
Gradient-Based MCMC
CSC 412 Tutorial

March 2, 2017

Jake Snell

Many slides borrowed from: Iain Murray, MLSS ’09*

http://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/slides.pdf

http://homepages.inf.ed.ac.uk/imurray2/teaching/09mlss/slides.pdf

Overview
• Review of Markov Chain Monte Carlo (MCMC)

• Metropolis algorithm

• Metropolis-Hastings algorithm

• Langevin Dynamics

• Hamiltonian Monte Carlo

• Gibbs Sampling (time permitting)

Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:
∫

f(x)P (x) dx ≈ 1

S

S∑

s=1

f(x(s)), x(s) ∼ P (x)

Example: making predictions

p(x|D) =

∫
P (x|θ,D)P (θ|D) dθ

≈ 1

S

S∑

s=1

P (x|θ(s),D), θ(s) ∼ P (θ|D)

More examples: E-step statistics in EM, Boltzmann machine learning

Markov chain Monte Carlo

Construct a biased random walk that explores target dist P ⋆(x)

Markov steps, xt ∼ T (xt←xt−1)

MCMC gives approximate, correlated samples from P ⋆(x)

Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ,σ2)

• Accept with probability min

(

1,
P̃ (θ′|D)

P̃ (θ|D)

)

• Otherwise keep old parameters
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)

Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ,σ2)

• Accept with probability min

(

1,
P̃ (θ′|D)

P̃ (θ|D)

)

• Otherwise keep old parameters
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)

After n steps (where n is large), ✓n ⇡ P (✓|D)

Metropolis Demo in 1D

http://nbviewer.jupyter.org/gist/jakesnell/aea6284fd6f102bdc54648c03566c48d

http://nbviewer.jupyter.org/gist/jakesnell/aea6284fd6f102bdc54648c03566c48d

Metropolis limitations

Q

P

L

Generic proposals use
Q(x′;x) = N (x,σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Optimal is “just right”: acceptance rate far from 0 and 1�

Metropolis	Has6ngs	algorithm	

MH	is	de@ined	as	follows:	
	
Sample	x’	~	Q(x’|x)	
	
Compute		
	
With	probability	p,	set	x	ß	x’	
	
Repeat	
	

Stop	after,	say,	t	steps	(possibly	<<	t	distinct	samples)	

p = min

1,

P̃ (x0)Q(x|x0)

P̃ (x)Q(x0|x)

!

MH gives us flexibility to choose an asymmetric proposal  
distribution, where Q(x0|x) 6= Q(x|x0)

Recover Metropolis as a special case if symmetric

Valid	MCMC	operators	
De@ine	transition	probabilities		
	
Marginals:		
	
A	transition	distribution	is	invariant,	or	stationary,	wrt	a	Markov	
chain	if	each	step	leaves	that	distribution	invariant	
	
So	the	target	distribution	is	invariant	if	TP*	=	P*	
	
	
Also,	need	to	show	that	distribution	converges	to	required	
invariant	distribution	for	any	initial	distribution:	ergodic	
	
Then	P*	is	called	the	equilibrium	distribution		
			
	

X

x

T (x0 x)P ⇤(x) = P

⇤(x0)

P (x0) =
X

x

P (x0|x)P (x)

T (x0 x) = P (x0|x)

Detailed	balance	
	
Detailed	balance	means	that	!	x	!	x’	and	!	x’	!	x	are	equally	
probable	
	

	 	T(x’	"	x)	P*(x)	=	T(x	"	x’)	P*(x’)	
	
Detailed	balance	implies	the	invariant	condition	
	
	
	
A	Markov	chain	that	respects	detailed	balance	is	reversible	
	
To	show	that	P*	is	an	invariant	distribution	can	show	that	detailed	
balance	is	satisQied	
	

X

x

T (x0 x)P ⇤(x) =
X

x

T (x x

0)P ⇤(x0) = P

⇤(x0)
X

x

P (x|x0) = P

⇤(x0)

Metropolis-Hastings Demo

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,banana

Langevin Dynamics
• Use proposal distribution  
 

• Special case of MH

• Tries to move in directions of increasing

• Looks a lot like SGD with noise!

P̃

Q(x

0|x) = N
✓
x+

1

2

�

2r log p(x),�

2
I

◆

Langevin Demo

https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana

https://chi-feng.github.io/mcmc-demo/app.html#MALA,banana

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Hamiltonian Monte Carlo
Define a joint distribution:

• P (x, v) ∝ e−E(x)e−K(v) = e−E(x)−K(v) = e−H(x,v)

• Velocity is independent of position and Gaussian distributed

Markov chain operators

• Gibbs sample velocity

• Simulate Hamiltonian dynamics then flip sign of velocity

– Hamiltonian ‘proposal’ is deterministic and reversible
q(x′, v′;x, v) = q(x, v;x′, v′) = 1

– Conservation of energy means P (x, v) = P (x′, v′)
– Metropolis acceptance probability is 1

Except we can’t simulate Hamiltonian dynamics exactly

Leap-frog dynamics
a discrete approximation to Hamiltonian dynamics:

vi(t + ϵ
2) = vi(t)−

ϵ

2

∂E(x(t))

∂xi

xi(t + ϵ) = xi(t) + ϵvi(t + ϵ
2)

pi(t + ϵ) = vi(t + ϵ
2)−

ϵ

2

∂E(x(t + ϵ))

∂xi

• H is not conserved

• dynamics are still deterministic and reversible

• Acceptance probability becomes min[1, exp(H(v, x)−H(v′, x′))]

Looks a lot like SGD + momentum followed by accept step

HMC Demo

https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana

https://chi-feng.github.io/mcmc-demo/app.html#HamiltonianMC,banana

Summary	
	
We	need	approximate	methods	to	solve	sums/integrals	
	
Monte	Carlo	does	not	explicitly	depend	on	dimension,	although	
simple	methods	work	only	in	low	dimensions	
	
Markov	chain	Monte	Carlo	(MCMC)	can	make	local	moves.	By	
assuming	less	it	is	more	applicable	to	higher	dimensions	
	
It	produces	approximate,	correlated	samples	
	
Simple	computations	à	easy	to	implement	
	
	
	
	
	

