Today's lecture

Approximate inference in graphical models.
@ Forward and Backward KL divergence
@ Variational Inference
@ Mean Field: Naive and Structured
@ Marginal Polytope
@ Local Polytope
@ Relaxation methods
@ Loopy BP

@ LP relaxations for MAP inference

Figures from D. Sontag, Murphy's book
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Approximate marginal inference

@ Given the joint p(xy,- -, x,) represented as a graphical model, we want to
perform marginal inference, e.g., p(x;|e)
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Approximate marginal inference

@ Given the joint p(xy,- -, x,) represented as a graphical model, we want to
perform marginal inference, e.g., p(x;|e)

@ We showed in last lecture that doing this exactly is NP-hard

@ We also covered variable elimination (VE), which can solve these type of
queries for any graphical model, but - --

@ Almost all approximate inference algorithms in practice are

o Variational algorithms (e.g., mean-field, loopy belief propagation)
e Sampling methods (e.g., Gibbs sampling, MCMC)
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Variational Methods

@ Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)
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Variational Methods

@ Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)
o p(x|e) and g(x) should be "close”
o Computation on g(x) should be easy

@ How should we measure distance between distributions?
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@ Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)
o p(x|e) and g(x) should be "close”
o Computation on g(x) should be easy

@ How should we measure distance between distributions?

@ The Kullback-Leibler divergence (KL-divergence) between two
distributions p and g is defined as
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X

@ It measures the expected number of extra bits (nats) required to describe
samples from p(x) using a code based on g instead of p
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Variational Methods

Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)

o p(x|e) and g(x) should be "close”

o Computation on g(x) should be easy
How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and g is defined as
p(x)
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X

It measures the expected number of extra bits (nats) required to describe
samples from p(x) using a code based on g instead of p

D(pl|g) > 0 for all p, g, with equality if and only if p =g
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Variational Methods

Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)

o p(x|e) and g(x) should be "close”

o Computation on g(x) should be easy
How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and g is defined as

= x)lo p(x)
D(pllg) = > p(x)! 8 00

X

It measures the expected number of extra bits (nats) required to describe
samples from p(x) using a code based on g instead of p

D(pl|g) > 0 for all p, g, with equality if and only if p =g

The KL-divergence is asymmetric
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KL-divergence

@ Suppose p is the true distribution

D(pl|q) = ZP x) |og
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@ Suppose p is the true distribution

D(pl|q) = Zp x) |og

@ This is difficult to optimize because the expectations w.r.t. p are typically
intractable

@ We can reverse the KL

D(allp) = 3 a0 log %)

” p(x)
@ Typically the expectation w.r.t. g will be tractable, but - - -
@ --- computing p(x) is still hard, due to the partition function
@ What can we do?
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Variational Inference

@ Let's look at the unnormalized distribution

Ja) = > a(x)log gg;

X
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Variational Inference

@ Let's look at the unnormalized distribution
q(x)
J q = qlx |0 p”
(@ = Daboloe g
q(x)
qg(x)lo
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Variational Inference

@ Let's look at the unnormalized distribution

Jq) = Zq(X)logq(x)

” p(x)
_ q(x)
- zx: q(x) log Z 509
= EX: q(x) log ;’23 —logZ
= KL(qllp) —log Z

@ Since Z is constant, by minimizing J(q), we will force g to become close to p

@ The KL is always non-negative, so we see that J(q) is an upper bound on
the negative log likelihood (NLL)

J(q) = KL(ql|p) — log Z > —log Z = — log p(D)
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Alternative Interpretations

@ (1). We can alternatively write

J(q) = Eqflog q(x)] + Eq[—logp(x)]
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J(q) = Eqllog q(x)] + Eq[—logp(x)] = —H(q) + Eq[E(x)]
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Alternative Interpretations

@ (1). We can alternatively write

J(q) = Eqllog q(x)] + Eq[—logp(x)] = —H(q) + Eq[E(x)]
which is the expected energy minus the entropy.

@ In physics, J(q) is called the variational free energy or Helmholtz free
energy

@ (2). Another alternative:

J(q) = Egllogq(x) — log p(x)p(D)]

= Eq[log q(x) — log p(x) — log p(D)]
= Eq[—log p(D)] + KL(q|p)

Zemel & Urtasun (UofT)

Feb 23, 2016 8 /47



Alternative Interpretations

@ (1). We can alternatively write

J(q) = Eqllog q(x)] + Eq[—logp(x)] = —H(q) + Eq[E(x)]
which is the expected energy minus the entropy.

@ In physics, J(q) is called the variational free energy or Helmholtz free
energy

@ (2). Another alternative:

J(q)

Eq[log g(x) — log p(x)p(D)]
Eq[log g(x) — log p(x) — log p(D)]
Eq[— log p(D)] + KL(ql|p)

@ This is the expected NLL plus a penalty term that measures how far apart
the two distributions are
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KL-divergence

@ Before we do something let's inspect again
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KL-divergence

@ Before we do something let's inspect again

= x)lo p(x)
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X

@ What is the difference between the solution to
arg min KL(p||q)
q

and
arg min KL(ql|p)
q
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KL-divergence

@ Before we do something let's inspect again

= x) lo P(x)
KL(pllq) =D p(x)! 8 00

X

@ What is the difference between the solution to
arg min KL(p||q)
q
and

arg min KL(q||p)
q

@ They differ only when g is minimized over a restricted set of probability
distribution @ = {q1,---}, and p # q. Why?
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Forward or Reverse KL

@ Minimizing KL(pl||q) or KL(q||p) will give different results
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Forward or Reverse KL

@ Minimizing KL(pl||q) or KL(q||p) will give different results

@ | projection, or Information projection

KL(qllp) = _ a(x)log Zg;

