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Abstract

Using a Markov chain perspective of spectral clustering we present an
algorithm to automatically find the number of stable clusters in a dataset.
The Markov chain’s behaviour is characterized by the spectral properties
of the matrix of transition probabilities, from which we derive eigenflows
along with their halflives. An eigenflow describes the flow of probabil-
ity mass due to the Markov chain, and it is characterized by its eigen-
value, or equivalently, by the halflife of its decay as the Markov chain
is iterated. A ideal stable cluster is one with zero eigenflow and infi-
nite half-life. The key insight in this paper is that bottlenecks between
weakly coupled clusters can be identified by computing the sensitivity
of the eigenflow’s halflife to variations in the edge weights. We propose
a novel EIGENCUTS algorithm to perform clustering that removes these
identified bottlenecks in an iterative fashion.

1 Introduction
We consider partitioning a weighted undirected graph— corresponding to a given dataset—
into a set of discrete clusters. Ideally, the vertices (i.e. datapoints) in each cluster should
be connected with high-affinity edges, while different clusters are either not connected or
are connnected only by a few edges with low affinity. The practical problem is to identify
these tightly coupled clusters, and cut the inter-cluster edges.

Many techniques have been proposed for this problem, with some recent success being ob-
tained through the use of spectral methods (see, for example, [2, 4, 5, 11, 12]). Here we use
the random walk formulation of [4], where the edge weights are used to construct a Markov
transition probability matrix, � . This matrix � defines a random walk on the graph to
be partitioned. The eigenvalues and eigenvectors of � provide the basis for deciding on a
particular segmentation. In particular, it has been shown that for � weakly coupled clus-
ters, the leading � eigenvectors of � will be roughly piecewise constant [4, 13, 5]. This
result motivates many of the current spectral clustering algorithms. For example in [5], the
number of clusters � must be known a priori, and the � -means algorithm is used on the

� leading eigenvectors of � in an attempt to identify the appropriate piecewise constant
regions.

In this paper we investigate the form of the leading eigenvectors of the Markov matrix � .
Using some simple image segmentation examples we confirm that the leading eigenvectors
of � are roughly piecewise constant for problems with well separated clusters. However,
we observe that for several segmentation problems that we might wish to solve, the cou-
pling between the clusters is significantly stronger and, as a result, the piecewise constant
approximation breaks down.



Unlike the piecewise constant approximation, a perfectly general view is that the eigenvec-
tors of � determine particular flows of probability along the edges in the graph. We refer
to these as eigenflows since they are characterized by their associated eigenvalue � , which
specifies the flow’s overall rate of decay. Instead of measuring the decay rate in terms of
the eigenvalue � , we find it more convenient to use the flow’s halflife � , which is simply
defined by � ��� �����
	�� . Here � is the number of Markov chain steps needed to reduce
the particular eigenflow to half its initial value. Note that as � approaches � the half-life
approaches infinity.

From the perspective of eigenflows, a graph representing a set of weakly coupled clus-
ters produces eigenflows between the various clusters which decay with long halflives. In
contrast, the eigenflows within each cluster decay much more rapidly. In order to iden-
tify clusters we therefore consider the eigenflows with long halflives. Given such a slowly
decaying eigenflow, we identify particular bottleneck regions in the graph which critically
restrict the flow (cf. [12]). To identify these bottlenecks we propose computing the sensi-
tivity of the flow’s halflife with respect to perturbations in the edge weights.

We implement a simple spectral graph partitioning algorithm which is based on these ideas.
We first compute the eigenvectors for the Markov transition matrix, and select those with
long halflives. For each such eigenvector, we identify bottlenecks by computing the sensi-
tivity of the flow’s halflife with respect to perturbations in the edge weights. In the current
algorithm, we simply select one of these eigenvectors in which a bottleneck has been iden-
tified, and cut edges within the bottleneck. The algorithm recomputes the eigenvectors and
eigenvalues for the modified graph, and continues this iterative process until no further
edges are cut.

2 From Affinities to Markov Chains
Following the formulation in [4], we consider an undirected graph  with vertices ��� , for� ��������������� , and edges � ��� � with non-negative weights � ��� � . Here the weight � ��� � repre-
sents the affinity of vertices � � and � � . The edge affinities are assumed to be symmetric,
that is, � ��� � � � ��� � . A Markov chain is defined using these affinities by setting the transition
probability !"��� � from vertex �#� to vertex ��� to be proportional to the edge affinity, �$��� � .
That is, !"��� �%�'&)(+*� ����� � where &��,�.-./�10 * ����� � gives the normalizing factor which ensures
- /�10 * !2��� �2�3� . In matrix notation, the affinities are represented by a symmetric 46574
matrix 8 , with elements �$��� � , and the transition probability matrix �9�;:�!<��� �
= is given by

�>�.8@? (A* �B?C� diag :�& * ���������D& / =E� (1)
Notice that the 4F524 matrix � is not in general symmetric.

