
CSC	412/2506				Winter	2018
Probabilistic	Learning	and	Reasoning

Lecture	2:	Simple	Classifiers

Slides	based	on	Rich	Zemel’s

All	lecture	slides	will	be	available	on	the	course	website:
www.cs.toronto.edu/~jessebett/CSC412

Some	of	the	figures	are	provided	by	Kevin	Murphy
from	his	book:	”Machine	Learning:	A	Probabilistic	Perspective”



Basic	Statistical	Problems

• Basic	problems:	density	est.,	clustering,	classification,	regression.	
• Can	always	do	joint	density	estimation	and	then	condition:	

– Regression:	

– Classification:	

– Clustering:	 c unobserved	

– Density	estimation:	 y unobserved	
In	general,	if	certain	things	are	
always observed	we	may	not	
want	to	model	their	density:	

If	certain	things	are	always	
unobserved	they	are	called	hidden
or	latent variables	(more	later):

p(y|x) = p(y,x)/p(x) = p(y,x)/

Z
p(y,x)dy

p(c|x) = p(c,x)/p(x) = p(c,x)/
X

c

p(c,x)

p(c|x) = p(c,x)/p(x)

p(y|x) = p(y,x)/p(x)



Fundamental	Operations

• What	can	we	do	with	a	probabilistic	graphical	model?	
• Generate	data.
For	this	you	need	to	know	how	to	sample	from	local	models	
(directed)	or	how	to	do	Gibbs	or	other	sampling	(undirected)	

• Compute	probabilities.
When	all	nodes	are	either	observed	or	marginalized	the	result	
is	a	single	number	which	is	the	prob.	of	the	configuration.	

• Inference.
Compute	expectations	of	some	things	given	others	which	are	
observed	or	marginalized.	

• Learning.	(today)
Set	the	parameters	of	the	local	functions	given	some	
(partially)	observed	data	to	maximize	the	probability	of	seeing	
that	data	



Learning	Graphical	Models	from	Data

• Want	to	build	prediction	systems	automatically	based	on	data,	
and	as	little	as	possible	on	expert	information

• In	this	course,	we’ll	use	probability	to	combine	evidence	from	
data	and	make	predictions

• We’ll	use	graphical	models	as	a	visual	shorthand	language	to	
express	and	reason	about	families	of	model	assumptions,	
structures,	dependencies	and	information	flow,	without	
specifying	exact	distributional	forms	or	parameters		

• In	this	case	learning	≡	setting	parameters	of	distributions	
given	a	model	structure.
(“Structure	learning”	is	also	possible	but	we	won’t	consider	it	
now.)	



Multiple	Observations,	Complete	IID	Data
• A	single	observation	of	the	data	X	is	rarely	useful	on	its	own.	
• Generally	we	have	data	including	many	observations,	which	
creates	a	set	of	random	variables:	

• We	will	sometimes	assume	two	things:	
1. Observations	are	independently	and	identically	distributed	

according	to	joint	distribution	of	graphical	model:	i.i.d.	
samples.	

2. We	observe	all	random	variables	in	the	domain	on	each	
observation:	complete	data,	or	fully	observed	model.

• We	shade	the	nodes	in	a	graphical	model	to	indicate	they	are	
observed.	(Later	we	will	work	with	unshaded nodes	
corresponding	to	missing	data	or	latent	variables.)	

D = {x(1),x(2), ...,x(M)}



Likelihood	Function
• So	far	we	have	focused	on	the	(log)	probability	function	p(x|θ)	
which	assigns	a	probability	(density)	to	any	joint	configuration	
of	variables	x given	fixed	parameters	θ

• But	in	learning	we	turn	this	on	its	head:	we	have	some	fixed	
data	and	we	want	to	find	parameters

• Think	of	p(x|θ)	as	a	function	of	θ for	fixedx:	

This	function	is	called	the	(log)	“likelihood”.	
• Choose	θ to	maximize	some	cost	or	loss	function L(θ)	which	
includes										:

maximum	likelihood	(ML)	
maximum	a	posteriori	(MAP)/penalized	ML	

(also	cross-validation,	Bayesian	estimators,	BIC,	AIC,	...)	

