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Figure 8.50 The sum-product algorithm can be viewed
purely in terms of messages sent out by factor
nodes to other factor nodes. In this example,
the outgoing message shown by the blue arrow
is obtained by taking the product of all the in-
coming messages shown by green arrows, mul-
tiplying by the factor fs, and marginalizing over
the variables x1 and x2. fs

x1

x2

x3

and indeed the notion of one node having a special status was introduced only as a
convenient way to explain the message passing protocol.

Next suppose we wish to find the marginal distributions p(xs) associated with
the sets of variables belonging to each of the factors. By a similar argument to that
used above, it is easy to see that the marginal associated with a factor is given by theExercise 8.21
product of messages arriving at the factor node and the local factor at that node

p(xs) = fs(xs)
∏

i∈ne(fs)

µxi→fs(xi) (8.72)

in complete analogy with the marginals at the variable nodes. If the factors are
parameterized functions and we wish to learn the values of the parameters using
the EM algorithm, then these marginals are precisely the quantities we will need to
calculate in the E step, as we shall see in detail when we discuss the hidden Markov
model in Chapter 13.

The message sent by a variable node to a factor node, as we have seen, is simply
the product of the incoming messages on other links. We can if we wish view the
sum-product algorithm in a slightly different form by eliminating messages from
variable nodes to factor nodes and simply considering messages that are sent out by
factor nodes. This is most easily seen by considering the example in Figure 8.50.

So far, we have rather neglected the issue of normalization. If the factor graph
was derived from a directed graph, then the joint distribution is already correctly nor-
malized, and so the marginals obtained by the sum-product algorithm will similarly
be normalized correctly. However, if we started from an undirected graph, then in
general there will be an unknown normalization coefficient 1/Z. As with the simple
chain example of Figure 8.38, this is easily handled by working with an unnormal-
ized version p̃(x) of the joint distribution, where p(x) = p̃(x)/Z. We first run the
sum-product algorithm to find the corresponding unnormalized marginals p̃(xi). The
coefficient 1/Z is then easily obtained by normalizing any one of these marginals,
and this is computationally efficient because the normalization is done over a single
variable rather than over the entire set of variables as would be required to normalize
p̃(x) directly.

At this point, it may be helpful to consider a simple example to illustrate the
operation of the sum-product algorithm. Figure 8.51 shows a simple 4-node factor
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Figure 8.28 For an undirected graph, the Markov blanket of a node
xi consists of the set of neighbouring nodes. It has the
property that the conditional distribution of xi, conditioned
on all the remaining variables in the graph, is dependent
only on the variables in the Markov blanket.

If we consider two nodes xi and xj that are not connected by a link, then these
variables must be conditionally independent given all other nodes in the graph. This
follows from the fact that there is no direct path between the two nodes, and all other
paths pass through nodes that are observed, and hence those paths are blocked. This
conditional independence property can be expressed as

p(xi, xj |x\{i,j}) = p(xi|x\{i,j})p(xj |x\{i,j}) (8.38)

where x\{i,j} denotes the set x of all variables with xi and xj removed. The factor-
ization of the joint distribution must therefore be such that xi and xj do not appear
in the same factor in order for the conditional independence property to hold for all
possible distributions belonging to the graph.

This leads us to consider a graphical concept called a clique, which is defined
as a subset of the nodes in a graph such that there exists a link between all pairs of
nodes in the subset. In other words, the set of nodes in a clique is fully connected.
Furthermore, a maximal clique is a clique such that it is not possible to include any
other nodes from the graph in the set without it ceasing to be a clique. These concepts
are illustrated by the undirected graph over four variables shown in Figure 8.29. This
graph has five cliques of two nodes given by {x1, x2}, {x2, x3}, {x3, x4}, {x4, x2},
and {x1, x3}, as well as two maximal cliques given by {x1, x2, x3} and {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.

We can therefore define the factors in the decomposition of the joint distribution
to be functions of the variables in the cliques. In fact, we can consider functions
of the maximal cliques, without loss of generality, because other cliques must be
subsets of maximal cliques. Thus, if {x1, x2, x3} is a maximal clique and we define
an arbitrary function over this clique, then including another factor defined over a
subset of these variables would be redundant.

