
A	Brief	Look	at	Optimization

CSC	412/2506	Tutorial
Presented	by	Jonathan	Lorraine

Slides	adapted	from	last	(and	prior)	year’s	versions	
by	David	Madras



Overview

• Introduction
• Classes	of	optimization	problems
• Linear	programming
• Steepest	(gradient)	descent
• Newton’s	method
• Quasi-Newton	methods
• Conjugate	gradients
• Stochastic	gradient	descent



What	is	optimization?
• Typical	setup	(in	machine	learning,	life):

– Formulate	a	problem
– Design	a	solution	(usually	a	model)
– Use	some	quantitative	measure	to	determine	 how	good	the	solution	 is.

• E.g.,	classification:
– Create	a	system	to	classify	images
– Model	is	some	simple	classifier,	 like	logistic	regression
– Quantitative	measure	 is	classification	 error	(lower	is	better	 in	this	case)

• The	natural	question	to	ask	is:	can	we	find	a	solution	with	a	better	
score?

• Question:	what	could	we	change	in	the	classification	setup	to	lower	
the	classification	error	(what	are	the	free	variables)?



Formal	definition

• f(θ):	some	arbitrary	function
• c(θ):	some	arbitrary	constraints
• Minimizing	f(θ)	is	equivalent	to	maximizing	-f(θ),	so	we	can	

just	talk	about	minimization	and	be	OK.	
• Games	are	a	generalization	of	this	where	each	player	has	a	

separate	objective	and	parameter	set.



Types	of	optimization	problems

• Depending	on	f,	c,	and	the	domain	of	θ we	get	
many	problems	with	many	different	
characteristics.

• General	optimization	of	arbitrary	functions	
with	arbitrary	constraints	is	extremely	hard.

• Most	techniques	exploit	structure	in	the	
problem	to	find	a	solution	more	efficiently.



Types	of	optimization
• Simple	enough	problems	have	a	closed	form	solution:

• f(x)	=	x2
• Linear	regression

• If	f	and	c	are	linear	functions	then	we	can	use	linear	programming	
(solvable	in	polynomial	time).

• If	f	and	c	are	convex	then	we	can	use	convex	optimization	technique	
(most	of	machine	learning	uses	these).

• If	f	and	c	are	non-convex	we	usually	pretend	it’s	convex	and	find	a	
sub-optimal,	but	hopefully	good	enough	solution
(e.g.,	deep	learning).

• There	are	also	specialized	techniques	for	non-convex	opt,	which	not	
may	be	helpful	for	convex	objectives.

• In	the	worst	case	there	are	global	optimization	techniques	
(operations	research	is	very	good	at	these).

• There	are	yet	more	techniques	when	the	domain	of	θ is	discrete.
• This	list	is	far	from	exhaustive.



Types	of	optimization

• Takeaway:

Think	hard	about	your	problem,	find	the	simplest	
category	that	it	fits	into,	use	the	tools	from	that	
branch	of	optimization.		There	is	“No	Free	Lunch”

• Sometimes	you	can	solve	a	hard	problem	with	a	
special-purpose	algorithm,	but	most	times	we	favor	
a	black-box	approach	because	it’s	simple	and	
usually	works.



Really	naïve	optimization	algorithm
• Suppose

– D-dimensional	 vector	of	parameters	where	each	dimension	 is	
bounded	above	and	below. “Box	constraints”	are	easy.

• For	each	dimension	I	pick	some	set	of	values	to	try:

• Try	all	combinations	of	values	for	each	dimension,	record	
f	for	each	one.

• Pick	the	combination	that	minimizes	f.



Really	naïve	optimization	algorithm

• This	is	called	grid	search.	It	works	really	well	in	
low	dimensions	when	you	can	afford	to	
evaluate	f	many	times.

• Less	appealing	when	f	is	expensive,	in	high	
dimensions,	or	non-smooth.

• You	may	have	already	done	this	when	
searching	for	a	good	L2	penalty	value.



Convex	functions

Use	the	line	test.



Convex	functions



Convex	optimization
• We’ve	talked	about	1D	functions,	but	the	definition	
still	applies	to	higher	dimensions.

• Why	do	we	care	about	convex	functions?
• In	a	convex	function,	any	local	minimum	is	
automatically	a	global	minimum. This	means	a	
greedy	update	always	takes	us	“closer”	to	the	
optimum!

• Thus we	can	apply	fairly	naïve	techniques	to	find	
the	nearest	local	minimum	and	still	guarantee	that	
we’ve	found	the	best	solution!

• This	is	not	true	for	non-convex	functions.