`(✓;x) = log p(x|✓)

`(✓)
L(✓) = `(✓;D)
L(✓) = `(✓;D) + r(✓)



Maximum	Likelihood
• For	IID	data,	the	log	likelihood	is	a	sum	of	identical	functions	

• Idea	of	maximum	likelihood	estimation	(MLE):	pick	the	setting	
of	parameters	most	likely	to	have	generated	the	data	we	saw:	

• Very	commonly	used	in	statistics.	
• Often	leads	to	“intuitive”,	“appealing”,	or	“natural”	estimators.
• For	a	start,	the	IID	assumption	makes	the	log	likelihood	into	a	
sum,	so	its	derivative	can	be	easily	taken	term	by	term.	

p(D|✓) =
Y

m

p(x(m)|✓)

`(✓;D) =
X

m

log p(x(m)|✓)

✓⇤ML = argmax
✓

`(✓;D)



Sufficient	Statistics
• A	statistic	is	a	(possibly	vector	valued)	deterministic	function	
of	a	(set	of)	random	variable(s).

• T(X)	is	a	“sufficient	statistic”	for	X if	

• Equivalently	(by	the	Neyman factorization	theorem)	we	can	
write:	

• Example:	exponential	family	models:	

p(x|✓) = h(x, T (x))g(T (x), ✓)

T (x(1)) = T (x(2)) ) L(✓;x(1)) = L(✓;x(2)) 8✓

p(x|⌘) = h(x) exp{⌘TT (x)�A(⌘)}



Example:	Bernoulli	Trials
• We observeM iid coin flips
• Model:	 p(H)=θ	 p(T)=(1−θ)
• Likelihood:	

• Take derivatives and	set	to	zero:

`(✓;D) = log p(D|✓)

= log
Y

m

✓x
(m)

(1� ✓)1�x(m)

= log ✓
X

m

x(m) + log(1� ✓)
X

m

(1� x(m))

= log ✓NH + log(1� ✓)NT

) ✓⇤
ML

=
NH

NH +NT

@`

@✓
=

NH

✓
� NT

1� ✓

D = H,H, T,H, ...



Example:	Multinomial
• We	observe	M	iid die	rolls	(K-sided):	
• Model:	

• Likelihood	(for	binary	indicators	[x(m) =	k]):	

• Take derivatives and	set	to	zero (enforcing ):

`(✓;D) = log p(D|✓)

D = 3, 1,K, 2, ...
p(k) = ✓k

X

k

✓k = 1

= log
Y

m

✓[x
(m)=k]

1 ...✓[x
(m)=k]

k

=
X

k

log ✓k
X

m

[x(m) = k] =
X

k

Nk log ✓k

@`

@✓k
=

Nk

✓k
�M

) ✓⇤k =
Nk

M

X

k

✓k = 1



Example:	Univariate Normal
• We	observe	M	iid real	samples:	
• Model:	

• Likelihood	(using	probability	density):	

• Take derivatives and	set	to	zero :

`(✓;D) = log p(D|✓)

p(x) = (2⇡�2)�1/2 exp{�(x� µ)2/2�2}

= �M

2
log(2⇡�2)� 1

2

X

m

(x� µ)2

�2

@`

@�2
= � M

2�2
+

1

2�4

X

m

(xm � µ)2
@`

@µ
=

1

�2

X

m

(xm � µ)

) µML = (1/M)
X

m

xm ) �2
ML = (1/M)

X

m

x2
m � µ2

ML

D = 1.18,�.25, .78, ...



Example:	Linear	Regression
• At	a	linear	regression	node,	some	parents	(covariates/inputs)	
and	all	children	(responses/outputs)	are	continuous	valued	
variables.	