Let us denote a clique by C and the set of variables in that clique by xC . Then

Figure 8.29 A four-node undirected graph showing a clique (outlined in
green) and a maximal clique (outlined in blue). x1

x2

x3

x4
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)
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Figure 8.33 Example of a simple
directed graph (a) and the corre-
sponding moral graph (b).
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This is easily done by identifying

ψ1,2(x1, x2) = p(x1)p(x2|x1)
ψ2,3(x2, x3) = p(x3|x2)

...
ψN−1,N (xN−1, xN ) = p(xN |xN−1)

where we have absorbed the marginal p(x1) for the first node into the first potential
function. Note that in this case, the partition function Z = 1.

Let us consider how to generalize this construction, so that we can convert any
distribution specified by a factorization over a directed graph into one specified by a
factorization over an undirected graph. This can be achieved if the clique potentials
of the undirected graph are given by the conditional distributions of the directed
graph. In order for this to be valid, we must ensure that the set of variables that
appears in each of the conditional distributions is a member of at least one clique of
the undirected graph. For nodes on the directed graph having just one parent, this is
achieved simply by replacing the directed link with an undirected link. However, for
nodes in the directed graph having more than one parent, this is not sufficient. These
are nodes that have ‘head-to-head’ paths encountered in our discussion of conditional
independence. Consider a simple directed graph over 4 nodes shown in Figure 8.33.
The joint distribution for the directed graph takes the form

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3). (8.46)

We see that the factor p(x4|x1, x2, x3) involves the four variables x1, x2, x3, and
x4, and so these must all belong to a single clique if this conditional distribution is
to be absorbed into a clique potential. To ensure this, we add extra links between
all pairs of parents of the node x4. Anachronistically, this process of ‘marrying
the parents’ has become known as moralization, and the resulting undirected graph,
after dropping the arrows, is called the moral graph. It is important to observe that
the moral graph in this example is fully connected and so exhibits no conditional
independence properties, in contrast to the original directed graph.

Thus in general to convert a directed graph into an undirected graph, we first add
additional undirected links between all pairs of parents for each node in the graph and

Example: Equivalent DGM and UGM
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DGMs and UGMs represent distinct distributions
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Figure 8.35 A directed graph whose conditional independence
properties cannot be expressed using an undirected
graph over the same three variables.

C

A B

that distribution. A perfect map is therefore both an I map and a D map.
Consider the set of distributions such that for each distribution there exists a

directed graph that is a perfect map. This set is distinct from the set of distributions
such that for each distribution there exists an undirected graph that is a perfect map.
In addition there are distributions for which neither directed nor undirected graphs
offer a perfect map. This is illustrated as a Venn diagram in Figure 8.34.

Figure 8.35 shows an example of a directed graph that is a perfect map for
a distribution satisfying the conditional independence properties A ⊥⊥ B | ∅ and
A ⊥̸⊥ B | C. There is no corresponding undirected graph over the same three vari-
ables that is a perfect map.

Conversely, consider the undirected graph over four variables shown in Fig-
ure 8.36. This graph exhibits the properties A ⊥̸⊥ B | ∅, C ⊥⊥ D | A ∪ B and
A ⊥⊥ B | C∪D. There is no directed graph over four variables that implies the same
set of conditional independence properties.

The graphical framework can be extended in a consistent way to graphs that
include both directed and undirected links. These are called chain graphs (Lauritzen
and Wermuth, 1989; Frydenberg, 1990), and contain the directed and undirected
graphs considered so far as special cases. Although such graphs can represent a
broader class of distributions than either directed or undirected alone, there remain
distributions for which even a chain graph cannot provide a perfect map. Chain
graphs are not discussed further in this book.

Figure 8.36 An undirected graph whose conditional independence
properties cannot be expressed in terms of a directed
graph over the same variables.

A

C

B

D

8.4. Inference in Graphical Models

We turn now to the problem of inference in graphical models, in which some of
the nodes in a graph are clamped to observed values, and we wish to compute the
posterior distributions of one or more subsets of other nodes. As we shall see, we
can exploit the graphical structure both to find efficient algorithms for inference, and
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then drop the arrows on the original links to give the moral graph. Then we initialize
all of the clique potentials of the moral graph to 1. We then take each conditional
distribution factor in the original directed graph and multiply it into one of the clique
potentials. There will always exist at least one maximal clique that contains all of
the variables in the factor as a result of the moralization step. Note that in all cases
the partition function is given by Z = 1.