X

This is infinite if p(x) =0 and g(x) > 0. Thus we must ensure that if
p(x) =0 then g(x) =0
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Forward or Reverse KL

@ Minimizing KL(pl||q) or KL(q||p) will give different results

@ | projection, or Information projection

KL(qllp) = _ a(x)log Zg;

X
This is infinite if p(x) =0 and g(x) > 0. Thus we must ensure that if
p(x) =0 then g(x) =0

@ Thus the reverse KL is zero forcing and g will under-estimate the support
of p
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Forward or Reverse KL

Minimizing KL(p||q) or KL(q||p) will give different results

| projection, or Information projection

KL(qllp) = _ a(x)log Zg;

X

This is infinite if p(x) =0 and g(x) > 0. Thus we must ensure that if
p(x) =0 then g(x) =0

@ Thus the reverse KL is zero forcing and g will under-estimate the support
of p
@ M projection or moment projection
p(x)
KL(pllq) = ) _ p(x)log ——
Ex: q(x)
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Forward or Reverse KL

Minimizing KL(p||q) or KL(q||p) will give different results

| projection, or Information projection

KL(qllp) = _ a(x)log Zg;

X

This is infinite if p(x) =0 and g(x) > 0. Thus we must ensure that if
p(x) =0 then g(x) =0

@ Thus the reverse KL is zero forcing and g will under-estimate the support
of p
@ M projection or moment projection
p(x)
KL(pllq) = ) _ p(x)log ——
Ex: q(x)

This is infinite if g(x) = 0 and p(x) > 0. This is zero avoiding, and the
forward KL over-estimates the support of p
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KL divergence - M projection

q" = arg min KL(pllq) = Zp

p(x) is a 2D Gaussian and Q is the set of all Gaussnan distributions with diagonal
covariance matrices

Z2

0.5

0 05 2 1
p=Green, g*=Red
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KL divergence - | projection

q" = arg min KL(q|lp) = Zq

p(x) is a 2D Gaussian and Q is the set of all Gaussnan distributions with diagonal
covariance matrices

Z2

0.5

0 05 z; 1
p=Green, g*=Red
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KL Divergence (single Gaussian)

@ In this example, both the M-projection and I-projection find an approximate
q(x) that has the correct mean (i.e., Ep(z) = E4(x))

1 1
22 Z92
0.5 05
0 0
0 05 2 1 0 05  z 1
p=Green, g*=Red p=Green, g*=Red
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KL Divergence (single Gaussian)

@ In this example, both the M-projection and I-projection find an approximate
q(x) that has the correct mean (i.e., Ep(z) = E4(x))

1 1
22 Z92
0.5 05
0 0
0 05 2 1 0 05  z 1
p=Green, g*=Red p=Green, g*=Red

What if p(x) is multimodal?
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M projection (Mixture of Gaussians)

q" = arg min KL(pllq) = Zp

p(x) is a mixture of two 2D Gaussians and @ is the set of all 2D Gaussian
distributions (with arbitrary covariance matrices)

M-projection yields a distribution g(x) with the correct mean and covariance.
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| projection (Mixture of Gaussians)

q" = arg min KL(qllp) = > q(x)log q(x)

” p(x)
N
p=Blue, g*=Red (two local minimal)

N

The I-projection does not necessarily yield the correct moments

Zemel & Urtasun (UofT) Feb 23, 2016 15 / 47



Mean Field

@ One of the most popular variational inference algorithms [Opper & Saad 01]
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@ One of the most popular variational inference algorithms [Opper & Saad 01]

@ Assume that the posterior fully factorizes

a9 = [T o)

@ Our goal is to
min KL(ql|p)

L, 4o
where we optimize over the parameters of each marginal distribution g;
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Mean Field

@ One of the most popular variational inference algorithms [Opper & Saad 01]

@ Assume that the posterior fully factorizes

= HCIi(Xi)

@ Our goal is to
min KL(ql|p)

L, 4o
where we optimize over the parameters of each marginal distribution g;

@ Minimize the upper bound J(q) > — log p(D) or alternatively we want to
maximize the lower bound

L(q) =—J(q) =>_q(x)log 8<|ogp( )

X
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Mean Field

@ One of the most popular variational inference algorithms [Opper & Saad 01]

@ Assume that the posterior fully factorizes

= HCIi(Xi)

@ Our goal is to
min KL(ql|p)

L, 4o
where we optimize over the parameters of each marginal distribution g;

@ Minimize the upper bound J(q) > — log p(D) or alternatively we want to
maximize the lower bound

L(q) =—J(q) =>_q(x)log 8<|ogp( )

X

@ We can do the maximization one node at a time, in an iterative fashion
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Mean Field Updates

@ Focus on g; (holding all other terms constant)

Lg) = D J]ax [|0g p(x) — D log qk(Xk)]
x i k
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Mean Field Updates

@ Focus on g; (holding all other terms constant)
S ITa® [|0g B(x) — Y log qk(Xk)]
x i k
SN i) [ [ aitxi) [bg p(x) — > log Qk(xk):|
X_j k

x i

Y

L(q))
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Mean Field Updates

@ Focus on g; (holding all other terms constant)

ZX: H qi(x) [log B(x) — zk: log qk(xk)]

>3 qixy) 1;[ ai(x) [log p(x) — zk: log qk(xk):|
5 % i

> aqi(x) D> [ ai(xi) log p(x) —

%j X—j i#f

> ait) D> [T aitxi) {Z log qx (xk) + log qj(Xj)}

X; x_j i ki

L(q))
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Mean Field Updates

@ Focus on g; (holding all other terms constant)
Lg) = D J]ax [|0g p(x) — D log qk(Xk)]
x i k
SN i) [ [ aitxi) [bg p(x) — > log Qk(xk):|
Xj X_j k

i#]
= > q(x)>_ [ ai(xi)logp(x) —
%j X—j 7]
> ait) D> [T aitxi) {Z log qx (xk) + log qj(Xj)}
X X i) P
= > a(x)logfi(x;) = > qj(x;)log qj(x;) + const
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Mean Field Updates