• For	each	child	and	setting	of	 parents	we	use	the	model:	

• The	likelihood	is	the	familiar	“squared	error”	cost:	

• The	ML	parameters	can	be	solved	for	using	linear	least-
squares:	

• Sufficient	statistics	are	input	correlation	matrix	and	input-
output	cross-correlation	vector.	

p(y|x, ✓) = gauss(y|✓Tx,�2)

) ✓⇤ML = (XTX)�1XTY

@`

@✓
= �

X

m

(y(m) � ✓Tx(m))x(m)

`(✓;D) = � 1

2�2

X

m

(y(m) � ✓Tx(m))2



Example:	Linear	Regression



Sufficient	Statistics	are	Sums

• In	the	examples	above,	the	sufficient	
statistics	were	merely	sums	
(counts)	of	the	data:	
– Bernoulli:	#	of	heads,	tails	
– Multinomial:	#	of	each	type	
– Gaussian:	mean,	mean-square	
– Regression:	correlations	

• As	we	will	see,	this	is	true	for	all	
exponential	family	models:	
sufficient	statistics	are	the	average	
natural	parameters.	

• Only	exponential	family	models	
have	simple	sufficient	statistics.	



MLE	for	Directed	GMs
• For	a	directed GM,	the	likelihood
function has a	nice form:

• The	parametersdecouple;	so we can
maximize likelihoodindependently
for	each node’s function by setting θi

• Only need the	values of	xi and	its
parents in	order to	estimate θi

• Furthermore,	if																have	
sufficient	statistics	only	need	those.

• In	general,	for	fully	observed	data	if	
we	know	how	to	estimate	params at	a	
single	node	we	can	do	it	for	the	whole	
network.	

log p(D|✓) = log
Y

m

Y

i

p(x(m)
i |x⇡i , ✓i) =

X

m

X

i

log p(x(m)
i |x⇡i , ✓i)

xi,x⇡i



Example:	A	Directed	Model
• Consider	the	distribution	defined	by	
the	DAGM:

• This	is	exactly	like	learning	four	
separate	small	DAGMs,	each	of	which	
consists	of	a	node	and	its	parents

p(x|✓) = p(x1|✓1)p(x2|x1, ✓2)p(x3|x1, ✓3)p(x4|x2,x3, ✓4)



MLE	for	Categorical	Networks
• Assume	our	DAGM	contains	only	discrete	nodes,	and	we	use	the	
(general)	categorical	form	for	the	conditional	probabilities.	

• Sufficient	statistics	 involve	counts	of	joint	settings	of												
summing	over	all	other	variables	in	the	table.	

• Likelihood	for	these	special	“fully	observed	categorical	networks”:	

xi,x⇡i



MLE	for	Categorical	Networks
• Assume	our	DAGM	contains	only	discrete	nodes,	and	we	use	the	
(general)	categorical	form	for	the	conditional	probabilities.	

• Sufficient	statistics	 involve	counts	of	joint	settings	of												
summing	over	all	other	variables	in	the	table.	

• Likelihood	for	these	special	“fully	observed	categorical	networks”:	

xi,x⇡i

`(⌘;D) = log
Y

m,i

p(x(m)
i |x(m)

⇡i
, ✓i)

= log
Y

i,xi,x⇡i

p(xi|x⇡i , ✓i)
N(xi,x⇡i ) = log

Y

i,xi,x⇡i

✓
N(xi,x⇡i )

xi|x⇡i

=
X

i

X

xi,x⇡i

N(xi,x⇡i) log ✓xi|x⇡i

) ✓⇤xi|x⇡i
=

N(xi,x⇡i)

N(x⇡i)



MLE	for	General	Exponential	Family	Models
• Recall	the	probability	function	for	models	in	the	exponential	family:	

• For	i.i.d.	data,	the	sufficient	statistic	 vector	is	T(x)

• Take	derivatives	and	set	to	zero:

recalling	that	the	natural	moments	of	an	exponential	distribution	are	
the	derivatives	of	the	log	normalizer.	