This transition probability matrix � defines the random walk of a particle on the graph
 . Suppose the initial probability of the particle being at vertex ��� is GIH� , for JK�;�L����������4 .
Then, the probability of the particle being initially at vertex ��� and taking edge �
��� � is
!"��� �MGIH� . In matrix notation, the probability of the particle ending up any of the verticesN�<�O:�� * ����P���Q�Q�QR�M� / = after one step is given by the distribution

NG * � � NG%H , where
NGTSU�

:VGWS* �������E�XGYS/ = .
For analysis it is convenient to consider the matrix Z[�.? (+*�\ P �]? *�\ P , which is similar to

� (where ? is as given in Eq. (1)). The matrix Z therefore has the same spectrum as �
and any eigenvector

N^ of Z must correspond to an eigenvector ? *�\ P N^ of � with the same
eigenvalue. Note that Z_�C? (+*�\ P �]? *M\ P �`? (A*M\ P 8@? (A* ? *�\ P �`? (A*M\ P 8@? (A*M\ P , and
therefore Z is a symmetric 4a524 matrix since 8 is symmetric while ? is diagonal.

The advantage of considering the matrix Z over � is that the symmetric eigenvalue prob-
lem is more stable to small perturbations, and is computationally much more tractable.
Since the matrix Z is symmetric, it has an orthogonal decomposition of the form:

Z[�.bTcdbTef� (2)
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Figure 1: (a-c) Three random images each having an occluder in front of a textured back-
ground. (d-e) A pair of eye images.

where bC��� N^ * �
N^ P ��Q�Q�Q+� N^ /

�
are the eigenvectors and c is a diagonal matrix of eigenval-

ues � � * �D�IPL��Q�Q�Q+�D� /
�

sorted in decreasing order. While the eigenvectors have unit length,� N^
S
� �;� , the eigenvalues are real and have an absolute value bounded by 1, � � S ����� .

The eigenvector representation provides a simple way to capture the Markovian relaxation
process [12]. For example, consider propagating the Markov chain for � iterations. The
transition matrix after � iterations, namely �]� , can be represented as:

� � �'? *M\ P b c � bTe ? (+*�\ P � (3)

Therefore the probability distribution for the particle being at vertex � � after � steps of
the random walk, given that the initial probability distribution was

NG,H , is
NG@� � ��� NG H �

? *�\ P bTcf� N� H , where
N� H � b e ? (+*�\ P NG@H provides the expansion coefficients of the initial

distribution
NG%H in terms of the eigenvectors of Z . As ���
	 , the Markov chain approaches

the stationary distribution
N� , �� � N��� e . Assuming the graph  is connected with edges

having non-zero weights, it is convenient to interpret the Markovian relaxation process as
perturbations to the stationary distribution,

NG � � N��� - /��0 P � � � �� N� � , where � * � � is

associated with the stationary distribution
N� and

N� � � ? *M\ P N^ � .
3 EigenFlows
Let
NG@H be an initial probability distribution for a random particle to be at the vertices of

the graph  . By the definition of the Markov chain, recall that the probability of making
the transition from vertex � � to ��� is the probability of starting in vertex �
� , times the
conditional probability of taking edge ����� � given that the particle is at vertex � � , namely
!"��� �MGIH� . Similarly, the probability of making the transition in the reverse direction is !"�D� �VG)H� .
The net flow of probability mass along edge � ��� � from � � to � � is therefore the difference
! ��� � GIH��� ! �D� � G)H� . It then follows that the net flow of probability mass from vertex � � to � �
is given by ����� �L: NG H = , where ����� � : NG H = is the : � � J�= -element of the 4F5 4 matrix

�K: NG H =f� � diag : NG H = � diag : NG H = � e � (4)

Notice that ����� � � e for � � � diag : NG%H
= , and therefore � is antisymmetric (i.e.
� e � � � ). This expresses the fact that the flow � ��� � from � � to � � is just the opposite sign
of the flow in the reverse direction. Furthermore, it can be shown that �K: � =T��� for any
stationary distribution � . Therefore, the flow is caused by the eigenvectors

N� � with ������_� ,
and hence we analyze the rate of decay of these eigenflows �K: N� � = .
For illustration purposes we begin by considering an ensemble of random test images
formed from two independent samples of 2D Gaussian filtered white noise (see Fig. 1a-c).
One sample is used to form the ��� 5a��� background image, and a cropped � 5�� fragment
of second sample is used for the foreground region. A small constant bias is added to the
foreground region.
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Figure 2: (a) Eigenmode (b) corresponding eigenflow (c) gray value at each pixel corre-
sponds to the maximum of the absolute sensitivities of all the weights on edges connected
to a pixel (not including itself). Dark pixels indicate high absolute sensitivities.