@ Focus on g; (holding all other terms constant)

L(q) = ZHQI(X [logp Zbg qk(Xk)]
ZZqJ(XJ) [aix) [log p(x) — > log Qk(xk):|
; K

i#j

= Z Qj(Xj) > T ai(xi)log p(x) —

%j X—j 7]

> ait) D> [T aitxi) {Z log qx (xk) + log qj(Xj)}

X X i) P

= > a(x)logfi(x;) = > qj(x;)log qj(x;) + const
where log fi(x;) = > _ [ i(xi) log B(x) = E—q[log B(x)]
X_j i#
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Mean Field Updates

@ Focus on g; (holding all other terms constant)

L(q) = ZHQI(X [logp Zbg qk(Xk)]
= > Z a;(x) [ [ ai(xi) [log p(x) — > log Qk(xk):|
X i#j k
= > Qj(Xj) > T ai(xi)log p(x) —
%j X—j 7]
> ait) D> [T aitxi) {Z log qx (xk) + log qj(Xj)}
X X i P
= > a(x)logfi(x;) = > qj(x;)log qj(x;) + const
where log fi(x;) = > _ [ i(xi) log B(x) = E—q[log B(x)]
X_j i#

@ So we average out all the variables except x;, and can rewrite L(g;) as
L(q;) = —KL(qlIf)
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (Z Oc(xc) —In Z(G))

CEC ceC
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (Z Oc(xc) —In Z(G))
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@ We can compute the KL
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X
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (Z Oc(xc) —In Z(G))

CEC ceC

@ We can compute the KL

q(x)
2_a(x)in p(x)

X

= 72 ) In p(x) — Zq(x)lnﬁ

b3

KL(qllp)
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (ZG xc) —In Z(6) )

CEC ceC

@ We can compute the KL

Kigll)) = 3 g0t 2%

- p(x)

= 72 ) In p(x) — Zq(x)lnﬁ

b3

L Y (Ze ) |n29)> A(a(x)

ceC
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (ZG xc) —In Z(6) )

CEC ceC
@ We can compute the KL

q(x)
2_an p(x)

X

= — n X Xni
= Z ) In p(x) Zq()l 09

_ _Z (Z@ xc) —InZ( 9)) H(q(x))
= Yl + 3 a1 260) - )

ceC x

KL(ql|p)
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Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model

p(x; 0) H dc(xc) = exp (ZG xc) —In Z(6) )

CEC ceC

@ We can compute the KL

Kigll)) = 3 g0t 2%

- p(x)

= 72 ) In p(x) — Zq(x)lnﬁ

b3

L Y <Ze ) |n29)> A(a(x)

= 305 + 3 a9 Z(0) — Higt)
ceC x

= = Egffc(xc)] + In Z(0) — H(q(x))
ceC

@ The partition function can be considered as constant when minimizing over g
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Mean Field for Variational Inference

max > D alxe)0e(xc) + H(q(x))

ceC xc
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Mean Field for Variational Inference

Teagzz q(xc)0c(xc) + H(q(x))

ceC xc

@ Although this function is concave and thus in theory should be easy to
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Mean Field for Variational Inference

Teagzz q(xc)0c(xc) + H(q(x))

ceC xc

@ Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing g(x)

@ Mean field: assume a factored representation of the joint distribution

00O0O0O0
00O0O0O
——+ 00000
0000O
000O0O
=)

iev
This is called "naive” mean field
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can

simplify
Teaé(zz q(xc)0c(xc) + H(q(x))

ceC Xc

since g(xc) = [[;cc qi(xi)
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simplify
Teaé(zz q(xc)0c(xc) + H(q(x))
ceC Xc
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@ The joint entropy decomposes as a sum of local entropies
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simplify
Teaé(zz q(xc)0c(xc) + H(q(x))

ceC Xc
since g(xc) = [[;cc qi(xi)

@ The joint entropy decomposes as a sum of local entropies
Hg) = - Z )In g(x)
_Zq X |nHCIi xi) = Z X)Zlnq, Xi)
X
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can

simplify
Teaé(zz q(xc)0c(xc) + H(q(x))
ceC Xc
since g(xc) = [[;cc qi(xi)

@ The joint entropy decomposes as a sum of local entropies

H(q) = —Z )In g(x)
—Z |an,'X,' = Z x)ZInq,x,

ieVv iev

—ZZ )In gi(x;)

eV x
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can

simplify
Teaé(zz q(xc)0c(xc) + H(q(x))

ceC Xc
since g(xc) = [[;cc qi(xi)

@ The joint entropy decomposes as a sum of local entropies
Hg) = - Z )In g(x)
~Saton a0 =~ Yot Sinate

iev iev
= _ZZ lnq/ XI
eV x
= _qul(xl)lnql Xi Z (X,,"X,') = ZH(qI)
eV x; i ieVv
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can

simplify
maxZZq(Xc (xc) + H(q(x))

ceC Xc

since q(xc) = [[;cc qi(xi)
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can
simplify
max 37 alxfe(xe) + H(g(x)
CEC Xc
since q(xc) = Hiec qi(Xi)

@ The joint entropy decomposes as a sum of local ones H(q) = ;.\, H(qi)
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can
simplify
max 37 alxfe(xe) + H(g(x)
CEC Xc
since q(xc) = [[iec 9i(xi)
@ The joint entropy decomposes as a sum of local ones H(q) = ;.\, H(qi)
@ Putting these together, we obtain

maxZZO Xc Hq,(X, +ZH qi)

ceC Xc i€c iev
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Naive Mean Field

