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Abstract

The computation of optical flow relies on merg-
ing information available over an 1mage patch to
form an estimate of 2D 1mage velocily at a point.
This merging process raises a host of 1ssues, which
include the treatment of outliers in component ve-
locity measurements and the modeling of multiple
motions within a patch which arise from occlusion
boundaries or transparency. We present a new ap-
proach for dealing with these 1ssues, which 1s based
on the use of a probabilistic mixture model o ez-
plicitly represent multiple motions withan a patch.
We use a simple extension of the EM-algorithm
to compute a mazimum hikelthood estimate for the
various motion paramelers. Preliminary ezper:-
ments indicate that this approach s computation-
ally efficient and can provide robust estimates of
the optical flow values in the presence of outhers
and multiple motions.

1 Introduction

The computation of optical flow relies on merging in-
formation available over an image patch to form an
estimate of 2D image velocity at a point. As the size
of this neighborhood grows there is an increased like-
lihood that the it will span an object boundary in the
scene which will result in multiple motions within the
region. Multiple motions can also be the result of var-
ious kinds of transparency. In these situations, the as-
sumption of a single motion within the region results
in inaccurate estimates of the optical flow. We refer
to this dilemma regarding the choice of neighborhood
size as the generalized aperture problem. To address the
problem, we relax the single-motion assumption and,
instead, assume that the motion(s) within the region
can be described by a probabilistic mizture of distribu-
tions.

We observe that, when multiple motions are present,
the motion estimates within a region form distinct
clusters. We employ a simple extension of the EM-
algorithm [4] to isolate these clusters, estimate their
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Figure 1: The Pepsi Can image sequence. The mix-
ture approach is applied to the boxed region.

likelihood, and detect outlying measurements which do
not correspond to a coherent motion.

This approach has a number of benefits. Like robust
regression techniques [1], the approach allows us to ro-
bustly estimate the dominant motion within a region.
But more importantly, by assuming the the motion is
due to a mixture of distributions we are able to recover
multiple coherent motions if they are present and reject
outliers. This multiple-motion assumption is applica-
ble at both motion boundaries and in regions contain-
ing multiple transparent motions. Additionally, infor-
mation about the presence of multiple motions may
prove useful for the early detection of surface bound-
aries from motion.

2 Mixture Models of Flow

For a given image region we attempt to model the flow
in terms of a handful of smoothly varying layers. For
example, 7(Z; @) may represent a constant velocity field
for one layer, or it could denote an affine flow where
the components v; and vy are given by linear functions
of the image position £. In the first case the parameter
vector @ is 2-dimensional, while it is 6-dimensional in
the affine case.! Multiple motions within a particular

1In practice, it is often useful to add parameters representing
the uncertainty of @.
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Figure 2: Multiple motion constraint lines for the region in Figure 1 (see text).

patch are represented by selecting more than one set of
parameters @ However, note that at this stage of anal-
ysis we have not modeled where in the image patch each
of the various models are appropriate. Thus transpar-
ent motion, with two different velocity fields realized
over the whole patch, will be initially modeled in the
same way as an occlusion boundary. A subsequent level
of analysis is needed to determine which of these two
interpretations is appropriate for a particular patch.

We seek the parameter values@,,n=1,...,N for NV
posstbly distinct smooth fields, one for each layer. For
the n'® layer, the probability of observing a motion
constraint vector ¢, given that the observation is at
the spatial location Ty, is modeled by the “component
probability” distribution p,(c%|Zx,dn). In addition we
also have a model for outlier processes given by po(¢:).
Finally, the probability of selecting layer n is given
by the “mixture probabilities” m,, which are treated
as further parameters we need to fit. Together these
pieces provide the overall probability of observing the
constraint ¢, namely

N
P(G|&k, M, a1, .., @N) = Y Mapn(GlEr, ). (1)
n=0
Here the mixture probabilities m,, forn =0,1,..., N

must sum to one.

To obtain a maximum likelihood fit for the parame-
ters m, and @,, n =0,..., N, we use a simple modifi-
cation of the EM-algorithm [4]. This is a simple itera-
tive algorithm which is guaranteed to increase the log
likelihood of its fit each iteration (see [3] for details).

3 Computational Examples

To illustrate the approach, motion constraint vectors,
Ck, were computed using a phase-based approach [2].
For the 32 x 32 region marked in Figure 1, which is
roughly centered on an occlusion boundary, a third of
all the motion constraints are depicted in Figure 2a.
The two “X”’s in Figure 2b mark the peaks of the

fitted mixture model for this example. The method
converges quickly and has clearly recovered the veloc-
ities of both sides of the occlusion boundary without
difficulty.

Using (1) we can compute the ownership probabsl-
ity, namely the probability that any given constraint
comes from either of the two motions. The darkness of
the constraint lines in Figure 25 is proportional to the
ownership probability for the first motion. A similar
plot is given in Figure 2¢ for the second motion. Note
that constraint lines that are roughly horizontal, and
pass close to both peaks, have roughly equal ownership
probabilities. This illustrates the competition between
the various components in the mixture model for the
ownership of each constraint. There are only a hand-
ful of constraint lines that are outliers which do not
correspond to either motion.

The general spatial distribution of the ownership
probabilities (Figure 2d) reflects the structure and lo-
cation of the occlusion boundary within the patch.
Darkness is proportional to the probability that the
constraints at a location belong to the motion of the
foreground.

For details of the method and additional experiments
(including transparent motion) the reader is referred to

[3}.
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