A graph clustering problem is formed where each pixel in a test image is associated with a
vertex of the graph  . The edges in  are defined by the standard 8-neighbourhood of each
pixel (with pixels at the edges and corners of the image only having 5 and 3 neighbours,
respectively). The edge weight between neighbouring vertices � � and � � is given by the
affinity � ��� � �������

� � :��Y: N� � = � �Y: N� � =M= P 	$: �
	 P = � , where �Y: N� S = is the test image brightness
at pixel

N�
S and 	 is a grey-level standard deviation. We use 	 ���� , where  is the median

absolute difference of gray levels between all neighbouring pixels and � �;�L� � .
This generative process provides an ensemble of clustering problems which we feel are
representative of the structure of typical image segmentation problems. In particular, due
to the smooth variation in gray-levels, there is some variability in the affinities within both
foreground and background regions. Moreover, due to the use of independent samples for
the two regions, there is often a significant step in gray-level across the boundary between
the two regions. Finally, due to the small bias used, there is also a significant chance for
pixels on opposite sides of the boundary to have similar gray-levels, and thus high affinities.
This latter property ensures that there are some edges with significant weights between the
two clusters in the graph associated with the foreground and background pixels.

In Figure 2 we plot one eigenvector,
N�
S , of the matrix � along with its eigenflow, �K: N� S�= .

Notice that the displayed eigenmode is not in general piecewise constant. Rather, the
eigenvector is more like vibrational mode of a non-uniform membrane (in fact, they can
be modeled in precisely that way). Also, for all but the stationary distribution, there is a
significant net flow between neighbours, especially in regions where the magnitude of the
spatial gradient of the eigenmode is larger.

4 Perturbation Analysis of EigenFlows
As discussed in the introduction, we seek to identify bottlenecks in the eigenflows associ-
ated with long halflives. This notion of identifying bottlenecks is similar to the well-known
max-flow, min-cut theorem. In particular, for a graph whose edge weights represent maxi-
mum flow capacities between pairs of vertices, instead of the current conditional transition
probabilities, the bottleneck edges can be identified as precisely those edges across which
the maximum flow is equal to their maximum capacity. However, in the Markov frame-
work, the flow of probability across an edge is only maximal in the extreme cases for
which the initial probability of being at one of the edge’s endpoints is equal to one, and
zero at the other endpoint. Thus the max-flow criterion is not directly applicable here.

Instead, we show that the desired bottleneck edges can be conveniently identified by con-
sidering the sensitivity of the flow’s halflife to perturbations of the edge weights (see Fig.
2c). Intuitively, this sensitivity arises because the flow across a bottleneck will have fewer
alternative routes to take and therefore will be particularly sensitive to changes in the edge
weights within the bottleneck. In comparison, the flow between two vertices in a strongly
coupled cluster will have many alternative routes and therefore will not be particularly
sensitive on the precise weight of any single edge.



In order to pick out larger halflives, we will use one parameter, � H , which is a rough estimate
of the smallest halflife that one wishes to consider. Since we are interested in perturbations
which significantly change the current halflife of a mode, we choose to use a logarithmic
scale in halflife. A simple choice for a function which combines these two effects is � :�� = ������ :�� � � H = , where � the halflife of the current eigenmode.

Suppose we have an eigenvector
N^ of Z , with eigenvalue � . This eigenvector decays with

a halflife of �F� � ����� :X�L=�	 ����� :D� ��� = . Consider the effect on �d:�� = of perturbing the affinity
����� � for the : � � J = -edge, to �$��� � ��� ��� � . In particular, we show in the Appendix that the
derivative of � :��f: � ��� � =M= with respect to � ��� � , evaluated at � ��� � � � , satisfies

& ���	� :�� � � H =& � ��� � �
���	� :X�L=

� ����� : �I= ���	� : � ��
 	���= � �� ^ �� & � � ^ �� & ��� P � : � � �I=  ^ P�&L� � ^ P�&�� ��� (5)

Here : ^ �M� ^ �#= are the : � � J�= elements of eigenvector
N^ and :X&�����&��#= are degrees of nodes

: � � J = (Eq.1). In Figure 2, for a given eigenvector and its flow, we plot the maximum of
absolute sensitivities of all the weights on edges connected to a pixel (not including itself).
Note that the sensitivities are large in the bottlenecks at the border of the foreground and
background.