@ Suppose that Q consists of all fully factorized distributions, then we can

simplify
maxZZq(xc Xc +H( ( ))

c€C x
since q(xc) = [[iec 9i(xi)
@ The joint entropy decomposes as a sum of local ones H(q) = ;.\, H(qi)
@ Putting these together, we obtain
maxZZO Xc Hq,(x, +ZH qi)
ceC xc i€c iev

subject to the constraints

q,'(X,') >0 VieV,x

Zq;(X,') =1 VieV
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Naive Mean Field for Pairwise MRFs

@ For pairwise MRFs we have

max > > 0i(xix)ai(x)ai(x) = > > ai() In gi(x) (1)

jEE Xxi,X;j eV x
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@ For pairwise MRFs we have

max > > 0i(xix)ai(x)ai(x) = > > ai() In gi(x) (1)

jEE Xxi,X;j eV x

@ This is a non-concave optimization problem, with many local maximal!

@ We can do block coordinate ascent
@ ForeachiceV
o Fully maximize Eq. (1) wrt {qgi(xi), Vxi}
@ repeat until convergence
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@ For pairwise MRFs we have

max > > 0i(xix)ai(x)ai(x) = > > ai() In gi(x) (1)

jEE Xxi,X;j eV x

@ This is a non-concave optimization problem, with many local maximal!

@ We can do block coordinate ascent
@ ForeachiceV
o Fully maximize Eq. (1) wrt {qgi(xi), Vxi}
@ repeat until convergence
@ Constructing the Lagrangian, taking the derivatives and setting to zero
yields the update

i) < 5 &0 600+ Y 3 ). )

JEN() X
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Naive Mean Field for Pairwise MRFs

@ For pairwise MRFs we have

max > > 0i(xix)ai(x)ai(x) = > > ai() In gi(x) (1)

jEE Xxi,X;j eV x

@ This is a non-concave optimization problem, with many local maximal!

@ We can do block coordinate ascent

@ ForeachiceV
o Fully maximize Eq. (1) wrt {qgi(xi), Vxi}
@ repeat until convergence

@ Constructing the Lagrangian, taking the derivatives and setting to zero
yields the update

qi(xi) < %GXP 0i(xi)+ D > ai(x)05(xi, %)

JEN() X

@ See Mean field example for the Ising Model, Murphy 21.3.2
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Structured mean-field approximations

@ Rather than assuming a fully-factored distribution for g, we can use a
structured approximation, such as a spanning tree
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Structured mean-field approximations

@ Rather than assuming a fully-factored distribution for g, we can use a
structured approximation, such as a spanning tree

@ For example, for a factorial HMM, a good approximation may be a product
of chain-structured models (see Murphy 21.4.1)

%,2 st ;21 ;2,2 ;2‘3
Q3,2 (;3.3 ;3.1 ;3 2 ;3,3

v

0 0

0
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Approximate Inference via Loopy BP

@ Mean field inference approximates posterior as product of marginal
distributions

@ Allows use of different forms for each variable: useful when inferring
statistical parameters of models, or regression weights

@ An alternative approximate inference algorithm is loopy belief propagation
@ Same algorithm shown to do exact inference in trees last class

@ In loopy graphs, BP not guaranteed to give correct results, may not
converge, but often works well in practice
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Loopy BP on Pairwise Models

Algorithm 22.1: Loopy belief propagation for a pairwise MRF

Input: node potentials 1s(5), edge potentials gt (g, x¢);
Initialize messages ms_+(2¢) = 1 for all edges s — ¢;
Initialize beliefs bels(25) = 1 for all nodes s;
repeat

Send message on each edge

Mt (T) = D, (lﬁl"s(rs)ﬁ*’st(xs,rt) [Ticnbrae mu_>s(;rs));
6 Update belief of each node bely () oc ¥o(ws) [T, cppe, Miss(7s);

7 until beliefs don’t change significantly,
8 Return marginal beliefs belg (x4 );

1 T S TCR R
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Loopy BP for Factor Graph

--a(@) \ {f}

mi%f(xi) = H mha: X/

he M(i)\f
meoi(x;) = foc H mj_f(x;)
xc\X; JEN(F\i
pit) o< ] mesitx)
FeEM(i)
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Convergence of LBP

@ Can we predict when will converge?
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@ Change from synchronous to asynchronous updates
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Convergence of LBP

@ Can we predict when will converge?

o Unroll messages across time in a computation tree: T iterations of
LBP is exact computation in tree of height T + 1
e if leaves’ effect on root diminishes over time will converge

@ Can we make it more likely to converge?

o Damp the messages to avoid oscillations
o Can we speed up convergence?

@ Change from synchronous to asynchronous updates

o Update sets of nodes at a time, e.g., spanning trees (tree
reparameterization)

Zemel & Urtasun (UofT) Feb 23, 2016



LBP as Variational Inference

@ More theoretical analysis of LBP from variational point of view:
(Wainwright & Jordan, 2008)
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LBP as Variational Inference

@ More theoretical analysis of LBP from variational point of view:
(Wainwright & Jordan, 2008)

@ Dense tome

@ Simplify by considering pairwise UGMs, discrete variables

Zemel & Urtasun (UofT) Feb 23, 2016 28 / 47



Variational Inference for Graphical Models

@ Suppose that we have an arbitrary graphical model
p(x;0) = Hd)c Xc) = exp (ZG Xc) InZ(9)
ceC
@ We can compute the KL

KL(ql|p) > q(x)! ()

X

= —Z ) Inp(x) — Zq(x)ln (x)

X

= -2 (Z b (xc) — lnzw)> — H(q(x))

