CSC412/2506 Winter 2018
Probabilistic Learning and Reasoning

Lecture 2: Simple Classifiers

Slides based on Rich Zemel’s

All lecture slides will be available on the course website:
www.cs.toronto.edu/~jessebett/CSC412

Some of the figures are provided by Kevin Murphy
from his book: "Machine Learning: A Probabilistic Perspective”



Basic Statistical Problems

e Basic problems: density est., clustering, classification, regression.
e (Canalwaysdo joint density estimation and then condition:

- Regression: p<y1x>=p<y,x>/p<x —ply.)/ [ ply. x)dy

— (Classification: p(c‘X) (C X)/p C X /Zp C, X
- Clustering: p(c|x) = p(c,x)/p(x ) ¢ unobserved

- Density estimation: p(y|x) = p(y,x)/p(x) Y unobserved

In general, if certain things are  If certain things are always
always observed we may not unobserved they are called hidden
want to model their density: or latent variables (more later):
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Fundamental Operations

e What can we do with a probabilistic graphical model?

For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected)

When all nodes are either observed or marginalized the result
is a single number which is the prob. of the configuration.

Compute expectations of some things given others which are
observed or marginalized.

(today)

Set the parameters of the local functions given some

(partially) observed data to maximize the probability of seeing
that data



Learning Graphical Models from Data

Want to build prediction systems automatically based on data,
and as little as possible on expert information

In this course, we'll use probability to combine evidence from
data and make predictions

We’ll use graphical models as a visual shorthand language to
express and reason about families of model assumptions,
structures, dependencies and information flow, without
specifying exact distributional forms or parameters

In this case learning = setting parameters of distributions
given a model structure.

(“Structure learning” is also possible but we won'’t consider it
now.)



Multiple Observations, Complete |ID Data

e Asingle observation of the data X is rarely useful on its own.

e Generally we have data including many observations, which
creates a set of random variables: p _ {(x x@ . x()y

e We will sometimes assume two things:

1. Observations are independently and identically distributed
according to joint distribution of graphical model: i.i.d.
samples.

2. We observe all random variables in the domain on each
observation: complete data, or fully observed model.

e We shade the nodes in a graphical model to indicate they are
observed. (Later we will work with unshaded nodes
corresponding to missing data or latent variables.)

Xl XZ X.i

Xy



Likelihood Function

So far we have focused on the (log) probability function p(x|0)
which assigns a probability (density) to any joint configuration
of variables x given fixed parameters 6

But in learning we turn this on its head: we have some fixed
data and we want to find parameters

Think of p(x|0) as a function of 6 for fixed x:
((0; x) = log p(x|6)
This function is called the (log) “likelihood”.

Choose 6 to maximize some cost or loss function L(8) which

includes £(0):

L(#) =¢(6;D)  maximum likelihood (ML)

L(0) = ¢(6; D) + r(0) maximum a posteriori (MAP)/penalized ML
(also cross-validation, Bayesian estimators, BIC, AIC, ...)



Maximum Likelihood

For IID data, the loglikelihoodis a sum of identical functions
p(D|h) = H p(x("™)0)

= Z log p(x\"™|6)

Idea of maximum likelihood estimation (MLE): pick the setting
of parameters most likely to have generated the data we saw:

0 = arg max ¢(6;D)

Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

For a start, the IID assumption makes the loglikelihoodinto a
sum, so its derivative can be easily taken term by term.



Sufficient Statistics

A statistic is a (possibly vector valued) deterministic function
of a (set of) random variable(s).

