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Abstract

Dynamic textured sequences are characterized by the interactions be-
tween many particles or objects in the scene. Based on earlier work the im-
ages of the sequence are interpreted as the output of a linearautoregressive
process driven by white Gaussian noise. We extend earlier work by increas-
ing the amount temporal information included when learningthe motion in
the scene, allowing the models to capture complex motion patterns which ex-
tend over multiple frames, thereby increasing the perceptual accuracy of the
synthesized results. To overcome problems of dynamic modelstability, we
apply Burg’s Maximum Entropy Spectral Analysis technique for parameter
estimation, which is found to be reliably stable on smaller samples of training
data, even with higher-order dynamics.

1 Introduction
A dynamic texture is an image sequence characterized by the interactions between many
particles or objects in the scene. Examples of dynamic textures include, flames flickering,
leaves blowing, and crowds observed from a distance. For such scenes, learning the
motion by segmenting and tracking the trajectory of each component is computationally
intensive; a holistic representation of the scene and the motion is motivated.

One well-known approach is to infer linear, autoregressivemodels of dynamic tex-
tures. The frames of the image sequence are interpreted as the output of stochastic process
driven by white Gaussian noise. The appearance of the scene is described by a subspace
model and the dynamics of the scene are captured within this subspace by a generative
model that determines the hidden state of the system. Previous work using autoregres-
sive models for dynamic texture synthesis, [6] in particular, used a first-order dynamical
model. Incorporating only information from the preceedingstate prevents the capture
of oscillations and other motions that rely on higher-ordertemporal dependencies in the
image sequence. Also, with first-order models the perceptual quality of the synthesized
scene deteriorates within a short interval.

In this paper, we propose the use of higher-order autoregressive dynamic texture mod-
els. We find that increasing the amount of temporal information when learning the in-
terframe dependencies allows the model to capture complex patterns which extend over
multiple frames, increasing the perceptual accuracy of thesynthesized results.

When incorporating a higher-order dynamical model, issuesof model stability arise.
To overcome these issues we apply the Maximum Entropy Spectral Analysis (MESA)
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technique for linear prediction [3]. This approach is common in control theory but, to our
knowledge, not typically used in the field of computer visionand new to dynamic texture
modeling. This estimation technique is more reliably stable and perceptually accurate on
smaller samples of training data, even with a higher-order dynamical model, than when
using the Yule-Walker equations.

2 Related Work
Texture analysis and synthesis was pioneered by Julesz [12]with the observation of the
correlation between statistical and perceptual similarity of textured images. Since then,
many image-based rendering techniques have emerged for synthesizing static and dy-
namic textured scenes.

Non-parametric methods synthesize images using probabilistic sampling of the ob-
served data, either pixel by pixel [5, 9, 10, 27] or by copyingpatches [8, 15, 28]. In
non-parametric dynamic texture synthesis, notable results have emerged using patch-
based techniques, where image patches are interpreted as segments of the image sequence
[14, 22]. The synthesized temporal textures generated withthese methods tend to be per-
ceptually realistic, however, the images are limited to samples of the original sequence.
Moreover, because a model of the scene is not explicitly inferred, the synthesized results
cannot be generalized and further processing, viz. classification [4], is limited.

Parametric methods for dynamic textures were introduced in[18]. Modeling dynamic
textures as the output of a spatio-temporal autoregressiveprocess was shown to be suc-
cessful with certain classes of textures and motions [25], however, the framework could
not model spatially non-stationary motion, such as rotation. In [6], these limitations are
addressed by representing dynamic textures as the output ofa first-order subspace process
with a Gaussian driving distribution,

yt = Cxt (1)

xt = −Axt−1 +Wvt , vt ∼ N (0, I). (2)

In their appearance model (1) each imageyt is considered an expansion of the state vari-
ablext which is defined in the principal component subspace. In their dynamic model
(2) the current hidden state of the system is derived from a linear combination of the el-
ements in the preceeding state, described by matrixA, and additive Gaussian noise with
covarianceWWT is used to stochastically drive the process.

In [6], the dynamic model parameters are learned within the appearance model sub-
space. If the dynamic and appearance information is non-separable, this approach deter-
mines only an approximation to the optimal parameter estimates. To guarantee an optimal
parameter estimate, the appearance and dynamic model parameters would be learned si-
multaneously. In [26] the dynamic model is computed in the original input space and the
appearance model is constructed to retain a maximum amount of the information with
respect to the dynamics of the system. In [23] an iterative approach is suggested where
the results of [26] are used for initialization. Unfortunately these techniques are compu-
tationally infeasible on common workstations, given high-dimension input such as image
data. Instead, we implement a closed-form solution to approximate the optimal parameter
estimates, as in [6].

