

Factor Graphs through Max-Sum Algorithm

Figures from Bishop PRML Sec. 8.3/8.4

Geoffrey Roeder <u>roeder@cs.toronto.edu</u> 8 February 2018

Building Blocks

UGMs, Cliques, Factor Graphs

Markov Random Fields / UGMs

Parameterization: maximal cliques

Example: Equivalent DGM and UGM

 $p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\cdots p(x_N|x_{N-1})$

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$\psi_{1,2}(x_1, x_2) = p(x_1)p(x_2|x_1)$$

$$\psi_{2,3}(x_2, x_3) = p(x_3|x_2)$$

$$\vdots$$

$$\psi_{N-1,N}(x_{N-1}, x_N) = p(x_N|x_{N-1})$$

Conversion: "Moralization" (Marry the Parents of Every Child)

 $p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$

DGMs and UGMs represent distinct distributions

Motivations: Exact Inference in a Chain

Query probability of a configuration for node X_n: p(x_n)

Naively: N variables, K states per variable: computation complexity?

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x}).$$

We ignored the conditional independence! Notice for x_n:

$$\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$$

Be clever about order of computation:

$$p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)$$

Be clever about order of computation:

$$p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)$$

We get joint marginals over variables, too:

$$p(x_{n-1}, x_n) = \frac{1}{Z} \mu_{\alpha}(x_{n-1}) \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\beta}(x_n)$$

Factor Graph Review

 $p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$

(a)
$$p(x_1)p(x_2)p(x_3|x_1,x_2)$$

(b) $f(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3|x_1, x_2)$

(c)
$$f_a(x_1) = p(x_1), f_b(x_2) = p(x_2), f_c(x_1, x_2, x_3) = p(x_3|x_1, x_2)$$

Sum-Product Algorithm

Generalize Exact Inference in Chains to Tree-Structured PGMs

Problem setup: notation

ne(x): set of factor nodes that are neighbours of x

X_s: set of all variables in the subtree connected to the variable node x via factor node f_s

F_s(x, X_s): the product of all the factors in the group associated with factor f_s

Problem setup: notation

ne(x): set of factor nodes that are neighbours of x

X_s: set of all variables in the subtree connected to the variable node x via factor node f_s

F_s(x, X_s): the product of all the factors in the group associated with factor f_s

Problem setup: notation

We evaluate the marginal p(x) as product of messages from surrounding factors!

Factor messages: decomposition

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x).$$

Each factor is itself described by a factor sub-graph, so we can decompose:

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

(Each variable associated with f_x is {x, x_1, ..., x_M})

Rewriting the factor-to-variable message:

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \left[\sum_{X_{xm}} G_m(x_m, X_{sm}) \right]$$

Factor messages: decomposition

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x).$$

Each factor is itself described by a factor sub-graph, so we can decompose:

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

(Each variable associated with f_x is {x, x_1, ..., x_M})

Rewriting the factor-to-variable message:

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \left[\sum_{X_{xm}} G_m(x_m, X_{sm}) \right]$$
$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m) \quad (8.66)$$

Factor-to-variable messages: decomposition

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x).$$

Each factor is itself described by a factor sub-graph, so we can decompose:

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

(Each variable associated with f_x is {x, x_1, ..., x_M})

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \left[\sum_{X_{xm}} G_m(x_m, X_{sm}) \right]$$
$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m) \quad (8.66)$$
$$\mu_{x_m \to f_s}(x_m) \equiv \sum G_m(x_m, X_{sm})$$

 X_{sm}

Variable-to-factor messages: decomposition

$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm})$$

Factor-to-variable messages: one step back towards the leaves

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M)G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$
$$G_m(x_m, X_{sm}) = \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})$$

Factor-to-variable messages: one step back towards the leaves

Sum-Product Initialization at Leaves

Sum-Product: Marginal distribution over x

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x).$$

See Bishop p. 409 for a fully worked, simple example!