T(X) is a “sufficient statistic” for X if
T(xM) =T(x?) = L(6;xV) = L(0;x?) Vo

Equivalently (by the Neyman factorization theorem) we can
write:

p(x|0) = h(x,T(x))g(T'(x),0)
Example: exponential family models:

p(x[n) = h(x)exp{n’ T(x) — A(n)}
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Example: Bernoulli Trials

We observe Miid coinflips D=H H,T, H, ...
Model: p(H)=06 p(T)=(1-06)
Likelihood:

((0; D) = logp(D|0)

=1logf Y x") +log(1—6)) (1—x"))
= log 9]\?;{ + log(1 — )N

Take derivatives and set to zero:
ol N Nt
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Example: Multinomial

e We observe M iid die rolls (K-sided): D =3,1, K, 2, ...
e Model: p(k) =0k Zﬁk =1
k

e Likelihood (for binary indicators [x(™ = k]):
(65 D) = log p(D6)
= log H ng(m):k] ...HLX(M:M

— Zlog 0, Z[X(m) — k] — ZNk 10g9k
k m k

e Take derivatives and set to zero (enforcing Z 0, =1):

8€ Nk k
00, 0O
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Example: Univariate Normal

We observe M iid real samples: D = 1.18, —.25, .78, ...

Model:
p(x) = (2m0?) V2 exp{—(z — p)*/20°}
Likelihood (using probability density):
(6 D) = log p(D|6)
M 1 Z (x — )

= log(2mo?) — 5

. )
Take derivatives and set to zero:
184 1 )4 M 1 5
a_MZEZ(xm—M) ﬁ:—T‘Q—FT‘éLZ(mm—N)
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Example: Linear Regression

At a linear regression node, some parents (covariates/inputs)
and all children (responses/outputs) are continuous valued
variables.

For each child and setting of parents we use the model:
p(ylx,0) = gauss(y|0" x, 0%)

The likelihood s the familiar “squared error” cost:

1 m m
(O:D) = —5 5 (3™ — oTx™)’

The ML parameters can be solved for using linear least-

L] a€
Squares: — E (m) T, (m) (m)
= : (y 0" x )X

= 05, = (XIX)"'1X'Y

Sufficient statistics are input correlation matrix and input-
output cross-correlationvector.



Example: Linear Regression




Sufficient Statistics are Sums

e Inthe examplesabove, the sufficient
statistics were merely sums X T (X) 5

(counts) of the data: /“\_.O_,/’\
\_/ \_/

— Bernoulli: # of heads, tails
— Multinomial: # of each type

X T(X) 3
— (Gaussian: mean, mean-square ' N
\/ _/

— Regression: correlations (b)

e As we will see, this is true for all

exponential family models: X T(X) 0

fficient statistics are the aver O—@—(O)
sufficient statistics are the average ()— @ L)
natural parameters. ()

e Only exponential family models
have simple sufficient statistics.



MLE for Directed GMs

e Foradirected GM, the likelihood
function has a nice form:

log p(D|0) logHHp (™ X, 0:) = D Y log p(x{™ |xx,, 0;)

e The parameters ; SO we can
maximize likelihood independently CXD
for each node’s function by setting 8, «x, X, X,
 Only need the values of x; and its ?
parents in order to estimate 0, ®
X

X5 X3
e Furthermore, if X;, Xy, have /( X ;
sufficient statistics only need those. @ X; /@ X;
e Ingeneral, for fully observed data if X4
we know how to estimate params at a

single node we can do it for the whole
network.



Example: A Directed Model

e Consider the distribution defined by
the DAGM:

p(XW) — p(X1\91)p(X2\X1, 92>P(X3!X17 93)p<X4|X2, X3, 94)

e This is exactly like learning four

separate small DAGMs, each of which X
consists of a node and its parents ) @
X X, i ©
¥ e s
@



MLE for Categorical Networks

Assume our DAGM contains only discrete nodes, and we use the
(general) categorical form for the conditional probabilities.

Sufficient statistics involve counts of joint settings of x;, x .
summing over all other variables in the table.

Likelihood for these special “fully observed categorical networks”:

def : def
Qij:eP(XZ:ﬂXﬂz:k) 2]]{ = ZI =7, X :k)
zjk
e=tog ] []]0:
m 19k
= Y Njjilogb;x
m 49k
Nijk

oM

zyk Zj’N



MLE for Categorical Networks

Assume our DAGM contains only discrete nodes, and we use the
(general) categorical form for the conditional probabilities.