The process of converting a directed graph into an undirected graph plays an
important role in exact inference techniques such as the junction tree algorithm.Section 8.4
Converting from an undirected to a directed representation is much less common
and in general presents problems due to the normalization constraints.

We saw that in going from a directed to an undirected representation we had to
discard some conditional independence properties from the graph. Of course, we
could always trivially convert any distribution over a directed graph into one over an
undirected graph by simply using a fully connected undirected graph. This would,
however, discard all conditional independence properties and so would be vacuous.
The process of moralization adds the fewest extra links and so retains the maximum
number of independence properties.

We have seen that the procedure for determining the conditional independence
properties is different between directed and undirected graphs. It turns out that the
two types of graph can express different conditional independence properties, and
it is worth exploring this issue in more detail. To do so, we return to the view of
a specific (directed or undirected) graph as a filter, so that the set of all possibleSection 8.2
distributions over the given variables could be reduced to a subset that respects the
conditional independencies implied by the graph. A graph is said to be a D map
(for ‘dependency map’) of a distribution if every conditional independence statement
satisfied by the distribution is reflected in the graph. Thus a completely disconnected
graph (no links) will be a trivial D map for any distribution.

Alternatively, we can consider a specific distribution and ask which graphs have
the appropriate conditional independence properties. If every conditional indepen-
dence statement implied by a graph is satisfied by a specific distribution, then the
graph is said to be an I map (for ‘independence map’) of that distribution. Clearly a
fully connected graph will be a trivial I map for any distribution.

If it is the case that every conditional independence property of the distribution
is reflected in the graph, and vice versa, then the graph is said to be a perfect map for

Figure 8.34 Venn diagram illustrating the set of all distributions
P over a given set of variables, together with the
set of distributions D that can be represented as a
perfect map using a directed graph, and the set U
that can be represented as a perfect map using an
undirected graph.

P
UD

F
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.
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as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)
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The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN ) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN ) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express
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Figure 8.32 (a) Example of a directed
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will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
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as the removal of a node from the graph.
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Naively: 
N variables, K states per variable: computation complexity?
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.
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will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)
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The joint distribution for this graph takes the form

p(x) =
1
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ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
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x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN ) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN ) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.
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correspond to the global maximum.
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although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)

Be clever about order of computation:
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the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN )

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards
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of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
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We now give a powerful interpretation of this calculation in terms of the passing
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constant
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)
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the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
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has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).
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Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.
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will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)

We get joint marginals over variables, too:
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and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using
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This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).
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Now suppose we wish to evaluate the marginals p(xn) for every node n ∈
{1, . . . , N} in the chain. Simply applying the above procedure separately for each
node will have computational cost that is O(N2M2). However, such an approach
would be very wasteful of computation. For instance, to find p(x1) we need to prop-
agate a message µβ(·) from node xN back to node x2. Similarly, to evaluate p(x2)
we need to propagate a messages µβ(·) from node xN back to node x3. This will
involve much duplicated computation because most of the messages will be identical
in the two cases.

Suppose instead we first launch a message µβ(xN−1) starting from node xN

and propagate corresponding messages all the way back to node x1, and suppose we
similarly launch a message µα(x2) starting from node x1 and propagate the corre-
sponding messages all the way forward to node xN . Provided we store all of the
intermediate messages along the way, then any node can evaluate its marginal sim-
ply by applying (8.54). The computational cost is only twice that for finding the
marginal of a single node, rather than N times as much. Observe that a message
has passed once in each direction across each link in the graph. Note also that the
normalization constant Z need be evaluated only once, using any convenient node.

If some of the nodes in the graph are observed, then the corresponding variables
are simply clamped to their observed values and there is no summation. To see
this, note that the effect of clamping a variable xn to an observed value x̂n can
be expressed by multiplying the joint distribution by (one or more copies of) an
additional function I(xn, x̂n), which takes the value 1 when xn = x̂n and the value
0 otherwise. One such function can then be absorbed into each of the potentials that
contain xn. Summations over xn then contain only one term in which xn = x̂n.