`(⌘;D) = log p(D|⌘) =
 
X

m

log h(x(m))

!
�MA(⌘) +

 
⌘T
X

m

T (x(m)

!

@`

@⌘
=

X

m

T (x(m))�M
@A(⌘)

@⌘

⌘ML = 1/M
X

m

T (x(m))

p(x|✓) = h(x) exp{⌘TT (x)�A(⌘)}

) @A(⌘)

@⌘
= 1/M

X

m

T (x(m))



Classification,	Revisited
• Given	examples	of	a	discrete class	label	y	and	some	features x.	
• Goal:	compute	label	(y) for	new	inputs	x.	
• Two	approaches:
Generative:	model	 p(x,	y)	=	p(y)p(x|y);

use	Bayes’	rule	to	infer	conditional	p(y|x).
Discriminative:	model	discriminants	f(y|x) directly	and	take	max.	

• Generative	approach	is	related	to	conditional	density	estimation	
while	discriminative	is	closer	to	regression



Probabilistic	Classification:	Bayes	Classifier
• Generative	model:				p(x,	y)	=	p(y)p(x|y)

p(y) are	called	class	priors	(relative	frequencies).
p(x|y)	are	called	class-conditional	feature	distributions

• For	the	class	frequency	prior	we	use	a	Bernoulli	or	categorical:

• Fitting by	maximum	likelihood:
– Sort	data	into	batches	by	class	label
– Estimate	p(y)	by	counting	size	of	batches	(plus	regularization)
– Estimate	p(x|y)	separately	within	each	batch	using	ML	(also	
with	regularization)

• Two	classification	rules	(if	forced	to	choose):
– ML:						argmaxy p(x|y)					 (can	behave	badly	if	skewed	frequencies)

– MAP:			argmaxy p(y|x)	=	 argmaxy log p(x|y)	+	log	p(y)					(safer)

p(y = k|⇡) = ⇡k

X

k

⇡k = 1



Three	Key	Regularization	Ideas
To	avoid	overfitting,	we	can:
• put	priors on	the	parameters.		Maximum	likelihood	+	priors	=	
maximum	a	posteriori	(MAP).		Simple	and	fast.		Not	Bayesian.

• Integrate	over	all	possible	parameters.		Also	requires	priors,	but	
protects	against	overfitting for	totally	different	reasons.

• Make factorization	or	independence assumptions.		Fewer	inputs	
to	each	conditional	probability.	Ties	parameters	together	so	that	
fewer	of	them	are	estimated.



Gaussian	Class-Conditional	Distribution

• If	all	features	are	continuous,	a	popular	choice	is	a	Gaussian	
class-conditional.	

• Fitting:	use	the	following	amazing	and	useful	fact.
The	maximum	likelihood	fit	of	a	Gaussian	to	some	data	is	the	
Gaussian	whose	mean	is	equal	to	the	data	mean	and	whose	
covariance	is	equal	to	the	sample	covariance.
[Try	to	prove	this	as	an	exercise	in	understanding	likelihood,	algebra,	and	calculus	all	
at	once!]	

• Seems	easy.	And	works	amazingly	well.
But	we	can	do	even	better	with	some	simple	regularization...	

p(x|y = k, ✓) = |2⇡⌃|�1/2 exp{�1

2
(x� µk)⌃

�1(x� µk)}



Regularized	Gaussians
• Idea	1:	assume	all	the	covariances are	the	same	(tie	parameters).	
This	is	exactly	Fisher’s	linear	discriminant	analysis.	

• Idea	2:	Make	independence	assumptions	to	get	diagonal	or	
identity-multiple	covariances.	(Or	sparse	inverse	covariances.)	
More	on	this	in	a	few	minutes...	