5 EIGENCUTS: A Basic Clustering Algorithm
We select a simple clustering algorithm to test our proposal of using the derivative of the
eigenmode’s halflife for identifying bottleneck edges. Given a value of � H , which is roughly
the minimum halflife to consider for any eigenmode, we iterate the following:

1. Form the symmetric ����� affinity matrix � , and initialize ������� .

2. Set �! #"  $�&%(')+*-, �.� /" ) , and set a scale factor 0 to be the median of �1 #"  for 2$�43658797:7:5;� .

Form the symmetric matrix < � ���>= ,@?+A � � �>= ,@?+A .
3. Compute eigenvectors BDCE , 5�CE A 5:F:F:F�5GCE 'GH of <I� , with eigenvalues J K , JGLMJ K A JN7:7:7OLMJ K ' J .
4. For each eigenvector CE�P of <I� with halflife Q PSR4T QVU , compute the halflife sensitivities,W P #" ) �YXOZ [;\^]`_ba^cd_ 
NeX+fGg/h i for each edge in the graph. Here we use T �j3^k^l .

5. Do non-maximal suppression within each of the computed sensitivities. That is, suppress
the sensitivity

W P /" ) if there is a strictly more negative value
W Pm " ) or

W P /" ' for some vertexn m in the neighbourhood of n ) , or some n ' in the neighbourhood of n  .
6. Compute the sum o P of p W P #" )9q �  #" ) over all non-suppressed edges r/2;5Ds�t for which

W P /" )�uv kb0 . We use v �jpxw�7y3 .
7. Select the eigenmode CEzP9{ for which o P9{ is maximal.

8. Cut all edges r/2;5Ds�t in � � (i.e. set their affinities to 0) for which
W P9{ #" ) u v k^0 and for which

this sensitivity was not suppressed during non-maximal suppression.

9. If any new edges have been cut, go to 2. Otherwise stop.

Here steps � �(| are as described previously, other than computing the scaling constant } ,
which is used in step � to provide a scale invariant threshold on the computed sensitivities.
In step 4 we only consider eigenmodes with halflives larger than ~D� H , with ~ �_� 	�� because
this typically eliminates the need to compute the sensitivities for many modes with tiny
values of � S and, because of the � H term in � :�� = , it is very rare for eigenvectors with
halflives smaller than ~�� H to produce any sensitivity less than � .

In step 5 we perform a non-maximal suppression on the sensitivities for the ���D� eigenvector.
We have observed that at strong borders the computed sensitivities can be less than � in a
band along the border few pixels thick. This non-maximal suppression allows us to thin this
region. Otherwise, many small isolated fragments can be produced in the neighbourhood
of such strong borders.



In step 6 we wish to select one particular eigenmode to base the edge cutting on at this
iteration. The reason for not considering all the modes simultaneously is that we have
found the locations of the cuts can vary by a few pixels for different modes. If nearby
edges are cut as a result of different eigenmodes, then small isolated fragments can result
in the final clustering. Therefore we wish to select just one eigenmode to base cuts on each
iteration. The particular eigenmode selected can, of course, vary from one iteration to the
next.

The selection strategy in step 6 above picks out the mode which produces the largest
linearized increment in �d:�� S = � ���	� :�� S � � H = . That is, we compute � � S �- ��� �

����� � a ���� g#h i � �	���� � , where � �
���� � � � �
���� � is the change of affinities for any edge left to
be cut, and � ������ � � � otherwise. Other techniques for selecting a particular mode were
also tried, and they all produced similar results.

This iterative cutting process must eventually terminate since, except for the last iteration,
edges are cut each iteration and any cut edges are never uncut. When the process does
terminate, the selected succession of cuts provides a modified affinity matrix 8�� which
has well separated clusters. For the final clustering result, we can use either a connected
components algorithm or the � -means algorithm of [5] with � set to the number of modes
having large halflives.

6 Experiments
We compare the quality of EIGENCUTS with two other methods: a � -means based spectral
clustering algorithm of [5] and an efficient segmentation algorithm proposed in [1] based on
a pairwise region comparison function. Our strategy was to select thresholds that are likely
to generate a small number of stable partitions. We then varied these thresholds to test the
quality of partitions. To allow for comparison with � -means, we needed to determine the
number of clusters � a priori. We therefore set � to be the same as the number of clusters
that EIGENCUTS generated. The cluster centers were initialized to be as orthogonal as
possible [5].

