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Undirected Graphical Model

» Also called Markov Random Field (MRF) or Markov networks

» Nodes in the graph represent variables, edges represent
probabilistic interactions

» Examples

) )
o—0O—CO—-—0
Chain model for NLP
problems

Grid model for computer
vision problems



Parameterization

x = (21, ...,Zm), a vector of random variables
C, set of cliques in the graph

X, is the subvector of x restricted to clique ¢
f, model parameters

» Product of Factors
H Ve(xel0e)
cEC

» Gibbs distribution, sum of potentials

po(x) = Z(l exp <Z be(xc|0c )

ceC

> Log-linear model

po(x) =

j exP (Z Pe(xc) c)

ceC



Partition Function

Z(0) =) exp (Z ¢C(xc\ac)>

ceC

» This is usually hard to compute as the sum over all possible x
is a sum over an exponentially large space.

» This makes inference and learning in undirected graphical
models challenging.



A Simple Image Denoising Example

Observe as input Want to predict
a noisy image x a clean image y

CsSc.
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» x = (x1,...,Ty) is the observed noisy image, each pixel
x; € {-1,+1}. y = (1, ..., ym) is the output, each pixel
yi € {—1,+1}.

» We can model the conditional distribution p(y|x) as a
grid-structured MRF for y.




Model Specification

X
1
Pyl) = Zexp (@) vt B viy;+7 v
% 1,5 7

» Very similar to an Ising model on y, except that we are
modeling the conditional distribution.

> «, 3,7 are model parameters.

> The higher o}, yi + B8, ; yiy; + 7 22, Tiyi is, the more
likely y is for the given x.



Model Specification

1
p(ylx) = - exp a;yi +B;yz'yj +7§i:miyi

> a ), y; represents the ‘prior’ for each pixel to be +1. Larger
« encourages more pixels to be +1.

» B>, yiy;j encourages smoothness when 3 > 0. If
neighboring pixels ¢ and j take the same output then
yiy; = +1 otherwise the product is -1.

> 7>, x;y; encourages the output to be the same as the input
when v > 0, we believe only a small part of the input data is
corrupted.



Making Predictions

Given a noisy input image x, we want to predict what the
corresponding clean image y is.

» We may want to find the most likely y under our model
p(y|x), this is called MAP inference.

» We may want to get a few candiate y from our model by
sampling from p(y|x).

» We may want to find representative candidates, a set of y
that has high likelihood as well as diversity.

> More...



MAP Inference

. 1
y' o= argglax 7P | a ; yi+ 08 ; Yiy; + ; TiYi
= argmax o yi+B> yiy+7 Y Titi
Y i ij i

» Asy € {—1,41}™, this is a combinatorial optimization
problem. In many cases it is (NP-)hard to find the exact
optimal solution.

» Approximate solutions are acceptable.



I[terated Conditional Modes

Idea: instead of finding the best configuration of all variables
Y1, .-, Ym jointly, optimize one single variable at a time and iterate
through all variables until convergence.

» Optimizing a single variable is much easier than optimizing a
large set of varibles jointly - usually we can find the exact
optimum for a single variable.

> For each j, we hold y1, ..., %i—1, Yi+1, ---, Ym fixed and find

yj = argmax « Z yi + 06 Z Yiy; +v Z TiYi
i 1,3 i

yie{—1,+1}
= argmax ay;+f Z YiYj + 7595
y;€{-1,+1} ieN(j)

= sign|a+p Z yi + vz
iEN(5)



Results

Inference with lterated Conditional Modes,
a=0.1,=0.5,v=0.5

Input Output Ground-Truth
CsSc.
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Find the Best Parameter Setting

Different parameter settings result in different models
a=0.1,vy=05

B=0.1 B=0.2 =05

How to choose the best parameter setting?
» Manually tune the parameters?



The Learning Approach

When the number of parameters becomes large, it is infeasible to
tune them by hand.

Instead we can use a data set of training examples to learn the
optimal parameter setting automatically.

» Collect a set of training examples - pairs of (x(™),y(™)

» Formulate an objective function that evaluates how well our
model is doing on this training set

» Optimize this objective to get the optimal parameter setting

This objective function is usually called a loss function (and we
want to minimize it).



Maximum Likelihood

Maximize the log-likelihood, or minimize the negative
log-likelihood of data

» So that the true output y(™ will have high probability under
our model for x().

1 n n
L= = X logply )

» L is a function of model parameters «, 3 and

L = —% 3 azl:%@+ﬂ;yi")y§")+v§i:yi")x§")

_logZexp O‘Zyﬁﬁzyz‘yﬁr’YZymg")
y i 1,J %



Maximum Likelihood

Minimize L using gradient-based methods. For example for 3

oL 1 Z () () 2y ©XP() 225 Vil

ap - N rall Yi YT >y exp(...)
1 (n), (n) (n)
= w2 w2 o) Y wiy
n _i,j y 1,7

1 n) (n

Ep(y|x<n))[yiyj] is usually hard to compute as it is a sum over
exponentially many terms.

By ) Wiys] = Zp (y1x"™)yiy;



Pseudolikelihood

» The partition function makes it hard to use exact
gradient-based method.

> Pseudolikelihood avoids this problem by using an
approximation to the exact likelihood function.

piylx) = [[pwilvs, . yj-1.%)
J
~ ey vt u505 0 9m.x) = [ [ wily -5, %)
j j

» p(y;ly—;,x) does not have the partition function problem.

~ exp(...) ~exp(...)

Zyj %exp(,_,) B Zyj exp(...)

The denominator is a sum over a single variable, which is easy
to compute.

p(yly—j,x) =



Pseudolikelihood

For our denoising model,

exp ((a + B2 ieni Vi + W) yj)

p(y;ly—j.x) =
yje{—1,+1} &XP ((0‘ + B2 ieng) ¥+ ’Yl’j) yj>



Pseudolikelihood
For our denoising model,
exp ((a + B2 ien) ¥i + Wﬂj) yj)

ye{~1.4+1} P ((O‘ B Y ien vt W) yj)

P(ysly—j %) =

Therefore

L = Zlogp (y™x™) ——Zzlogp )‘y,ja x(™))
: @?KM )

ieN ()

“log > exp ((a+ B> +7x§”)) y])]
y;e{—1,+1} i€N(5)



Pseudolikelihood

oL n) (n
98 = NZ Zy() " Z Z y p(y]’\yi’}),x(m)[yj]

J ieN(7)

_ ZZ Z 0 [ (yjy“?:x“))[yj]]

nj eN(y

The key term E (w51, xm))[yj] is easy to compute as it is an

expectation over a smgle variable.

Then follow the negative gradient to minimize L.



Pseudolikelihood

> If the data is generated from a distribution in the defined form
with some a*, 8*,~*, then as N — oo, the optimal solution of

a, B, that maximizes the pseudolikelihood will be a*, 5%, v*.

» You can prove it yourself.



Comments

1
p(ylx) = - exp a;yi +B;yiyj +7§i:m¢yi

> We can use different «,y parameters for different ¢, different
(5 parameters for different ¢, j pairs to make the model more
powerful.

» We can define the potential functions to have more
sophisticated form, for example the pairwise potential can be
some function ¢(y;,y;) rather than just a product y;y;.

» The same model can be used for semantic image

segmentation, where the output are object class labels for all
pixels.



Comments

1
p(ylx) = - exp a;yi +B;yiyj +7§i:miyi

» We will study more methods to do inference (compute MAP
or expectation) in the future.

» There are also many other loss functions that can be used as
the training objective.
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