In contrast to the prevalent use of first-order dynamical models in earlier work, we
advocate the use of higher-order models in the autoregressive process. We show that



higher-order models produce improved synthesized sequences with perceptual quality
maintained over a longer time interval. The advantages of the autoregressive framework
are preserved: separating the appearance and dynamical components enables classifica-
tion [4], facilitates recognition applications [21] and provides a more manipulable model
to explore video editing [7]. Moreover, incorporating influence from states lagged fur-
ther in time captures the temporal dependencies that are capable of modeling oscillations.
Using higher-order dynamics, however, introduces issues of model stability. We draw on
a parameter estimation technique used in control theory to improve the stability of the
resulting model, the Maximum Entropy Spectral Analysis technique [3].

3 Autoregressive Model
In this work a dynamic texture is modeled as the output of an autoregressive process con-
sisting of an appearance model, which determines the state of the system, and a dynamic
model, which captures how the states change over time:

yt = Cxt +ut , ut ∼ N (0,B), (3)

xt = −
µ

∑
i=1

Fµ,ixt−i +Wvt , vt ∼ N (0, I). (4)

At time t, each imageyt , in column vector form, is defined by the expansion of a
hidden state variable,xt . In the generative appearance model (3) the matrixC projects the
subspace representation into the image space, and the zero-mean normally distributed ad-
ditive noise captures the uncertainty with covarianceB. The dynamic model (4) contains
a deterministic component (i.e. a Markov-model described by F = {Fµ,1,Fµ,2, . . . ,Fµ,µ})
and a stochastic component (i.e. a Gaussian driving distribution with covarianceWWT ).
As in [6], we ignore the additive appearance noiseut (i.e., takeut ≡ 0) and capture all
additive process noise within the driving distributionvt .

We learn the parametersC,F, andW for theµ-order autoregressive model of an image
sequence. Initializing the model with a set ofµ consecutive image frames, one can gen-
erate novel image sequences which resemble the original data. The model is successful if
the synthetic sequences are perceptually similar to the original sequence and, ideally, the
model parameters are sufficiently generalizable to supportrecognition tasks [21].

3.1 Appearance Model
While the optimal estimator findsC,F, andW simultaneously, following [6], we use prin-
cipal component analysis (PCA) to define the appearance model parametersC and we
learn the dynamical model parametersF andW within the PCA subspace. To determine
C, each image of the observed sequence is converted into column vector form, the mean
image is subtracted, and the resulting vectors are concatenated to formYτ

1 , a matrix of size
p×τ wherep is the number of pixels per image times the number of colour channels, and
τ is the number of images (τ < p). Let Yτ

1 ≡ UΣVT be a singular value decomposition
(SVD) whereU is p× p, Σ is p× τ, andV is τ × τ. We chooseq≪ p and defineC≡ Û
whereÛ is a matrix containing the firstq principal directions found in the columns of
U . Let V̂ be the firstq columns ofV andΣ̂ be a diagonal matrix of theq largest singular
values fromΣ. We define the subspace representation ofYτ

1 to beXτ
1 ≡ Σ̂V̂T . There are

non-linear alternatives which, in future work, could be used within the appearance model;
in particular, [20] is developed specifically for spatial textures.



3.2 Dynamic Model
The dynamic model comprises a deterministic linear model and a Gaussian driving dis-
tribution. The true dynamical process which generated the orignal sequence may contain
both linear and non-linear components. Nonetheless, we assume that a linear autoregres-
sive model is sufficient to describe the visual process. Information not captured within
the linear component is modeled in the stochastic componentof the dynamics.

The Yule-Walker equations can be used to solve for the coefficients of the dynamic
model in the least squares sense, as in [6]. However, this approach assumes the stationarity
of the training data sample statistics, an assumption whichbreaks down for short dynamic
texture segments. As the order of the dynamic model increases and accuracy of the sample
statistics deteriorate, the dynamic model determined withthe Yule-Walker method is often
unstable. In an unstable linear system, the predicted states tend towards infinity over time,
resulting in perceptually unrealistic synthesized sequences.