• Idea	3:	add	a	bit	of	the	identity	matrix	to	each	sample	covariance.	
This	“fattens	it	up”	in	all	directions	and	prevents	collapse.	
Related	to	using	a	Wishart prior on	the	covariance	matrix.	



Gaussian	Bayes	Classifier
• Maximum	likelihood	estimates	for	parameters:
priors	πk:	use	observed	frequencies	of	classes	(plus	smoothing)	
means	μk:	use	class	means
covariance	Σ:	use	data	from	single	class	or	pooled	data

to	estimate	full/diagonal	covariances
• Compute	the	posterior	via	Bayes’	rule:

where	 and	we	have	augmented	x	
with	a	constant	component	always	equal	to	1	(bias	term).

=
exp{µT

k⌃
�1x� µT

k⌃
�1µk/2 + log ⇡k}P

j exp{µT
j ⌃

�1x� µT
j ⌃

�1µj/2 + log ⇡j}

= e�
T
k x/

X

j

e�
T
j x = exp{�T

k x}/Z

�k = [⌃�1µk; (µ
T
k⌃

�1µk + log ⇡k]

(x(m) � µy(m))

p(y = k|x, ✓) = p(x|y = k, ✓)p(y = k|⇡)P
j p(x|y = j, ✓)p(y = j|⇡)



Softmax/Logit
• The	squashing	function	is	known	as	the	softmax or	logit:	

• It	is	invertible	(up	to	a	constant):	

• Derivative	is	easy:

�k(z) ⌘
ezkP
j e

zj
g(⌘) =

1

1 + e�⌘

zk = log �k + c ⌘ = log(g/1� g)

@�k

@zj
= �k(�kj � �j)

@g

@⌘
= g(1� g)



Linear	Geometry
• Taking	the	ratio	of	any	two	posteriors	(the	“odds”)	shows	that	
the	contours	of	equal	pairwise	probability	are	linear	surfaces	in	
the	feature	space:	

• The	pairwise	discrimination	contours	p(yk)	=	p(yj)	are	
orthogonal	to	the	differences	of	the	means	in	feature	space	
when	Σ =	σI.	For	general	Σ shared	b/w	all	classes	the	same	is	
true	in	the	transformed	feature	space	t =	Σ−1x.	

• Class	priors	do	not	change	the	geometry,	they	only	shift	the	
operating	point	on	the	logit by	the	log-odds:	log(πk/πj).	

• Thus,	for	equal	class-covariances,	we	obtain	a	linear	classifier.	
• If	we	use	different	covariances,	the	decision	surfaces	are	conic	
sections	and	we	have	a	quadratic	classifier.	

p(y = k|x, ✓)
p(y = j|x, ✓) = exp{(�k � �j)

Tx}



Exponential	Family	Class-Conditionals
• Bayes	Classifier	has	the	same	softmax form	whenever	the	class-
conditional	densities	are	any exponential	family	density:	

• Where																																						and	we	have	augmented	x	with	a	
constant	component	always	equal	to	1	(bias	term)

• Resulting	classifier	is	linear	in	the	sufficient	statistics

p(x|y = k, ⌘k) = h(x) exp{⌘Tk x� a(⌘k)}

p(y = k|x, ⌘) = p(x|y = k, ⌘k)p(y = k|⇡)
p(x|y = j, ⌘j)p(y = j|⇡)

=
exp{⌘Tk x� a(⌘k)}P
j exp{⌘Tj x� a(⌘j)}

=
e�

T
k x

P
j e

�T
k x

�k = [⌘k;�a(⌘k)]



Discrete	Bayesian	Classifier
• If	the	inputs	are	discrete	(categorical),	what	should	we	do?	
• The	simplest	class	conditional	model	is	a	joint	multinomial	
(table):	

• This	is	conceptually	correct,	but	there’s	a	big	practical	problem.	
• Fitting:	ML	params are	observed	counts:

• Consider	the	16x16	digits	at	256	gray	levels
• How	many	entries	in	the	table?	How	many	will	be	zero?	What	
happens	at	test	time?	