The first two rows in Fig. 3 show results using EIGENCUTS. A crucial observation with
EIGENCUTS is that, although the number of clusters changed slightly with a change in
� H , the regions they defined were qualitatively preserved across the thresholds and corre-
sponded to a naive observer’s intuitive segmentation of the image. Notice in the random
images the occluder is found as a cluster clearly separated from the background. The per-
formance on the eye images is also interesting in that the largely uniform regions around
the center of the eye remain as part of one cluster.

In comparison, both the � -means algorithm and the image segmentation algorithm of [1]
(rows 3-6 in Fig. 3) show a tendency to divide uniform regions and give partitions that are
neither stable nor intuitive, despite multiple restarts.

7 Discussion
We have demonstrated that the common piecewise constant approximation to eigenvec-
tors arising in spectral clustering problems limits the applicability of previous methods to
situations in which the clusters are only relatively weakly coupled. We have proposed a
new edge cutting criterion which avoids this piecewise constant approximation. Bottleneck
edges between distinct clusters are identified through the observed sensitivity of an eigen-
flow’s halflife on changes in the edges’ affinity weights. The basic algorithm we propose
is computationally demanding in that the eigenvectors of the Markov matrix must be re-
computed after each iteration of edge cutting. However, the point of this algorithm is to
simply demonstrate the partitioning that can be achieved through the computation of the
sensitivity of eigenflow halflives to changes in edge weights. More efficient updates of the
eigenvalue computation, taking advantage of low-rank changes in the matrix Z� from one
iteration to the next, or a multi-scale technique, are important areas for further study.
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Figure 3: Each column refers to a different image in the dataset shown in Fig. 1. Pairs
of rows correspond to results from applying: EIGENCUTS with � � �L� � �+~ � � � � �$�+� �
� � � � and � H ��� � � � � (Rows 1&2), � -Means spectral clustering where � , the number
of clusters, is determined by the results of EIGENCUTS (Rows 3&4) and Falsenszwalb &
Huttenlocher � ��� � � � � (Rows 5&6).
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Appendix

We compute the derivative of the log of half-life Q of an eigenvalue K with respect to an element q  )
of the affinity matrix � . Half-life is defined as the power to which K must be raised to reduce the
eigenvalue to half, i.e., K _ � 39k�� . What we are interested is in seeing significant changes in those
half-lives Q which are relatively large compared to some minimum half-life Q U . So eigenvectors with
half-lives smaller than Q U are effectively ignored. It is easy to show that,������� r Q	� QdU:t� q  ) � ����� r
� tK ����� rDKdt ����� rDK _ 
 k��6t � K� q  ) 5 and

� K� q  ) � CE� � <� q  ) CE 7 (6)

Let CE be the corresponding eigenvector such that < CE �&K�CE , where < is the modified affinity matrix
(Sec 2). As < �(�>= ,@?NA ���>= ,@?NA , we can write for all 2��� s :� <� q  ) �(� = ,@?NA����  ) � � )  �� � = ,@?NA p�� ��� = ,@?+A p � = ,@?NA ����5 (7)

where
�����

is a matrix of all zeros except for a value of 3 at location r��d5��dt ; r �  5 � ) t are degrees of

the nodes 2 and s (stacked as elements on the diagonal matrix � see Sec 2); and � � � X! #"%$�&g A �   �X  #"%$�&i A � ) ) � having non-zero entries only on the diagonal. Simplifying the expression further, we getCE  � <� q  ) CE � CE  � = ,@?+A ���  ) � � )  � � = ,@?NA CE p&CE  � � ,@?+A � � = ,@?NA ��� = ,@?+A � CEp&CE� � � = ,@?NA ��� = ,@?+A �8� ,@?+A � CE 7 (8)

Using the fact that � = ,@?+A �.� = ,@?NA CE � < CE � K�CE , and � � ,@?NA � � ,@?+A � as both � and � are
diagonal, the above equation reduces to:CE  � <� q  ) CE � CE  � = ,@?+A ���  ) � � )  '� � = ,@?NA CE p(� K�CE  � � ,@?NA CE� CE  � = ,@?+A � �  ) � � )  � � = ,@?NA CE p K�CE  � � = , �   �� � = ,) � ) ) � CE 7 (9)
The scalar form of this expression is used in Eq.5.