Sufficient statistics involve counts of joint settings of x;, x .
summing over all other variables in the table.

Likelihood for these special “fully observed categorical networks”:
((n; D) = log [ [ p(x{™ Ix{7, 6,)
m,1

= log H p(Xz'\Xm,Hi)N(X“XW)zlog H HN_(X“_X”%')

XX, 1, X, X,

— S: S: N(Xia Xﬂ'i) log HX'L"XM

) X’L'axﬂ',i




MLE for General Exponential Family Models

e Recall the probability function for models in the exponential family:
p(x]0) = h(x) exp{n’ T(x) — A(n)}

e Fori.i.d. data, the sufficient statistic vectoris T(x)

{(n; D) = log p(D|n) = (Z log h(x (m) ) MA(n) + (UTZT(X(m)>

e Take derivatives and set to zero:

L m 0A(n)
__;T@a N— M =

= 8?7 = 1/MZT
ML = 1/MZT(X(m))

recalling that the natural moments of an exponential distribution are
the derivatives of the log normalizer.



Classification, Revisited

Given examples of a discrete class label y and some features X.
Goal: compute label (y) for new inputs x.

Two approaches:
Generative: model p(Xx,y)=p(y)p(X/y);
use Bayes' rule to infer conditional p(y/x).
Discriminative: model discriminants f{y/x) directly and take max.

Generative approach is related to conditional density estimation
while discriminative is closer to regression

10
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Probabilistic Classification: Bayes Classifier

Generative model: p(x,y)=p()p(X[y)
p(y) are called class priors (relative frequencies).

p(x/y)are called class-conditional feature distributions
For the class frequency prior we use a Bernoulli or categorical:

ply =klm) =m, Y m=1
k

Fitting by maximum likelihood:
— Sort data into batches by class label
- Estimate p(y) by counting size of batches (plus regularization)

- Estimate p(Xx/y) separately within each batch using ML (also
with regularization)

Two classification rules (if forced to choose):

- ML: argmax, p(x/y) (can behave badly if skewed frequencies)
- MAP: argmax, p(y/x)= argmax, logp(X[y)+logp(y) (safer)



Three Key Regularization Ideas

To avoid overfitting, we can:

e put priorson the parameters. Maximum likelihood + priors =
maximum a posteriori (MAP). Simple and fast. Not Bayesian.

e Integrate over all possible parameters. Also requires priors, but
protects against overfitting for totally different reasons.

e Make factorization or independence assumptions. Fewer inputs
to each conditional probability. Ties parameters together so that

fewer of them are estimated.
Y
X

Y Y



Gaussian Class-Conditional Distribution

e [fall features are continuous, a popular choice is a Gaussian
class-conditional.

_ 1 _
plxly = k,0) = (2757 exp{— (x — ) S (x — puy)}

o Fitting: use the following amazing and useful fact.
The maximum likelihood fit of a Gaussian to some data is the
Gaussian whose mean is equal to the data mean and whose

covariance is equal to the sample covariance.

[Try to prove this as an exercise in understanding likelihood, algebra, and calculus all
at once!]

e Seems easy. And works amazingly well.
But we can do even better with some simple regularization...



Regularized Gaussians

Idea 1: assume all the covariances are the same (tie parameters).
This is exactly Fisher’s linear discriminant analysis.

— .-'/ _Q
“ ||///” :7\\1 1o ()
: "\\\\_//H o i il I\ /| jl;l ) N

Idea 2: Make independence assumptions to get diagonal or
identity-multiple covariances. (Or sparse inverse covariances.)
More on this in a few minutes...

Idea 3: add a bit of the identity matrix to each sample covariance.
This “fattens it up” in all directions and prevents collapse.
Related to using a Wishart prior on the covariance matrix.



