exhibit. To
account for pixel outliers in test images, we model the resid-
ual signal in the out-of-subspace by a probabilistic mixture
model of an inlier distribution and a uniform outlier distribu-
tion. The mixture model, in turn, facilitates the robust estima-
tion of the within-subspace coefficients. We show our method-
ology leads to an effective classifier for separating images of
eyes from non-eyes extracted from the FERET dataset.

1 Introduction
Eigenspace representations enable an approximate but

compact encoding of object-specific ensembles, such as a
database of face images or images of a gesturing hand, using
a small set of orthonormal basis images. The basis set is ob-
tained by finding the principal components (PCA) of the im-
age ensemble. The basis images span a subspace, also called
the eigenspace, and a linear combination of these basis im-
ages can be used to approximately reconstruct images in the
input ensemble. Eigenspace representations have proven to
be useful in various contexts such as coding [9], appearance-
based detection and recognition [13, 4, 6], and tracking [1].

Our work builds upon three key observations regarding
eigenspace representation. First, eigenspace methods involve
least squares approximations which are notoriously sensitive
to large outliers. Hence, it is important to account for out-
liers both for training and testing eigenspace methods [1, 11].
A related issue is one of variation in the image contrast that
is often found in the training data. Contrast is measured as
the deviation from the average brightness. In general, im-
ages with a range of different contrasts will have the property
that the images with higher contrasts will have a larger vari-
ance. If some images have much larger variance than others,
then these images will dominate over others in the computa-
tion of the eigenspace. Often a contrast normalization step
such as histogram equalization is performed. Such a method
is unlikely to highlight object-specific structure that we wish

eigenspaces to capture.
Second, principal component analysis (PCA) amounts to a

rotation of input coordinate axes and as such, PCA does not
define a probability density model for the input data. How-
ever, eigenspaces can also be derived from the perspective of
density estimation [4, 7, 12]. The advantage in estimating the
input density is that it allows for the design ofprobabilistic
methods to detect, recognize and/or classify test images as
appearances of known objects. In particular, one strategy for
object representation is to divide the signal space into a prin-
cipal subspace and its orthogonal complement and then build
probability models separately for the two subspaces. The de-
tection strategy then is to apply a threshold on the likelihood
assigned by the combined density model to a test image [4].

The third key observation, as noted in [5], is that the vari-
ance estimateper–pixelgiven by the eigenspace density mod-
els for the residual signal in the out–of–subspace is overly
conservative. We defer the actual details of variance estima-
tion used in our appearance-based detector to a later section.

In this paper we build on and extend the work done ad-
dressing the three issues mentioned. While we follow the
strategy of splitting the signal space into a principal subspace
and its orthogonal complement, we depart from the usual in
several ways. First, we explicitly model any variations that
the training set might exhibit with contrast. This allows us
to build an eigenspace that is invariant to contrast changes.
Also, we assume that only a small fraction of the training im-
ages have outliers, while we apply no such restriction on the
test images.

Our second contribution is to invoke a novel mixture model
formulation for the out–of–subspace residual signal. The
mixture model consists of an inlier component and a uniform
outlier distribution. We use a Gaussian distribution for the in-
lier but other densities such as Laplace can be used as well, as
long as they provide a good fit to the out–of–subspace residu-
als. The mixture coefficients are updated using just one itera-
tion of expectation maximization (EM) algorithm. The result-
ing pixel ownership probabilities are then used for a weighted
least-square computation of the within–subspace coefficients.
We show that on a database of eye images cropped from the
FERET database of facial images, our contrast-invariant, ro-
bust eigenspace representation leads to an effective classifier.



2 Database
We generated an eye database by cropping eye regions

from the FERET face database [2]. The original face im-
ages were scaled and rotated so that, in the warped image,
the left and right eyes have a horizontal separation of28 pix-
els. These warped images were then cropped to20 × 25
regions centered on each eye. The images vary in contrast
along with changes of the person, the lighting, position, pose
(eg. open/closed eyes), and the occasional reflection from
glasses. The resulting eye database contained2392 images
(Fig. 1). For non-eyes, we ran an interest point detector on
many natural images and collected those image patches pass-
ing a suitable threshold [8]. The database of non-eyes con-
sisted of3839 images. Next, we use this database to explore
the representation issues.