The Maximum Entropy Spectral Analysis (MESA) technique wasdeveloped for sin-
gle channel signals [3] and extended to handle multidimensional data [16, 24]. Although
common in the control theory literature, to our knowledge this technique has not been
applied to dynamic textures. When modeling dynamic textures, in practice only small
portions of the sequences are available. Inaccurate modelsresult when the higher-order
sample statistics do not adequately reflect the structure indata. The main contribution of
MESA is that by using a recursive approach the higher-order autocorrelations are never
calculated directly from the sample data, despite the assumption of stationarity. An addi-
tional advantage of MESA, is that the stability of the resulting model is guaranteed [13].
Moreover, compared to using the Yule-Walker equations, we found that fewer training
frames are necessary to obtain an accurate model [11].

MESA uses a recursive approach that depends on the coefficients of both forward and
backward models,

xt = −
µ

∑
i=1

Fµ,ixt−i +eµ,t , (5)

xt = −
µ

∑
i=1

Bµ,ixt+i +bµ,t . (6)

whereeµ,t and bµ,t are the forward and backward residuals. In (5), future states are
predicted using the past states of the system, whereas in (6)past states are predicted using
future data. The coefficients of anµ-order model are as follows,

Fµ =
[
I Fµ,1 Fµ,2 . . . Fµ,µ

]T
, (7)

Bµ =
[
Bµ,µ . . . Bµ,2 Bµ,1 I

]T
, (8)

whereI is an identity matrix of sizeq×q. These model coefficients have the following
recursive relationship [3],

Fµ =

[
Fµ−1

0

]
+

[
0
Bµ−1

]
Fµ,µ , (9)

Bµ =

[
Fµ−1

0

]
Bµ,µ +

[
0
Bµ−1

]
. (10)

MatricesFµ,µ andBµ,µ are called thereflection coefficientsand 0 is the zero matrix; all
are of sizeq× q. To solve forFµ in (9), we solve for the reflection coefficients in a



least squares sense, minimizing the squared residual erroraveraged over the sequence.
The expected value of the reflection coefficients given the forward residual error is the
same as the solution given the backward residual error [3]. However, averaging the two
solutions is a more robust approach since we are dealing witha limited sample of the true
sequence. We solve for reflection coefficients which minimize the weighted sum of the
squared forward and backward residual errors averaged overthe sequence, i.e.,

Eµ =
τ

∑
t=µ+1

[
(eµ,t)

TQf eµ,t +(bµ,t)
TQbbµ,t

]
, (11)

where matricesQf andQb weight the impact of the forward and backward components.
The relative accuracy of the lower-order forward and backward models provides confi-
dence measures for current iteration. The higher the covariance of the driving distribu-
tion, the more uncertainty in the model and therefore the less confidence we have in the
resulting estimates for the reflection coefficients. We set the weights to the inverse of
the covariance of the driving distribution for the forward and backward models of order
M−1, called thepower matrices1, i.e.,

Qf = (Pf
µ−1)

−1
, Qb = (Pb

µ−1)
−1

, (12)

where,

Pf
µ−1 =

[
R0 R1 . . . Rµ−1

]
Fµ−1, (13)

Pb
µ−1 =

[
Rµ−1 RM−2 . . . R0

]
Bµ−1. (14)

andRi is the sample autocorrelation of the observed sequence under the assumption of
stationarity,

Ri =
1

τ − µ

τ

∑
t=µ+1

xt(xt−i)
T
. (15)

The power matrices are positive definite, and therefore invertible, in any physically real-
izable linear dynamic system [23]. Using nonsingular weight matrices provides a unique
solution to the minimization of (11) [24]. Moreover, choosing such weights simplifies
the equation significantly. By taking the derivative ofEµ with respect to the reflection

coefficientsFµµ and using weightsPf
µ−1 andPb

µ−1, the following is derived in [24],

HFµ,µ +Pb
µ−1Fµ,µ(Pf

µ−1)
−1D = −2G, (16)

which one can use to solve forFµ,µ . D andH are the covariance of the offset forward and
backward residuals respectively, andG is the correlation between the offset residuals:

D =
τ−µ

∑
t=1

εµ,t(εµ,t )
T
, H =

τ−µ

∑
t=1

βµ,t(βµ,t)
T
, G =

τ−µ

∑
t=1

βµ,t(εµ,t )
T
. (17)

1In the forward model shown in equation (4),WWT is the power matrix.