Steepest	(gradient)	descent

• Cauchy	(1847)





Aside:	Taylor	series

• A	Taylor	series	is	a	polynomial	series	that	
converges	to	a	function	f.

• We	say	that	the	Taylor	series	expansion	of	at	x	
around	a	point	a,	f(x	+	a)	is:

• Truncating	this	series	gives	a	polynomial	
approximation	to	a	function.



Blue:	exponential	 function;	Red:	Taylor	series	approximation	



Multivariate	Taylor	Series

• The	first-order	Taylor	series	expansion	of	a	
function	f(θ)	around	a	point	d	is:



Steepest	descent	derivation
• Suppose	we	are	at	θ and	we	want	to	pick	a	direction	d	
(with	norm	1)	such	that	f(θ +	ηd)	is	as	small	as	possible	
for	some	step	size	η.	This	is	equivalent	to	maximizing	
f(θ)	- f(θ +	ηd).

• Using	a	linear	approximation:

• This	approximation	gets	better	as	η gets	smaller	since	
as	we	zoom	in	on	a	differentiable	 function	it	will	look	
more	and	more	linear. “Approximately	locally	linear”



Steepest	descent	derivation
• We	need	to	find	the	value	 for	d	that	maximizes	 																					 subject	
to

• We	could	use	a	Lagrange	multiplier	to	deal	with	the	constraint,	or…
• Using	the	definition	of	cosine	as	the	angle	between	 two	vectors:



How	to	choose	the	step	size?
• At	iteration	t
• General	idea:	vary	ηt until	we	find	the	minimum	
along

• This	is	a	1D	optimization	problem.
• In	the	worst	case	we	can	just	make	ηt	 very	small,	
but	then	we	need	to	take	a	lot	more	steps.

• General	strategy:	start	with	a	big	ηt	and	
progressively	make	it	smaller	by	e.g.,	halving	it	until	
the	function	decreases.



When	have	we	converged?

• When (for	no	constraints)
• If	the	function	is	convex	then	we	have	reached	
a	global	minimum.

• If	we	have	equality	constraints,	this	generalizes	
to	the	Lagrange	conditions.

• For	inequality	&	equality	constraints,	we	get	
the	KKT	conditions.

• Constraints	can	be	extremely	difficult	to	deal	
with!



The	problem	with	gradient	descent

source:	http://trond.hjorteland.com/thesis/img208.gif



Newton’s	method
• To	speed	up	convergence,	we	can	use	a	more	accurate	
approximation.

• Second	order	Taylor	expansion:

• H	is	the	Hessianmatrix	containing	second	derivatives.

• H	has	non-negative	eigenvalues	if	f	convex!		For	a	single	
optimization	objective,	H	symmetric	so	real	
eigenvalues.



Newton’s	method



What	is	it	doing?

• At	each	step,	Newton’s	method	approximates	the	
function	with	a	quadratic	bowl,	then	goes	to	the	
minimum	of	this	bowl.

• For	twice	or	more	differentiable (C2) convex	functions,	
this	is	usually	much	faster	than	steepest	descent.

• Con:	computing	Hessian	requires	O(D2)	time	and	
storage.	Inverting	the	Hessian	is	even	more	expensive	
(up	to	O(D3)).	This	is	problematic	in	high	dimensions.

• For	non-convex	objectives,	we	don’t	know	if	this	is	a	
descent	direction…	Here	a	better	choice	may	be	
generalized	Gauss-Newton	matrix	(GGN),	which	is	
always	PSD!



Quasi-Newton	methods

• Computation	involving	the	Hessian	is	expensive.
• Modern	approaches	use	computationally	cheaper	
approximations to	the	Hessian	or	it’s	inverse.

• Deriving	these	is	beyond	the	scope	of	this	tutorial,	but	
we’ll	outline	some	of	the	key	ideas.

• These	are	implemented	in	many	good	software	
packages	in	many	languages	and	can	be	treated	as	
black	box	solvers,	but	it’s	good	to	know	where	they	
come	from	so	that	you	know	when	you	use	them.



K-FAC

• Estimate	the	Fisher	as	the	Kronecker	product	
of	matrices

• Efficiently	compute	inverse,	by	inverting	the	
factors!



BFGS

• Maintain	a	running	estimate	of	the	Hessian	Bt.
• At	each	iteration,	set	Bt+1 =		Bt +	Ut +	Vt where	U	
and	V	are	rank	1	matrices	(these	are	derived	
specifically	for	the	algorithm).

• Using	a	low-rank	update	to	improve	the	
Hessian	estimate	allows	cheap	inversion at	
each	iteration.