Gaussian Bayes Classifier

e Maximum likelihood estimates for parameters:
priors m,: use observed frequencies of classes (plus smoothing)
means L, use class means
covariance X: use data from single class or pooled data
(X(m) — [,(m) ) to estimate full/diagonal covariances

 Compute the posterior via Bayes’ rule:
=k, 0 =k
p(y = klx, 0) = p(x|y =k, O)p(y = kf7)
> p(xly = 34,0)p(y = j|m)
_explu BTx = B g /2 + log my }
> exp{p; B7x — pi X /2 + log my }

— e kX/ZQBjX

where Bx =[S g (Mk >~ 1ux + log 7] and we have augmented x
with a constant component always equal to 1 (bias term).




Softmax/Logit

e The squashing function is known as the softmax or logit:

ek 1
Qbk<Z) — Z] ezj g(,’?) o 1 _I_e_n
e Itisinvertible (up to a constant):
2k = log ¢p + ¢ n =log(g/1—g)
e Derivative is easy:
agbk o 89
92 = 0k (0kj — ¢;) 5y =919

&_ /// 0.4

@) G(z)

—

%)



Linear Geometry

Taking the ratio of any two posteriors (the “odds”) shows that
the contours of equal pairwise probability are linear surfaces in
the feature space:

p(y = k|x,0)

The pairwise discrimination contours p(y,) = p(y;) are
orthogonal to the differences of the means in feature space
when X = ol. For general X shared b/w all classes the same is
true in the transformed feature space t = - 1x.

Class priors do not change the geometry, they only shift the
operating point on the logit by the log-odds: log(m,/m;).
Thus, for equal class-covariances, we obtain

[f we use different covariances, the decision surfaces are conic
sections and we have a quadratic classifier.



Exponential Family Class-Conditionals

e Bayes Classifier has the same softmax form whenever the class-
conditional densities are exponential family density:

p(x|ly = k,mi) = h(x) exp{n; x — a(ny)}
p(x|ly = k,ni)p(y = k|m)
p(x|y = j,nj)p(y = jl)

__exp{nix —a(m)}
> iexp{nix —a(n;)}

eBi *

p— ZJ eﬁgx

e Where Br = [7x; —a(nx)] and we have augmented x with a
constant component always equal to 1 (bias term)

p(y =klx,n) =

e Resulting classifieris linear in the sufficient statistics



Discrete Bayesian Classifier
[f the inputs are discrete (categorical), what should we do?

The simplest class conditional model is a joint multinomial
(table):

p(z1=a,22 =0b,..[y =c) =ng,
This is conceptually correct, but there’s a big practical problem.
Fitting: ML params are observed counts:
>u " = dlz1 = af[xs = b][.. ][

Nab... =
b S [y = (]
Consider the 16x16 digits at 256 gray levels

How many entries in the table? How many will be zero? What
happens at test time?

We obviously need some regularization.

Smoothing will not help much here. Unless we know about the
relationships between inputs beforehand, sharing parameters
is hard also. But what about independence?



Naive Bayes Classifier

Assumption: conditioned on class, attributes are independent.

p(xly) = Hp zi|y)

Sounds crazy right? Right! But it works.

Algorithm: sort data cases into bins according to y,

Compute marginal probabilities p(y = ¢) using frequencies
For each class, estimate distribution of i*" variable: p(x,/y = c).
At test time, compute argmax, p(c/X) using

c(x) = argmax p(c|x) = arg max[logp(x|c) + log p(c)]

= arg max log p(c) + Zlogp T;|c



Discrete (Categorical) Naive Bayes

e Discrete features x; assumed independent given class label y
plx; =jly=k) = Nijk

p(x|y = k,n) H an“”]
e (lassificationrule: |
e 11 11 j 775/2_]]
2.qTalli 11 ”z[%:j]

T
eﬁk X y

p— Zq eﬁgx

p(y — k‘Xa 77) —

Bk — log[nllk---nljk~--777)jk--~ lOg 7Tk]

X =|ry =120 =2;...; = ;.5 1]