3 Contrast Model
Contrast is the variation in image intensities around a mean

brightness value. We need to estimate the brightness vari-
ation that is due to the underlying signal, and not due to
noise. We accomplish this by using two components, namely
a constant “DC” component and a component in the direc-
tion of mean of the training set. We define the training set
as{Tk(~x)}Kk=1 whereK is the total number of training im-
ages andTk(~x) is the the gray value at pixel position~x in
thekth training image. The DC componentD(~x) is given by
D(~x) = 1/

√
N , whereN is the total number of pixels in the

image,~x corresponds to a pixel position andD(~x) is chosen
to be unit length. The mean imageM(~x) is taken to be the
mean image of the training set minus their DC components,
that isM(~x) = sm

K

∑K
k=1

[
Tk(~x) − D(~x)〈Tk(~x), D(~x)〉

]
.

Here the inner product is defined by:〈Tk(~x), D(~x)〉 ≡∑
~x Tk(~x)D(~x), where the sum is over all the pixel positions

andsm is chosen to makeM(~x) a unit vector.
Define the components ofTk(~x) in the directions of DC

and the mean vector asdk = 〈Tk(~x), D(~x)〉 andmk =
〈Tk(~x),M(~x)〉 respectively. To study contrast dependency,
we project out the mean and DC vectors from the training set
and observe the relationship between theleft–over variance,
given by Lk = 1

N

∑
xk

[
Tk(~x)− dkD(~x)−mkM(~x)

]2
,

and the mean componentmk.
It is possible that the spatial structure of eye images, which

we wish to capture with the PCA basisBj(~x), changes as
the mean componentmk increases. Alternatively, these ba-
sis images may stay roughly the same and only the variation
of their components given byck,j = 〈Tk, Bj〉 increases with
the mean componentmk. Indeed, if the variation of the mean
component is primarily due to lighting and imaging effects,
then we might assume that the underlying signal is invariant
to contrast. In this case we would expect the PCA basis im-
ages to be independent ofmk and only the variance of com-
ponentsck,j to scale as a function ofmk.

In Fig. 2(Left) we plot
√
Lk vs the mean coefficient for

each eye image in the FERET dataset. It is clear from the
figure that

√
Lk is linearly increasing with the mean coeffi-

cient. This is confirmed by the non-zero slope of the straight
line fit to the data going through the origin (black line in
Fig. 2(Left)). Note, the straight line fit may be biased in a
small way by the outliers in the eye images.

To balance the variances across different image contrasts,
define rescaled images asAk(~x) =

[
Tk(~x) − dkD(~x) −

mkM(~x)
]
/s(mk), wheres(mk) is a scaling factor. It is con-

venient to assume a minimum value for the left-over variance,
say due to independent pixel noise, and use this in the esti-
mate for scaling:s(mk) =

√
σ2

min + f(mk). The red curve
in Fig. 2a is obtained withf(mk) = p × m2

k, wherep is
the slope of the straight line fit (black line in Fig. 2(Left))
and all points on the red curve will have a variance of one
(Fig. 2(Middle)).

Fig. 2(Right) reveals the property of non-eyes show in red,
while the eyes are drawn in green. The vertical axis is indica-
tive of the variance that could not be explained by the DC and
the mean images alone. Observe the non-eye images exhibit
a strong dependency with the mean coefficient. This behav-
ior is consistent with what we know about the statistics of
natural images. In particular, assuming that the mean eye im-
age is dominated by low–frequency information, the spatial
structure in natural images that could not be explained by the
DC and the mean eye image is very likely to possess informa-
tion at higher frequencies. As shown in [10], there are strong
correlations between wavelet amplitudes for the same image
position across scale and orientation in a space-frequency de-
composition. Thus a high value for the mean coefficient must
give rise to a high value for the high–frequency components
in the left–over signal.