The forward and backward offset residuals are defined as follows2,

εµ,t = xt+µ +
µ−1

∑
i=1

Fµ−1,ixt+µ−i , (18)

βµ,t = xt +
µ−1

∑
i=1

Bµ−1,ixt+i . (19)

We solve forBµ,µ using the generalized conjugate relationship [3],

Bµ,µ = (Pf
µ−1)

−1(Fµ,µ)TPb
µ−1. (20)

From (9), (10), (13) , (14) , and (20), the following recursive updates can be derived for
the power matrices [3],

Pf
M = Pf

µ−1− (Fµ,µ)TPb
µ−1Fµ,µ , (21)

Pb
M = Pb

µ−1− (Bµ,µ)TPf
µ−1Bµ,µ . (22)

Using this recursive definition, rather than (13) and (14), the higher-order autocorrelation
estimates are not calculated from the sample sequence.

To initialize the algorithm, in the zero-order model we assume the sequence is the
output of the stochastic component of the model. ThereforePf

0 = Pb
0 = R0, ε0,t = xt+1

andβ0,t = xt .
To summarize MESA: Given the coefficients for a model of orderµ −1, Fµ−1, and

the state-space projection,Xτ
1 , of the observed image sequence, (13) and (14) are used to

determine the power matrices,Pf
µ−1 andPb

µ−1, and (18) and (19) solve for the offset resid-
uals,εµ,t andβµ,t . The forward reflection coefficientsFµ,µ , which minimize the squared
sum of weighted residual errors, are determined by (16) and the backward reflection co-
efficientsBµ,µ are calculated using the generalized conjugate relationship (20). Using the
reflection coefficientsFµ,µ andBµ,µ , and the lower-order model parametersFµ−1, (9) and
(10) provide the coefficientsFµ for a model of orderµ .

4 Results
There are several ways one can evaluate and compare synthesized image sequences [1].
Here we use the one-step prediction error to quantify the quality of our results, as in [6],

errµ(i) = || yi +C(
µ

∑
j=1

Fµ, j(C
⋄yi− j)) ||2, (23)

whereC⋄ ≡CT(CCT)−1 is the pseudo-inverse ofC.
Higher-order dynamic models are shown to improve the average one-step prediction

error for the test sequences in Fig. 1. As more temporal information is used to gener-
ate subsequent image frames, the prediction error of the synthesized images decreases.

2The notation for the indices of the offset residuals is somewhat counter-intuitive. Nonetheless, it is used
throughout time-series literature and, for consistency, it will be used here as well. Residualsεµ ,t andβµ ,t use
the estimation from models of orderµ −1, however a different interval of states is used within the calculation.
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Figure 1: The effect of changing the orderµ of the dynamic model is shown for four
sequences: the fountain sequence [25] (blue), the fire sequence [25] (yellow), the house
plant sequence [11] (green), and the walking sequence [19] (red). A frame of each se-
quence is shown on the right. The house plant sequence was trained withτ = 200 frames
and the others withτ = 80. Appearance model consisted of 25-dimensions. The one-step
prediction error was average over allτ − µ sets of initialization frames.

Depending on the type of motion in the scene, the advantage ofsecond and third-order
dynamic models varies. In the house plant sequence the oscillatory swaying motion of the
leaves is not captured by first-order dynamics but can be modeled using second-order dy-
namics. Third-order dynamics, however, do not provide muchfurther improvement. This
improvement is illustrated on the left in Fig. 2. The effect of changing the length of the
sequence used for training the dynamical model, is also shown in Fig. 2. For each length
the mean error was calculated from 20 models trained on different intervals of the original
sequence. For each model, the median3 of the one-step prediction error is calculated over
40 initialization intervals sampled from the original sequence at regular intervals.

Although convenient for optimization, the one-step prediction error alone is not suffi-
cient for evaluating of the overall quality of a synthesizedsequence. Without the ability to
consider extended intervals of time, the stability of the system is not captured. Moreover,
the mean-squared error does not measure perceptual quality. For example, increasing the
dimension of the appearance model decreases the predictionerror, but beyond some small
dimension there was no difference in perceptual quality formost textured sequences.

We found a higher-order dynamical model to be necessary to capture pendulum-like
movement, such as the swaying of the leaves in the house plantsequence. In the synthetic
sequences generated by a first-order model the leaves flicker, whereas, the sequences
generated by a second-order model capture the swaying motion. In order to explore this,
one can analyze the temporal frequency of the image intensities; we expect the jittery
motion to exhibit more power at high-frequencies than the swaying motion. A set of
image positions were randomly sampled according to a uniform distribution. The image
sequence was spatially blurred by a Gaussian and then measured at the sampled locations.