Fitting Discrete Naive Bayes

e ML parameters are class-conditional frequency counts:
e Sl = iy = K]
v > [y =K
e How do we know? Write down the likelihood:
(;D) = logp(y™|m) + > log p(ai™ [y™, n)

m,1

e and optimize it by setting its derivative to zero
(careful! enforce normalization with Lagrange multipliers. CSC411 Tut4):

t(n; D) = Z Z[%(;m) = 7] [?J(m) = k] log nijx + Z Aik (1 — ijk)
ik j

m gk

o _ Nl =iy =H
90 877ijk Mijk ‘
=0 =\ = (m) = k] =, =ab
anijk k Z[y ] nzjk above

m



Gaussian Naive Bayes

This is just a Gaussian Bayes Classifier with a separate diagonal
covariance matrix for each class.

Equivalent to fitting a one-dimensional Gaussian to each input
for each possible class.

Decision surfaces are quadratics, not linear...




Discriminative Models

Parametrize p(y/x) directly, forget p(X, y) and Bayes' rule.

As longas p(y/x) or discriminants f(y/x) are linear functions of
X (or monotone transforms), decision surfaces will be
piecewise linear.

Don’t need to model the density of the features. Some density
models have lots of parameters. Many densities give same
linear classifier.

But we cannot generate new labeled data.

Optimize the same cost function we use at test time.

10
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Logistic/Softmax Regression

e Model: yis a multinomial random variable whose posterior is
the softmax of linear functions of any feature vector.

ee,fx
ply = k|x,0) =

Zj 69?){

e Fitting: now we optimize the conditional likelihood:

(D) = Yl = H gy = E™.6) = 3" g
m,k

m,k
(m) (m) m Ll
% _ Z ol Op, 8z,§ ) | B
90 m,k a(p;%n) 92\ 00; .
y . ™m m m) v 0.6f
=2 ?m)pl(c NG —py™)x™
m,k Fk 0.2




More on Logistic Regression

Hardest Part: picking the feature vector x.

The likelihoodis convexin the parameters 8. No local
minimal

Gradient is easy to compute; so easy to optimize using
gradient descent or Newton-Raphson.

Weight decay: add €62 to the cost function, which
subtracts 266 from each gradient

Why is this method called logistic regression?
[t should really be called “softmax linear regression”.

Log odds (logit) between any two classes is linearin
parameters.

A classification neural net always has linear regression as
the last layer — no hidden layers = logistic regression



Classification via Regression

Binary case: p(y = 1/X) is also the conditional expectation.

So we could forget that y was a discrete (categorical)
random variable and just attempt to model p(y/x) using
regression.

One idea: do regression to an indicator matrix.

For two classes, this is related to LDA. For 3 or more,
disaster...

Weird idea. Noise models (e.g., Gaussian) for regression
are inappropriate, and fits are sensitive to outliers.
Furthermore, gives unreasonable predictions <0 and > 1.



Other Models

Noisy-OR
Classification via Regression
Non-parametric (e.g. K-nearest-neighbor).

Semi-parametric (e.g. kernel classifiers, support vector
machines, Gaussian processes).

Probitregression.

Complementary log-log.

Generalized linear models.

Some return a value for y without a distribution.



Joint vs. Conditional Models

Both Naive Bayes and logisticregression have same
conditional form and can have same parameterization.

But the criteriaused to choose parameters is different

Naive Bayes is a joint model; it optimizes

p(x.y) =p(X)p(y/X).

Logistic Regression is conditional: optimizes p(y/x) directly

Pros of discriminative: More flexible, directly optimizes
what we care about. Why not choose optimal parameters?

Pros of generative: Easier to think about, check model, and
incorporate other data sources (semi-sup learning)



Joint vs. Conditional Models: Yin and Yang

Each generative model implicitly defines a conditional
model

p(z|x) has complicated form if p(x|z) is at all complicated.
Expensive to compute naively, necessary for learning.

Autoencoders: Given interesting generative model p(x|z),
force approximate q(z|x) to have a nice form.

So, designing inference methods for generative models
involves designing discriminative recognition networks.

Thursday: Tutorial on optimization.