• We	obviously	need	some	regularization.
Smoothing	will	not	help	much	here.	Unless	we	know	about	the	
relationships	between	inputs	beforehand,	sharing	parameters	
is	hard	also.	But	what	about	independence?	

p(x1 = a, x2 = b, ...|y = c) = ⌘cab...

⌘cab... =

P
n[y

(n) = c][x1 = a][x2 = b][...][...]P
n[y

(n) = c]



Naïve Bayes	Classifier

• Assumption:	conditioned	on	class,	attributes	are	independent.	

• Sounds	crazy	right?	Right!	But	it	works.
• Algorithm:	sort	data	cases	into	bins	according	to	yn
• Compute	marginal	probabilities	p(y	=	c)	using	frequencies
• For	each	class,	estimate	distribution	of	ithvariable:	p(xi|y =	c).
• At	test	time,	compute	argmaxc p(c|x)	using	

c(x) = argmax
c

p(c|x) = argmax
c

[log p(x|c) + log p(c)]

= argmax
c

[log p(c) +
X

i

log p(xi|c)]

p(x|y) =
Y

i

p(xi|y)



Discrete	(Categorical)	Naïve Bayes

• Discrete	features	xi assumed	independent	given	class	label	y

• Classification	rule:

p(xi = j|y = k) = ⌘ijk

p(x|y = k, ⌘) =
Y

i

Y

j

⌘[xi=j]
ijk

p(y = k|x, ⌘) =
⇡k

Q
i

Q
j ⌘

[xi=j]
ijk

P
q ⇡q

Q
i

Q
j ⌘

[xi=j]
ijq

=
e�

T
k x

P
q e

�T
q x

�k = log[⌘11k...⌘1jk...⌘ijk... log ⇡k]

x = [x1 = 1;x2 = 2; ...xi = j; ...; 1]



Fitting	Discrete	Naïve Bayes

• ML	parameters	are	class-conditional	frequency	counts:	

• How	do	we	know?	Write	down	the	likelihood:	

• and	optimize	it	by	setting	its	derivative	to	zero
(careful!	enforce	normalization	with	Lagrange	multipliers.	CSC411	Tut4):	

⌘⇤ijk =

P
m[x(m)

i = j][y(m) = k]P
m[y(m) = k]

`(⌘;D) =
X

m

log p(y(m)|⇡) +
X

m,i

log p(x(m)
i |y(m), ⌘)

`(⌘;D) =
X

m

X

ijk

[x(m)
i = j][y(m) = k] log ⌘ijk +

X

ik

�ik(1�
X

j

⌘ijk)

@`

@⌘ijk
=

P
m[x(m)

i = j][y(m) = k]

⌘ijk
� �ik

@`

@⌘ijk
= 0 ) �ik =

X

m

[y(m) = k] ) ⌘⇤ijk = above



Gaussian	Naïve Bayes

• This	is	just	a	Gaussian	Bayes	Classifier	with	a	separate	diagonal	
covariance	matrix	for	each	class.	

• Equivalent	to	fitting	a	one-dimensional	Gaussian	to	each	input	
for	each	possible	class.	

• Decision	surfaces	are	quadratics,	not	linear...	



Discriminative	Models
• Parametrizep(y|x)	directly,	forget	p(x,	y)	and	Bayes’	rule.	
• As	long	as	p(y|x)	or	discriminants	f(y|x)	are	linear	functions	of	
x	(or	monotone	transforms),	decision	surfaces	will	be	
piecewise	linear.	

• Don’t	need	to	model	the	density	of	the	features.	Some	density	
models	have	lots	of	parameters.	Many	densities	give	same	
linear	classifier.
But	we	cannot	generate	new	labeled	data.	

• Optimize	the	same	cost	function	we	use	at	test	time.	