= 722 9(xc)+z )In Z(0) — H(q(x))
= =Y Eqlbe(x)] + 0 Z(6) — H(q(x))

@ The partition function is a constant when minimizing over g
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The log-partition Function

@ Since KL(q||p) > 0 we have

= 3" Belfe(xe)] + 10 Z(6) — H(9(x)) = 0
ceC

Zemel & Urtasun (UofT) Feb 23, 2016 30 / 47



The log-partition Function

@ Since KL(q||p) > 0 we have
=3 Eglfe(x)] + 10 Z(6) — H(g(x)) > 0
ceC

which implies

In Z(G) > Z]Eq[oc(xc)] + H(Q(X))

ceC
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The log-partition Function

@ Since KL(q||p) > 0 we have
=3 Eglfe(x)] + 10 Z(6) — H(g(x)) > 0
ceC

which implies

In Z(G) > Z]Eq[oc(xc)] + H(Q(X))

ceC

@ Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function
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The log-partition Function

@ Since KL(q||p) > 0 we have
=3 Eglfe(x)] + 10 Z(6) — H(g(x)) > 0
ceC

which implies

In 2(9) > Z]Eq[oc(xc)] + H(Q(X))

ceC
@ Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function

@ Recall that KL(p||g) = 0 if an only if p = g. Thus, if we optimize over all
distributions we have

10 Z(9) = max Y Eqlfe(x)] + H(q(x))

ceC
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The log-partition Function

@ Since KL(q||p) > 0 we have
= Eelbe(xe)] + 1 Z(6) ~ H(g(x) > 0
ceC
which implies
In 2(9) > Z]Eq[oc(xc)] + H(Q(X))

ceC

@ Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function

@ Recall that KL(p||g) = 0 if an only if p = g. Thus, if we optimize over all
distributions we have

10 Z(9) = max Y Eqlfe(x)] + H(q(x))

ceC

@ This casts exact inference as a variational optimization problem

Zemel & Urtasun (UofT)
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Rewriting Objective in terms of Moments

InZ(6) = max > Eqloe(xe)] + H(q(x))
ceC
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Rewriting Objective in terms of Moments

InZ(0) = maxZEq[Q (xc)] + H(q(x))

ceC

= maxzz c(xc) + H(g(x))

ceC x
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ceC x
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Rewriting Objective in terms of Moments

InZ(6)

maxZEq[Q (xc)] + H(q(x))

ceC

maxzz <(xc) + H(g(x))
ceC x

maxzz xc)0c(xc) + H(g(x))
ceC xc

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient

statistic vector

Zemel & Urtasun (UofT)

Feb 23, 2016

31/ 47



Rewriting Objective in terms of Moments

InZ(0) = maxZEq[Q (xc)] + H(q(x))

ceC

= maxzz c(xc) + H(g(x))
ceC x

= maxzz xc)0c(xc) + H(g(x))
ceC xc

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

@ Define pg = E[f(x)] to be the marginals of g(x)
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Rewriting Objective in terms of Moments

InZ(0) = maxZEq[Q (xc)] + H(q(x))

ceC

= maxzz c(xc) + H(g(x))
ceC x

= maxzz xc)0c(xc) + H(g(x))
ceC xc

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

@ Define pg = E[f(x)] to be the marginals of g(x)

@ We can re-write the objective as

InZ(f) = max max ZZALC xc)fc(xc) + H(g(x))

HEM q:Eq[f())=p T2 <
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Rewriting Objective in terms of Moments

InZ(0) = maxZEq[Q (xc)] + H(q(x))

ceC

= maxzz c(xc) + H(g(x))
ceC x

= maxzz xc)0c(xc) + H(g(x))
ceC xc

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

@ Define pg = E[f(x)] to be the marginals of g(x)

@ We can re-write the objective as

InZ(f) = max max ZZALC xc)fc(xc) + H(g(x))

HEM q:Eq[f())=p T2 <

where M is the marginal polytope, having all valid marginal vectors
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Rewriting Objective in terms of Moments

@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC xc

H = H
(1) - (9)
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Rewriting Objective in terms of Moments

@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC Xc
H = max H
() = mex  H@)

@ For discrete random variables, the marginal polytope M is the set of all
mean parameters for the given model that can be generated from a valid
prob. distribution
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Rewriting Objective in terms of Moments

@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC xc

Hp) = H(q)

max
GEIF ()=

@ For discrete random variables, the marginal polytope M is the set of all
mean parameters for the given model that can be generated from a valid
prob. distribution

M = {u eRY 3p st op= Z p(x)f(x) for some p(x) >0, Z p(x) = 1}

xexm xexm
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Rewriting Objective in terms of Moments

@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC xc
H(u) = H(q)

max
GEIF ()=

@ For discrete random variables, the marginal polytope M is the set of all

mean parameters for the given model that can be generated from a valid
prob. distribution

xexm xexm

M = {u eRY 3p st op= Z p(x)f(x) for some p(x) >0, Z p(x) = 1}
= conv{f(x),x € XM}

with conv the convex hull (it has exponential number of facets)
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@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC xc

Hp) = H(q)

max
GEIF ()=

@ For discrete random variables, the marginal polytope M is the set of all
mean parameters for the given model that can be generated from a valid
prob. distribution

M = {u eRY 3p st op= Z p(x)f(x) for some p(x) >0, Z p(x) = 1}

xexm xexm
= conv{f(x),x € XM}

with conv the convex hull (it has exponential number of facets)

@ For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function
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Rewriting Objective in terms of Moments

@ We next push the max inside

InZ(0) = max} > Oc(xe)uec(xe) + H(p)

ceC xc

Hp) = H(q)

max
GEIF ()=

@ For discrete random variables, the marginal polytope M is the set of all
mean parameters for the given model that can be generated from a valid
prob. distribution