Now suppose we wish to calculate the joint distribution p(xn−1, xn) for two
neighbouring nodes on the chain. This is similar to the evaluation of the marginal
for a single node, except that there are now two variables that are not summed out.
A few moments thought will show that the required joint distribution can be writtenExercise 8.15
in the form

p(xn−1, xn) =
1
Z

µα(xn−1)ψn−1,n(xn−1, xn)µβ(xn). (8.58)

Thus we can obtain the joint distributions over all of the sets of variables in each
of the potentials directly once we have completed the message passing required to
obtain the marginals.

This is a useful result because in practice we may wish to use parametric forms
for the clique potentials, or equivalently for the conditional distributions if we started
from a directed graph. In order to learn the parameters of these potentials in situa-
tions where not all of the variables are observed, we can employ the EM algorithm,Chapter 9
and it turns out that the local joint distributions of the cliques, conditioned on any
observed data, is precisely what is needed in the E step. We shall consider some
examples of this in detail in Chapter 13.

8.4.2 Trees
We have seen that exact inference on a graph comprising a chain of nodes can be

performed efficiently in time that is linear in the number of nodes, using an algorithm
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Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables by xi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variables xs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factors fs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient 1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connecting each factor node to all of the
variables nodes on which that factor depends. Consider, for example, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factors fa(x1, x2) and fb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors would simply be lumped
together into the same clique potential. Similarly, fc(x2, x3) and fd(x3) could be
combined into a single potential over x2 and x3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).
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Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
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Figure 8.42 (a) A directed graph with the factorization p(x1)p(x2)p(x3|x1, x2). (b) A factor graph representing
the same distribution as the directed graph, whose factor satisfies f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). (c)
A different factor graph representing the same distribution with factors fa(x1) = p(x1), fb(x2) = p(x2) and
fc(x1, x2, x3) = p(x3|x1, x2).

Factor graphs are said to be bipartite because they consist of two distinct kinds
of nodes, and all links go between nodes of opposite type. In general, factor graphs
can therefore always be drawn as two rows of nodes (variable nodes at the top and
factor nodes at the bottom) with links between the rows, as shown in the example in
Figure 8.40. In some situations, however, other ways of laying out the graph may
be more intuitive, for example when the factor graph is derived from a directed or
undirected graph, as we shall see.

If we are given a distribution that is expressed in terms of an undirected graph,
then we can readily convert it to a factor graph. To do this, we create variable nodes
corresponding to the nodes in the original undirected graph, and then create addi-
tional factor nodes corresponding to the maximal cliques xs. The factors fs(xs) are
then set equal to the clique potentials. Note that there may be several different factor
graphs that correspond to the same undirected graph. These concepts are illustrated
in Figure 8.41.

Similarly, to convert a directed graph to a factor graph, we simply create variable
nodes in the factor graph corresponding to the nodes of the directed graph, and then
create factor nodes corresponding to the conditional distributions, and then finally
add the appropriate links. Again, there can be multiple factor graphs all of which
correspond to the same directed graph. The conversion of a directed graph to a
factor graph is illustrated in Figure 8.42.

We have already noted the importance of tree-structured graphs for performing
efficient inference. If we take a directed or undirected tree and convert it into a factor
graph, then the result will again be a tree (in other words, the factor graph will have
no loops, and there will be one and only one path connecting any two nodes). In
the case of a directed polytree, conversion to an undirected graph results in loops
due to the moralization step, whereas conversion to a factor graph again results in a
tree, as illustrated in Figure 8.43. In fact, local cycles in a directed graph due to
links connecting parents of a node can be removed on conversion to a factor graph
by defining the appropriate factor function, as shown in Figure 8.44.