• Sherman-Morrison	formula:
• Memory	cost	could	blow	up	– use	L-BFGS.



Conjugate	gradients
• Steepest	descent	often	picks	a	direction	it’s	travelled	in	before	(this	

results	in	the	wiggly	behavior).

• Conjugate	gradients	make	sure	we	don’t	travel	in	the	same	direction	
again (orthogonal	directions). Move	exactly	as	far	as	we	need	in	
each	direction	one	time!

• Orthogonal	:=	xTixj =	0,		A-orthogonal	:=	xTiAxj =	0

• Will	exactly	minimize	a	d-dimensional		(PSD)	quadratic	function	f	in	
d-steps.		2nd order	methods	finish	in	1	step,	while	1st order	methods	
may	never	exactly	reach	the	optimum	(despite	getting	arbitrarily	
close).

• Use	for	solving	linear	systems	with	large,	symmetric	(or	Hermitian)	
matrices.

• Takeaway:	conjugate	gradient	sometimes	works	better	than 1st
order	methods,	and	can	be	cheaper	than	2nd order	methods.	It	also	
has	a	linear	per-iteration	cost.



Stochastic	Gradient	Descent

• Recall	that	we	can	write	the	log-likelihood	of	a	
distribution	as:



Stochastic	gradient	descent
• Any	iteration	of	a	gradient	descent	(or	quasi-Newton)	
method	requires	that	we	sum	over	the	entire	dataset	to	
compute	the	gradient.

• SGD	idea:	at	each	iteration,	sub-sample	a	small	amount	
of	data	(even	just	1	point	can	work)	and	use	that	to	
estimate	the	gradient.

• Each	update	is	noisy,	but	very	fast!
• This	is	the	basis	of	optimizing	ML	algorithms	with	huge	
datasets	(e.g.,	recent	deep	learning).

• Computing	gradients	using	the	full	dataset	is	called	
batch	learning,	using	subsets	of	data	is	called	mini-
batch	learning.



Stochastic	gradient	descent
• Suppose	we	made	a	copy	of	each	point,	y=x	so	that	we	now	
have	twice	as	much	data.	The	log-likelihood	is	now:

• In	other	words,	the	optimal	parameters	don’t	change,	but	
we	have	to	do	twice	as	much	work	to	compute	the	log-
likelihood	and	it’s	gradient!

• The	reason	SGD	works	is	because	similar	data	yields	similar	
gradients,	so	if	there	is	enough	redundancy	in	the	data,	the	
noisy	from	subsampling	won’t	be	so	bad.



Stochastic	gradient	descent
• In	the	stochastic	setting,	line	searches are	less	useful	
because	they	depend	on	the	batch.

• So	how	do	we	choose	an	appropriate	step	size?
• Robbins	and	Monro (1951):	pick	a	sequence	of	ηt such	
that:

Lim_{t->	inf}	\eta_t =	0,

• Satisfied	by														(as	one	example).
• Balances	“making	progress”	with	averaging	out	noise.

• In	the	non-convex	setting	there	is	no-free	lunch	with	
step	sizes.



Final	words	on	SGD
• SGD	is	very	easy	to	implement	compared	to	other	
methods,	but	the	step	sizes	need	to	be	tuned	to	
different	problems,	whereas	batch	learning	typically	
“just	works”.

• Tip	1:	divide	the	log-likelihood	estimate	by	the	size	of	
your	mini-batches.	This	makes	the	learning	rate	
invariant	to	mini-batch	size.

• Tip	2:	subsample	without	replacement	so	that	you	visit	
each	point	on	each	pass	through	the	dataset	(this	is	
known	as	an	epoch).

• SGD	works	better	than	full-batch	for	non-convex	
optimization.		Why	do	you	think	this	is	true?



Useful	References
• Linear	programming:

- Linear	Programming:	Foundations	and	Extensions	
(http://www.princeton.edu/~rvdb/LPbook/

• Convex	optimization:	
- http://web.stanford.edu/class/ee364a/index.html
- http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

• LP	solver:
– Gurobi:	http://www.gurobi.com/

• Stats	(python):
– Scipy	 stats:http://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html

• Optimization	(python):
– Scipy	 optimize:	 http://docs.scipy.org/doc/scipy/reference/optimize.html

• Optimization	(Matlab):
– minFunc:	 http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

• General	ML:
– Scikit-Learn:	 http://scikit-learn.org/stable/



• Martens,	James,	and	Roger	Grosse.	
"Optimizing	neural	networks	with	kronecker-
factored	approximate	
curvature." International	 conference	on	
machine	 learning.	 2015.