4 Principal Subspace and its Complement
Once the images are rescaled intoAk(~x) for k =

1, · · · ,K, we first trim the database by removing extreme
images that either have a low or negative mean image coeffi-
cient and/or very large left-over variances. Most of the these
extreme images have identifiable problems, such as the eye
being closed, not centered, having a different scale, or hav-
ing reflections from glasses. For the database we consider
here they constitute only a small fraction of the input data.
We then use singular value decomposition (SVD) to perform
principal component analysis. LetBj(~x) andσj denote the
basis images and singular values obtained from the SVD over
the trimmed dataset (Fig. 3).

Suppose we approximate the normalized imagesAk(~x)
with just the firstn PCA basis images. We compute the
residual signalek(~x) in the complement space as,ek(~x) =[
Ak(~x)−

∑n
j=1 ck,jBj(~x)

]
, where the expansion coefficient

ck,j = 〈Ak(~x), Bj(~x)〉 andn is taken to be much less than
the total number of training imagesK. We can now de-
fine the residual variance to beVn(~x) ≡ 1

K

∑K
k=1 e

2
k(~x). It



Figure 1: Database of eye (top) and non-eye (bottom) images.

−500 0 500 1000
0

10

20

30

40

50

60

70

S
td

. D
ev

./p
ix

el

Mean Coeff

Contrast Dependent Image Variation

−500 0 500 1000
0

2

4

6

8

10

12

14

Mean Coeff

S
td

. D
ev

. (
pe

r 
pi

xe
l)

Rescaled Image Std.Dev.

−1500 −1000 −500 0 500 1000 1500
0

20

40

60

80

100
Out of subspace Error, nBasis = 0

Mean Coeff

R
es

id
ua

l S
td

. D
ev

. (
gr

ay
 le

ve
ls

/p
ix

el
)

Figure 2: Characterizing the eye (green) and non-eye (red) spaces.

is easy to show thatVn(~x) satisfies the relation:Vn(~x) =∑N
j=n+1

(
Bj(~x)σj

)2
, whereN is the total number of pixels.

The residual variance is the estimate of the unexplained sig-
nal at each pixel because of the approximation of input with
only n basis [5]. Although the residual variances at nearby
pixels are likely to be correlated, we ignore this correlation.

5 Detection Strategy
In order to detect a test image as an eye, we expand it in

terms of the DC and mean images, along with the firstn PCA
basis images. There are three statistics to consider for detec-
tion, namely,mk, S

wis
k andSoos

k . Heremk is the coefficient
of the mean image,Swis

k is the within–subspace statistic given

bySwis
k =

∑n
j=1

(
ck,j/σj

)2
andSoos

k = 1
N

∑
~x e

2
k(~x)/Vn(~x).

Notice thatSwis
k measures the squared expansion coefficients

ck,j compared to the squares of the singular valuesσ2
j , where

σ2
j is also just the variance ofck,j across the training set. In

additionSoos
k measures the variance of what we call the out–

of–subspace signal, which is the residual signalek(~x) nor-
malized to have unit variance by division with

√
Vn(~x).

The variance plot drawn in Fig. 2(Right) shows
√
Soos
k

computed with just the DC and the mean images and it is
clear from the figure that the feature spaces ofSoos

k andmk

are amenable to a simple classification strategy. In particular,
we use the constraint thatmk > mmin wheremmin is a small
positive value. Negative values ofmk correspond to contrast
reversals and small positive values formk generate a mean
image component which varies only by a few gray levels. Ad-
ditionally, we apply a contrast invariant threshold of the form
arctan(mk,

√
Soos
k ) ≤ τoos, which requires that eyes be be-

low a line drawn through the origin. The true detection and
rejection rates are shown in Fig. 4 for three different choices
for the total number of eigenbasis used,n = 0, 5,and20.
Using just the DC and the mean images (n = 0), this simple

strategy gives a detection rate of94% and a false target rate of
6%. Also, observe the increase in separation of the eye-space
from the non-eye space with the addition of eigenbases.