We have seen that multiple different factor graphs can represent the same di-
rected or undirected graph. This allows factor graphs to be more specific about the

(a) p(x1)p(x2)p(x3|x1, x2)

(b) f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2)

(c) fa(x1) = p(x1), fb(x2) = p(x2), fc(x1, x2, x3) = p(x3|x1, x2)
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Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphs without loops known
as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

We shall assume that the original graph is an undirected tree or a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal with both directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginal p(x) for partic-
ular variable node x. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables except x so that

p(x) =
∑

x\x

p(x) (8.61)

where x \ x denotes the set of variables in x with variable x omitted. The idea is
to substitute for p(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
node x. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x, Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours of x, and Xs denotes the
set of all variables in the subtree connected to the variable node x via the factor node
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Figure 8.39 Examples of tree-
structured graphs, showing (a) an
undirected tree, (b) a directed tree,
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that can be interpreted in terms of messages passed along the chain. More generally,
inference can be performed efficiently using local message passing on a broader
class of graphs called trees. In particular, we shall shortly generalize the message
passing formalism derived above for chains to give the sum-product algorithm, which
provides an efficient framework for exact inference in tree-structured graphs.

In the case of an undirected graph, a tree is defined as a graph in which there
is one, and only one, path between any pair of nodes. Such graphs therefore do not
have loops. In the case of directed graphs, a tree is defined such that there is a single
node, called the root, which has no parents, and all other nodes have one parent. If
we convert a directed tree into an undirected graph, we see that the moralization step
will not add any links as all nodes have at most one parent, and as a consequence the
corresponding moralized graph will be an undirected tree. Examples of undirected
and directed trees are shown in Figure 8.39(a) and 8.39(b). Note that a distribution
represented as a directed tree can easily be converted into one represented by an
undirected tree, and vice versa.Exercise 8.18

If there are nodes in a directed graph that have more than one parent, but there is
still only one path (ignoring the direction of the arrows) between any two nodes, then
the graph is a called a polytree, as illustrated in Figure 8.39(c). Such a graph will
have more than one node with the property of having no parents, and furthermore,
the corresponding moralized undirected graph will have loops.

8.4.3 Factor graphs
The sum-product algorithm that we derive in the next section is applicable to

undirected and directed trees and to polytrees. It can be cast in a particularly simple
and general form if we first introduce a new graphical construction called a factor
graph (Frey, 1998; Kschischnang et al., 2001).

Both directed and undirected graphs allow a global function of several vari-
ables to be expressed as a product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing additional nodes for the fac-
tors themselves in addition to the nodes representing the variables. They also allow
us to be more explicit about the details of the factorization, as we shall see.

Let us write the joint distribution over a set of variables in the form of a product
of factors

p(x) =
∏

s

fs(xs) (8.59)

where xs denotes a subset of the variables. For convenience, we shall denote the
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alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

We shall assume that the original graph is an undirected tree or a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal with both directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginal p(x) for partic-
ular variable node x. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables except x so that

p(x) =
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p(x) (8.61)

where x \ x denotes the set of variables in x with variable x omitted. The idea is
to substitute for p(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
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the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
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We begin by considering the problem of finding the marginal p(x) for partic-
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are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
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to substitute for p(x) using the factor graph expression (8.59) and then interchange
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fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
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ne(x): set of factor nodes that are neighbours of x


X_s: set of all variables in the subtree connected to the variable node x via factor node f_s


F_s(x, X_s): the product of all the factors in the group associated with factor f_s 
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
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]
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µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.
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Here we have introduced a set of functions µfs→x(x), defined by
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Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write
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We evaluate the marginal p(x) as product of messages from surrounding factors!
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Each factor is itself described by a factor sub-graph, so we can decompose:

(Each variable associated with f_x is {x, x_1, …, x_M})

Rewriting the factor-to-variable message:
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Each factor is itself described by a factor sub-graph, so we can decompose:

(Each variable associated with f_x is {x, x_1, …, x_M})

Rewriting the factor-to-variable message:
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Each factor is itself described by a factor sub-graph, so we can decompose:

(Each variable associated with f_x is {x, x_1, …, x_M})

Rewriting the factor-to-variable message:
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Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we
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Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.
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µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we
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Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.
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µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we
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Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.
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where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)
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Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.
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then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs
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where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.
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Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).
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fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM )G1 (x1, Xs1) . . . GM (xM , XsM ) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM )
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Sum-Product: Marginal distribution over x

See Bishop p. 409 for a fully worked, simple example!