Logistic/Softmax Regression
• Model:	y	is	a	multinomial	random	variable	whose	posterior	is	
the	softmax of	linear	functions	of	any	feature	vector.	

• Fitting:	now	we	optimize	the	conditional	likelihood:

`(⌘;D) =
X

m,k

[y(m) = k] log p(y = k|x(m), ✓) =
X

m,k

y(m)
k log p(m)

k

p(y = k|x, ✓) = e✓
T
k x

P
j e

✓T
j x

@`

@✓i
=

X

m,k

@`(m)
k

@p(m)
k

@p(m)
k

@z(m)
i

@z(m)
i

@✓i

=
X

m,k

y(m)
k

p(m)
k

p(m)
k (�ik � p(m)

i )x(m)

=
X

m

(y(m)
k � p(m)

k )x(m)

zj = ✓Tj x



More	on	Logistic	Regression
• Hardest	Part:	picking	the	feature	vector x.	
• The	likelihood	is	convex	in	the	parameters	θ.		No	local	
minima!

• Gradient	is	easy	to	compute;	so	easy	to	optimize	using	
gradient	descent	or	Newton-Raphson.	

• Weight	decay:	add	εθ2 to	the	cost	function,	which	
subtracts	2εθ		from	each	gradient

• Why	is	this	method	called	logistic	regression?	
• It	should	really	be	called	“softmax linear	regression”.	
• Log	odds	(logit)	between	any	two	classes	is	linear	in	
parameters.

• A	classification	neural	net	always	has	linear	regression	as	
the	last	layer	– no	hidden	layers	=	logistic	regression



Classification	via	Regression

• Binary	case:	p(y	=	1|x) is	also	the	conditional	expectation.	
• So	we	could	forget	that	ywas	a	discrete	(categorical)	
random	variable	and	just	attempt	to	model	p(y|x)	using	
regression.	

• One	idea:	do	regression	to	an	indicator	matrix.	
• For	two	classes,	this	is	related	to	LDA.	For	3	or	more,	
disaster…

• Weird	idea. Noise	models	(e.g.,	Gaussian)	for	regression	
are	inappropriate,	and	fits	are	sensitive	to	outliers.	
Furthermore,	gives	unreasonable	predictions	<	0	and	>	1.	



Other	Models

• Noisy-OR	
• Classification	via	Regression	
• Non-parametric	(e.g.	K-nearest-neighbor).	
• Semi-parametric	(e.g.	kernel	classifiers,	support	vector	
machines,	Gaussian	processes).	

• Probit regression.
• Complementary	log-log.
• Generalized	linear	models.
• Some	return	a	value	for y	without	a	distribution.	



Joint	vs.	Conditional	Models

• Both	Naïve Bayes	and	logistic	regression	have	same	
conditional	form	and	can	have	same	parameterization.

• But	the	criteria	used	to	choose	parameters	is	different

• Naive	Bayes	is	a	joint	model;	it	optimizes	
p(x,	y)	=	p(x)p(y|x).	

• Logistic	Regression	is	conditional:	optimizes	p(y|x)	directly

• Pros	of	discriminative:	More	flexible,	directly	optimizes	
what	we	care	about.		Why	not	choose	optimal	parameters?

• Pros	of	generative:	Easier	to	think	about,	check	model,	and	
incorporate	other	data	sources	(semi-sup	learning)



Joint	vs.	Conditional	Models:	Yin	and	Yang

• Each	generative	model	implicitly	defines	a	conditional		
model

• p(z|x)	has	complicated	form	if	p(x|z)	is	at	all	complicated.		
Expensive	to	compute	naively,	necessary	for	learning.

• Autoencoders:	Given	interesting	generative	model	p(x|z),		
force	approximate	q(z|x)	to	have	a	nice	form.

• So,	designing	inference	methods	for	generative	models	
involves	designing	discriminative	recognition	networks.

• Thursday:	Tutorial	on	optimization.	