6 Mixture Model for Out–of–Subspace Signal
Soos
k is a least-square measure and hence its computation

is suspect when test images have pixel outliers. What we
need is a robust method to compute the out–of–subspace vari-
ances. We achieve this by invoking a mixture model for the
out–of–subspace signal, i.e. oosk(~x) = ek(~x)/

√
Vn(~x). If

there were no outliers, normalizingek(~x) by dividing it with√
Vn(~x) will cause the out–of–subspace signal oosk(~x) to

have unit variance. Because pixel outliers destroy this prop-
erty, we account for them with an explicit outlier model.

The mixture model contains an inlier component and a
uniform outlier distribution. We choose a zero-mean, unit-
variance Gaussian distributionN

(
oosk(~x); 0, 1

)
as an inlier

to explain the object-specific signal in the out–of–subspace.
In particular, the probability for an out–of–subspace sig-
nal value of oosk(~x) is taken to be independent of pixel
position and is expressed asp(oosk(~x)) = (1 − π0) ×
N
(
oosk(~x); 0, 1

)
+ π0 × U , whereπ0 and 1 − π0 are the

mixing coefficients for the outlier distributionU and the inlier
distributionN respectively. Now, the only unknown parame-
ters of the mixture model are the mixing coefficients and the
outlier probability.

Assuming a uniform distribution over the possible range
of gray levels[0, 255], the best case of an outlier that nearly
looks like an eye image with a meanmk can be shown to have
a valuep0(oosk(~x)) = mk

√
Vn(~x)/256 for all oosk(~x) ∈

[−128/mk

√
Vn(~x), 128/mk

√
Vn(~x)] and0 otherwise. We

treat out–of–space signal as independent of image position~x
and hence, we setU = mk

[√∑
~x Vn(~x)/N

]
/256.

We update the mixing coefficients in two steps. First, we
begin with an initial guess forπ0. Then for each pixel in



Figure 3: Eigenbasis for the eye space, arranged from left to right in a decreasing order of the input variance captured. The first
sub-image on the left is the mean image.
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Figure 4: Separation of the eye and the non-eye clouds in the feature space ofSoos
k vsmk with the addition of5 (Left) and

20 (Middle) eigenbasis. The true detection (green) and rejection (red) rates are drawn on the right using lines annotated with
diamonds (n = 0), crosses (n = 5) and circles (n = 20).

the out–of–subspace signal of a test image we compute an
ownership probability given by:τk(oosk(~x)) = (1 − π0) ×
N
(
oosk(~x); 0, 1

)
/
(
(1− π0)×N

(
oosk(~x); 0, 1

)
+ π0 ×U

)
.

This leads to a new value forπ0 given by: π0 = 1 −
1
K

∑K
k=1 τk(oosk(~x)). A high value forτk(oosk(~x)) implies

that the out–of–subspace signal at pixel position~x is being ac-
counted mostly by the inlier component of the mixture model.

In the second step, we use the ownership responsibilities
to rederive the within–space coefficients. Imagine stacking
the ownerships in a diagonal matrixWk and performing a
weighted least-squares computation such as:~dk = (U ′∗Wk∗
U)−1U ′ ∗W ′k ∗Tk, where matrixU has in its columns the DC
vector, the mean image and zero or more eigenbasesBj , Tk is
the test image and~dk contains the within–space coefficients
along with the components in the DC and the mean direc-
tions. The weighted least-squares is taking advantage of the
ownership probability so that outlier pixels are discounted in
estimating within–space coefficients.

Using the re-estimated within–space coefficients, we com-
pute the out–of–subspace signal and then update the own-
ership probabilities one more time. These iterations are the
usual steps of the expectation-maximization algorithm [3].
As shown in Fig. 5 the bright portions of the ownership maps
clearly indicate which pixels in the out–of–subspace signal
belong to the inlier component. The ownership maps can
now be used to robustly estimate the out–of–subspace statis-
tic. Any distribution other than a Gaussian is acceptable as
long as it fits the out–of–subspace signal well. Finally, a sim-
ple detection strategy is to apply a threshold on the fraction of
the total number of pixels in a test image the mixture model
assigns to the inlier component.
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