M = {u eRY 3p st op= Z p(x)f(x) for some p(x) >0, Z p(x) = 1}

xexm xexm
= conv{f(x),x € XM}

with conv the convex hull (it has exponential number of facets)

@ For a discrete-variable MRF, the sufficient statistic vector f(x) is simply the
concatenation of indicator functions for each clique of variables that appear
together in a potential function

@ For example, if we have a pairwise MRF on binary variables with m = |V/|
variables and |E| edges, d = 2m + 4|E]|
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Marginal Polytope for Discrete MRFs

1 <— Assignment for X,

Marginal polytope

(Wainwright & Jordan, '03‘)/
\ .

i =
(7 +7)

valid marginal probabilities

<— Assignment for X,

-4

<— Assignment for X,

<€— Edge assignment for
XI X3

<— Edge assignment for
XX,

<— Edge assignment for

KX

C—O0I0O0—0OI00 O —i0 —i— OO0 —

O—0O00—0000—0 00— —O—0

_A _ o] Xx,=0
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Relaxation

InZ(0) = Teale/l(z Z Oc(xc)pc(xc) + H(p)

ceC xc

We still haven't achieved anything, because:
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We still haven't achieved anything, because:

@ The marginal polytope M is complex to describe (in general, exponentially
many vertices and facets)

@ H(u) is very difficult to compute or optimize over
We now make two approximations:

@ We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints M,
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Relaxation

InZ(0) = Teale/l(z Z Oc(xc)pc(xc) + H(p)

ceC xc

We still haven't achieved anything, because:

@ The marginal polytope M is complex to describe (in general, exponentially
many vertices and facets)

@ H(u) is very difficult to compute or optimize over
We now make two approximations:

@ We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints M,

@ We replace H(p) with a function H(z) which approximates H(z:)
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
pi(xi) € {0,1}  VieV,x
S opilk) = 1 Viev
Xi
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
pi(xi) € {0,1}  VieV,x
S opilk) = 1 Viev
Xi

pij(xi,xj) € {0,1} Vi, j € E, xi,x;
D milax) = 1 VijeE

Xi s Xj
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
pi(xi) € {0,1}  VieV,x
Zu,-(x,-) =1 VieV
:U'I'J'(thj) € {Oal} VI,_] € E7Xi7xj
Y omilxix) = 1 VijeE

Xi s Xj

@ Enforce that these local assignments are globally consistent

pi(xi) = ZMU(X;,X,-) Vij € E,x;
Xj
pilg) = Y milxx) Vi€ Ex
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
pi(xi) € {0,1}  VieV,x
Zu,-(x,-) =1 VieV
:U'I'J'(thj) € {Oal} VI,_] € E7Xi7xj
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Xi s Xj

@ Enforce that these local assignments are globally consistent

pi(xi) = ZMU(X;,X,-) Vij € E,x;
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@ The local consistency polytope, M, is defined by these constraints
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Local Consistency Constraints

@ For every "cluster” of variables to choose a local assignment
pi(xi) € {0,1}  VieV,x
Zu,-(x,-) =1 VieV
:U'I'J'(thj) € {Oal} VI,_] € E7Xi7xj
Y omilxix) = 1 VijeE

XisXj

@ Enforce that these local assignments are globally consistent

pi(xi) = ZMU(X;,X,-) Vij € E,x;
Xj
pilg) = Y milxx) Vi€ Ex

@ The local consistency polytope, M, is defined by these constraints

@ The p; and pj; are called pseudo-marginals
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polytope for a tree-structured MRF, and the pseudomarginals are the
marginals. marginal polytope, i.e., M C M,
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Mean-field vs relaxation

max > D alxe)0e(xc) + H(q(x))

ceC xc
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@ Relaxation algorithms work directly with pseudo-marginals which may not
be consistent with any joint distribution
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Mean-field vs relaxation

Teagzz q(xc)0c(xc) + H(q(x))

ceC xc

@ Relaxation algorithms work directly with pseudo-marginals which may not
be consistent with any joint distribution

@ Mean-field algorithms assume a factored representation of the joint
distribution

o]
o O O O O
o O 0O O O
O O O O O
© 0 O O O
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Naive Mean-Field

@ Using the same notation naive mean-field is:
(*) maxz Z te(xc)fc(xc) + Z H( i) subject to
ceC xc ieVv

pi(xi) = 0, VieV,x

Zu;(x,-) =1 VieV
Mc(xc) = H/f"i(xi)

i€c

Zemel & Urtasun (UofT)
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Naive Mean-Field

@ Using the same notation naive mean-field is:

(*) maxz Z te(xc)fc(xc) + Z H( i) subject to

ceC Xc ieVv
pi(xi) = 0, VieV,x

Zu;(x,-) =1 VieV
Mc(xc) = H/f"i(xi)

i€ec

@ Corresponds to optimizing over an inner bound on the marginal polytope:

N e
‘ ey =

Zemel & Urtasun (UofT) 2 Feb 23, 2016



Naive Mean-Field

@ Using the same notation naive mean-field is:

(*) maxz Z te(xc)fc(xc) + Z H( i) subject to

ceC Xc ieVv
pi(xi) = 0, VieV,x

Zu;(x,-) =1 VieV
Mc(xc) = H/f"i(xi)

@ Corresponds to optimizing over an inner bound on the marginal polytope:

O 5 e
’ q / \
Nyl ( N

M(@G) L(G)
@ We obtain a lower bound on the partition function, i.e., (*) <In Z(0)
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MAP Inference

@ Recall the MAP inference task

arg max p(x), p(x) = > H be(xc)

we assume any evidence has been subsumed into the potentials
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MAP Inference