3The median was used to accomodate short intervals of frames and increase robustness to the few instances
when the power matrix was ill-conditioned causing the errorto explode.
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Figure 2: Results for the synthesized house plant sequence.LEFT: The effect of increas-
ing the order of the dynamic model on house plant sequence syntheses. The one-step
prediction error results reflect the visually observed results: increasing from a 1st-order
(yellow) to a 2nd-order (green) dynamic model improves accuracy of the synthesized se-
quence more than increasing from a 2nd-order to a 3rd-order (blue) model. Models used
appearance models of 25-dimensions and training lengths from 70-2000 frames. RIGHT:
Average magnitude of the amplitude spectrum. The larger amount of high frequency
information in the 1st-order model (blue) is in loose agreement with the perception of
the jittery motion in the video. The results from the 2nd-order model (red) more closely
resemble the training data (green).

After taking the Fourier transform of the resulting temporal signal, the magnitude of the
frequency was averaged over all sampled positions to obtainone generalized signal for
each synthesized sequence. A cosine temporal window was used before taking the Fourier
transform to reduce windowing effects. The average amplitude spectrum for the first and
second-order synthesized sequences of the house plant video are shown on the right in
Fig. 2. The larger amount of high frequency information in the first-order model is in
loose agreement with the perception of the jittery motion inthe video.

When the autoregresssive model is provided with a sufficientnumber of frames for
training, relative to MESA, the Yule-Walker method finds parameters which generate im-
ages with a smaller one-step prediction error in the first fewframes. A full sequence
cannot be generated using these parameters, however, because the predictions become in-
accurate over time due to model instability. The stability of models learned with MESA is
guaranteed, but the results of the model are not necessarilyperceptually accurate. In par-
ticular, without a sufficient amount of training data, the power matrices are ill-conditioned
and the error is significant. It is important to note, however, that neither the Yule-Walker
method nor MESA will provide a useable model under such conditions.

4.1 Linear Model Limitations
Our results demonstrate that a significant amount of the movement in the scene can be cap-
tured with a linear autoregressive model, especially with higher-order dynamics. How-
ever, real-world visual scenes exhibit complex dynamics. As expected, there are non-
linear components within most observed motions which are not well described by our



Figure 3: The higher-order dynamic models produce syntheses which resemble the orig-
inal data over a longer interval. From left to right, frame 52of the flame sequence syn-
tehsized from 1st

,2nd
,3rd-order dynamic models, and the corresponding frame from the

original sequence.

model.
The deterministic component of the dynamic model provides alinear prediction of

the subsequent state and the final estimation lies within a multidimensional Gaussian dis-
tribution centered at this prediction. Similar images occupy a more complex manifold in
the subspace and learning the manifold may require a lot of data to ensure a dense sample
of the image space [17]. Using linear dynamics with a Gaussian driving distribution will
not guarantee that predicted states remain on this manifold. Moreover, because the image
dataset is not convex slight inaccuracies in the predictioncause dispersion artifacts in the
synthesis. For example, in the fire sequence synthesis the flame filaments are distinct and
compact initially, like the original sequence. As the length of the synthesis increases,
the state predictions decrease in accuracy, drift further from the manifold and the flames
are dispersed across the image plane. As the order of the model increases, however, the
syntheses resemble the original data over a longer interval, as shown in Fig. 3.

5 Conclusion
The results of this work illustrate how higher-order dynamics contribute to the perceptual
accuracy of the novel synthesized sequences generated by autoregressive models. The
complicated motion patterns which extend over multiple frames of dynamic textures are
more adequately represented when additional temporal information is provided during the
learning process and when generating the motion in the scene.

Without sufficient training data, previously used techniques for learning autoregres-
sive model parameters produced unstable and inaccurate results, in particular when using
higher-order dynamic models. To overcome this limitation we applied MESA, a linear
prediction technique common in control theory literature which generates a reliably sta-
ble autoregressive model.

Dynamic textured sequences are complicated scenes with complex motion patterns.
We have found that a significant amount of the perceptually relevant information in the
scene is captured by higher-order linear autoregressive models. The models explored in
this work could be used either for an accurate prediction of afew frames ahead in the
sequence or to capture a general description of the motion upon which more detail could
potentially be incorporated. The latter opens an interesting direction for future research.
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