@ Recall the MAP inference task

arg me p(x), p(x) = 7 H Pe(xc)

we assume any evidence has been subsumed into the potentials
@ As the partition function is a constant we can alternatively
arg max H dc(xc)
ceC

This is the max product inference task
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MAP Inference

@ Recall the MAP inference task
argmaxp(x),  p(x) = 5 [] delxe)

we assume any evidence has been subsumed into the potentials
@ As the partition function is a constant we can alternatively
arg max H dc(xc)
ceC
This is the max product inference task
@ Since the log is monotonic, let 0.(x;) = log ¢ (xc)
arg max Z 0c(xc)
ceC

This is called the max-sum
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Application: protein side-chain placem

@ Find "minimum energy” configuration of amino acid side-chains along fixed
carbon backbone:

(Yanover, Meltzer, Weiss ‘06) “Potential” function
Side-chain XI X,  for each edge
(corresponding to 9|3(le X3)
| amino acld) eIZ(XIY XZ)
—_
Protein backbone / 634(X3v X4)
X,
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Side-chain XI X,  for each edge
(corresponding to 9|3(le X3)
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@ Orientations of the side-chains are represented by discretized angles called
rotamers
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Application: protein side-chain placem

@ Find "minimum energy” configuration of amino acid side-chains along fixed
carbon backbone:

(Yanover, Meltzer, Weiss ‘06) “Potential” function
Side-chain XI X,  for each edge
(corresponding to 9|3(le X3)
| amino acld) eIZ(XIY XZ)
—_
Protein backbone / 634(X3v X4)
X,

@ Orientations of the side-chains are represented by discretized angles called
rotamers

@ Rotamer choices for nearby amino acids are energetically coupled (attractive
and repulsive forces)
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endency parser

@ Given a sentence, predict the dependency tree that relates the words

AL AT

* John saw a movie yesterday that he liked
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Application: Dependency parser

@ Given a sentence, predict the dependency tree that relates the words

AL AT

* John saw a movie yesterday that he liked

@ Arc from head word of each phrase to words that modify it
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Application: Dependency parser

@ Given a sentence, predict the dependency tree that relates the words

AL AT

* John saw a movie yesterday that he liked

@ Arc from head word of each phrase to words that modify it

@ May be non-projective: each word and its descendants may not be a
contiguous subsequence
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Application: Dependency parser

@ Given a sentence, predict the dependency tree that relates the words

AL AT

* John saw a movie yesterday that he liked

@ Arc from head word of each phrase to words that modify it

@ May be non-projective: each word and its descendants may not be a
contiguous subsequence

@ m words = m(m — 1) binary arc selection variables x; € {0,1}
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Application: Dependency parser

@ Given a sentence, predict the dependency tree that relates the words

AL AT

* John saw a movie yesterday that he liked

@ Arc from head word of each phrase to words that modify it

@ May be non-projective: each word and its descendants may not be a
contiguous subsequence

@ m words = m(m — 1) binary arc selection variables x; € {0,1}

@ We represent the problem as
maxHT +Z€U Xjj +Z€,| ,|

with x|; = {x;};» (all outgoing edges)
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Application: Semantic Segmentation

@ Use Potts to encode that neighboring pixels are likely to have the same
discrete label and hence belong to the same segment

Ost(zs,21)

Os(z+) — l v Os(zs)

p(x,0) = mxaxz 0i(xi) + Z 0; (i, x;)
i i

building
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables

© 1i(x;), one for each i € V and state x;
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then

maxZZO xi )i (X —|—ZGU Xi, X ) i (Xi, X;)

eV xi
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then

maxZZ@ xi )i (X —|—ZGU Xi, X ) i (Xi, X;)

eV xi

@ What is the dimension of , if binary variables?
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

x* = arg mfxz 0:(x;) + Z 0ii(xi, x;)

iev jeE

@ To turn this into an integer linear program (ILP) we introduce indicator
variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then

maxZZ@ xi )i (X —|—ZGU Xi, X ) i (Xi, X;)

eV xi

@ What is the dimension of , if binary variables?

@ Are these two problems equivalent?
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maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

i€V X
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maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

ieV X
@ For every "cluster” of variables to choose a local assignment
pi(x) € {0,1}  VieV,x
S pilk) = 1 Viev
'u"J'(X"?XJ') € {0’1} Vi,j € E’X"’XJ'
> wilxix) = 1 VijeE

Xi,Xj
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maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

i€V X

@ For every "cluster” of variables to choose a local assignment
pi(x) € {0,1}  VieV,x
S pilk) = 1 Viev
'u"J'(X"?XJ') € {0’1} Vi,j € E’X"’XJ'
> wilxix) = 1 VijeE

Xi,Xj

@ Enforce that these local assignments are globally consistent

pila) = Y mi(xix)  Vij€E,x

pilg) = > milxix) Vi€ E,x
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MAP as an integer linear program (ILP)

maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

i€V X
subject to:
pi(x) € {0,1}  VieV,x
:ufj(x"vxj) € {071} Vi7j€EaXian
dopilk) = 1 Viev
pil) = Y milxix) Vi€ Ex
pi) = > milxig) Vi€ Ex
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MAP as an integer linear program (ILP)

maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

i€V X
subject to:
pi(x) € {0,1}  VieV,x
:ufj(x"vxj) € {071} Vi7j€EaXian
dopilk) = 1 Viev
pil) = Y milxix) Vi€ Ex
pi) = > milxig) Vi€ Ex

@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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MAP as an integer linear program (ILP)

maxZZF) X; ) i (x; +Z€U(X,,XJ wij(Xi, x;)

i€V X
subject to:
pi(x) € {0,1}  VieV,x
:ufj(x"vxj) € {071} Vi7j€EaXian
dopilk) = 1 Viev
pil) = Y milxix) Vi€ Ex
pi) = > milxig) Vi€ Ex

@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
@ But it might be too slow...
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Linear Programing Relaxation for MAP

MAP(0) = maxZZ@ X; ) i (X +Z€U (xi, %) i (i, ;)

ieVvV xi
subject to:
pi(x) € {0,1}  VieV,x
,Uij(X,',Xj) € {Oal} VI,j € EaXivxj

1 VieV

> uilx)

Mf(Xi)

Z:U’U(XHXJ) VUEvai

wilg) = Y milxi,x) Vi€ Ex

@ Relax integrality constraints, allowing the variables to be between 0 and 1

,LLi(Xf) € [0’ 1] Vi e V,Xi IU‘I'J'(XI"XJ') € [07 1] VI_/ € E,X,',Xj
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Linear Programing Relaxation for MAP

LP(0) = max DTS 0 miCx) + D (x5 x5 i (xi X)

iEV X ij

wil) € [0,  VieV,x
wi(xi;x) € [0,1] Vi,j € E,xj, x

Z,u,;(x,') = 1 VieVv
X
wil) = D wilxix) Vi€ E,x
o
j
milg) = D wilxi,x) Vi€ E,x
Xi
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Linear Programing Relaxation for MAP

LP(0) = max DTS 0 miCx) + D (x5 x5 i (xi X)

iev X ij

wil) € [0,  VieV,x
wi(xi,x) € 0,11 Vi, j € E, xi,x;

Z,u,;()q) = 1 VieVv
X
wil) = D wilxix) Vi€ E,x
o
j
wi) = D> mlxi, ) Vi€ E,x
Xi

@ Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm
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Linear Programing Relaxation for MAP

LP(0) = max DTS 0 miCx) + D (x5 x5 i (xi X)

iEV X ij

wil) € [0,  VieV,x
wij(xi,x;) € [0,1]  Vi,j€E, x,x

Z,u,;()q) = 1 VieVv
X
mita) = > milxi.x) Vi€ E,x;
pon
j
wi) = D> mlxi, ) Vi€ E,x
X

@ Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher
MAP(9) < LP(9)
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@ Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value

can only be higher
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@ LP relaxation is tight for tree-structured MRFs
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J
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@ Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value

can only be higher
MAP(9) < LP(9)

@ LP relaxation is tight for tree-structured MRFs

@ Faster algorithms by deriving the dual (dual variables represent messages)
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Linear Programing Relaxation for MAP

LP(0) = max DTS 0 miCx) + D (x5 x5 i (xi X)

iEV X ij

wil) € [0,  VieV,x
wij(xi,x;) € [0,1]  Vi,j€E, x,x

STuit) = 1 Viev
X
wil) = D wilxix) Vi€ E,x
pon
J
milg) = D wilxi,x) Vi€ E,x
X

@ Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm

@ Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher

MAP(9) < LP(9)
@ LP relaxation is tight for tree-structured MRFs
@ Faster algorithms by deriving the dual (dual variables represent messages)

@ Zero limit temperature of the variational inference for Marginals
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Loopy Belief Propagation (Max Product)

@ Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Misj(x) o max | exp{6;(xi, ) +6;(5)} ] Muosi(x)
’ uEN()\i
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@ Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Misj(x) o max | exp{6;(xi, ) +6;(5)} ] Muosi(x)
’ uEN()\i

@ Thus we pass messages for a fixed number of iterations, or until the
messages do not change too much
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Loopy Belief Propagation (Max Product)

@ Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Mij(x) o max |exp{0(xi, ) +0,06)} ]I Munsjog)
wENG

@ Thus we pass messages for a fixed number of iterations, or until the
messages do not change too much

@ We decode the local scoring functions by

ps(xs) o< exp(0 H M;—ss(xs)
teN(s)
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@ Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Mij(x) o max |exp{0(xi, ) +0,06)} ]I Munsjog)
wENG

@ Thus we pass messages for a fixed number of iterations, or until the
messages do not change too much

@ We decode the local scoring functions by

ps(xs) o< exp(0 H M;—ss(xs)
teN(s)

@ We then compute the maximal value of ps(xs)
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Loopy Belief Propagation (Max Product)

@ Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Mij(x) o max |exp{0(xi, ) +0,06)} ]I Munsjog)
wENG

@ Thus we pass messages for a fixed number of iterations, or until the
messages do not change too much

@ We decode the local scoring functions by

ps(xs) o< exp(0 H M;—ss(xs)
teN(s)

@ We then compute the maximal value of ps(xs)

@ What if two solutions that have the same score?
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Stereo Estimation

@ Tsukuba images from Middlebury stereo database

Left Right
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@ Tsukuba images from Middlebury stereo database

Left Right

@ MREF for each pixel, with states the disparity
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Stereo Estimation

@ Tsukuba images from Middlebury stereo database

Left Right

@ MREF for each pixel, with states the disparity

@ Our unary is the matching term
oi(df) = |L(X+ diay) - R(X,y)|

where pixel p; = (x,y)
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Stereo Estimation

@ Tsukuba images from Middlebury stereo database

Left Right

@ MREF for each pixel, with states the disparity
@ Our unary is the matching term
0i(di) = |L(x + dj,y) — R(x, )|
where pixel p; = (x,y)
@ The pairwise factor ;; between neighboring pixels favor smoothness

Feb 23, 2016
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Stereo Estimation

@ If we only use the unary terms. How would you do inference in this case?
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Stereo Estimation

@ If we only use the unary terms. How would you do inference in this case?

@ If full graphical model

left, right, up, down sweeps

[Credit: Coughlan BP Tutorial]
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Stereo Estimation

Subsequent iterations:

: 3 4

Note:

Little change after first few iterations.

Model can be improved to give better results
-- this is just a simple example to illustrate BP.

&

[Credit: Coughlan BP Tutorial]
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