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Abstract

The study of protein interactions from the networks point of view has yielded new
insights into systems biology [Bar03, MA03, RSM+02, WS98]. In particular, “net-
work motifs” become apparent as a useful and systematic tool for describing and
exploring networks [BP06, MKFV06, MSOI+02, SOMMA02, SV06]. Finding mo-
tifs has involved either exact counting (e.g. [MSOI+02]) or subgraph sampling (e.g.
[BP06, KIMA04a, MZW05]). In this thesis we develop an algorithm to count all
instances of a particular subgraph, which can be used to query whether a given sub-
graph is a significant motif. This method can be used to perform exact counting of
network motifs faster and with less memory than previous methods, and can also be
combined with subgraph sampling to find larger motifs than ever before – we have
found motifs with up to 15 nodes and explored subgraphs up to 20 nodes. Unlike
previous methods, this method can also be used to explore motif clustering and can
be combined with network alignment techniques [FNS+06, KSK+03].

We also present new methods of estimating parameters for models of biological
network growth, and present a new model based on these parameters and underlying
binding domains.

Finally, we propose an experiment to explore the effect of the whole genome dupli-
cation [KBL04] on the protein-protein interaction network of S. cerevisiae, allowing
us to distinguish between cases of subfunctionalization and neofunctionalization.

Thesis Supervisor: Manolis Kellis
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Network Science

Much of the world consists of complex systems. This complexity stems from chaotic

dynamics and emergent behaviors, or because of myriads of smaller units interacting

in complicated ways, or combinations of both phenomena. The study of complex

systems is an important stepping stone towards what E. O. Wilson calls “consilience”

[Wil98] – the unification of the sciences, the social sciences, and the arts.

Network science is the study of complex systems (of interacting parts) from a

graph-theoretic point of view. Network science has yielded many insights into the

way our world works, from the cell, to the internet, to the economy. Network science

has its roots in the study of social networks as early as the 1950s, but in the past

decade or so it has seen an explosion of activity, due both to the growing availability

of network data – viz. the World Wide Web [Bar03], protein interaction networks

[HBH+04], and food webs [CBN90, WM00] (see §2.1 for more examples) – and also

the availability of personal computers powerful enough to crunch on that data.

Today network science brings together researchers from nearly all branches of

academia and instury, who have realized a common underlying theme in their work:

“It’s the network, stupid!” Network science has entered the public consciousness

through debates on using social network analysis to catch terrorists, and through the

popular literature such as Albert-László Barabási’s Linked [Bar02], Malcolm Glad-
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well’s The Tipping Point [Gla02], Steven Strogatz’s Sync [Str03], and Duncan Watts’

Six Degrees [Wat03].

Although this thesis focuses on biological networks, and in particular the protein-

protein interaction network of Saccharomyces cerevisiae (baker’s yeast), many of the

methods and ideas herein – particularly those in Chapter 2 (background material)

and Chapter 3 (a new approach to discovering network motifs) – are applicable to any

network, and thus to many different realms of science and social science. Moreover,

the research on network evolution in Chapters 4 and 5 may inspire the design of

complex systems engineered for extensibility and evolvability (e.g. [BdW05]).

1.2 Network Motifs

Modularity has been standard practice in systems design and engineering for decades.

Modular structure enables the re-use of common sub-parts. Engineers often impose

hierarchical organization to larger systems in order to help manage and control their

complexity. In addition, network science has also found that these properties are

prevalent in naturally occurring, evolving, and growing networks [RSM+02, HBH+04,

MSOI+02]. Studying these naturally occurring sub-networks has yielded insights into

the information-processing roles of sets of nodes in a network [MA03, SOMMA02].

Network motifs provide an important viewpoint for understanding the modularity

and the overall structure of networks [KMP+01, MZA03, RRSA02, ZMR+04]. Motifs

were first introduced in [MSOI+02]. The importance of network motifs as information-

processing modules was modeled theoretically in [SOMMA02] and [MA03], and veri-

fied experimentally in [KMP+01], [MZA03], [RRSA02], and [ZMR+04].

Network motifs are defined as subnetworks that are significant or non-random in

one or more ways [MSOI+02]. Network motifs are typically determined by over-

representation compared to randomized versions of a network [BP06, MSOI+02,

SOMMA02]. Similarly, antimotifs are determined by underrepresentation compared

to randomized versions of a network. However, recent work in aligning biological

networks [FNS+06, KSK+03] reveals conserved sub-networks, and we think of these
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conserved sub-networks as a new type of network motif. The former, more standard

type of motif may be distinguished as frequency-based, and the latter as conservation-

based motifs. Unless otherwise specified, this thesis will always refer to frequency-

based motifs, which have also found applications in other areas of network science.

Two basic methodologies are available for finding network motifs: exact counting

(e.g. [MSOI+02]) or subgraph sampling (e.g. [BP06, KIMA04a, MZW05]). Both

methods attempt determine the significance of all (or many, in the case of sampling)

subgraphs of a given size by comparing their frequency to their frequency in a random

ensemble of networks. It is generally thought that a qualitative description of the

significance of a particular subgraph (e.g. whether or not it is a motif) is more

informative than a quantitative one (e.g. its z-score). To determine which graphs

are motifs or antimotifs, subgraph sampling [BP06, KIMA04a, MZW05] is effective

and efficient, and can determine the significance of larger subgraphs than the current

methods of exact counting.

However, it is necessary to find all instances of a given graph as subgraphs of a

network to

(a) determine whether a given graph (perhaps determined experimentally) is a sig-

nificant motif,

(b) explore motif clustering to see how motifs may be parts of larger structures and

to see how dependent a motif’s significance is upon the accuracy of the network,

and

(c) combine frequency-based motif finding with conservation-based motif finding

(network alignment) in certain ways.

In Chapter 3 we present a method to achieve this. By analogy with sequence motifs,

we believe combining frequency-based motif finding with conservation-based motif

finding will be a particularly important application of this new approach to finding

network motifs. In addition to these applications, the method can also be used to get

the exact counts of all subgraphs of a given size, and it does so faster than previous

methods.
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1.3 Evolution of Biological Networks

Cellular processes are defined by the way proteins interact with one another, with the

environment, and with DNA. Understanding how proteins interact with one another

at the chemical level is an important first step to modelling cellular processes, and

can reveal principles important in capturing the larger systems picture revealed by

protein-protein interaction networks and gene regulatory networks.

In a protein-protein interaction (PPI) network, the nodes are proteins and the

(undirected) edges represent pairwise protein-protein interactions. In a gene regula-

tory network, nodes represent genes and proteins, and (directed) edges represent the

production of a protein by a gene or the regulation of a gene by a protein.

In the few short years they have been around, PPI nets have already found several

applications. They have been used to predict domain-domain interactions [DMSC02],

to predict de novo protein-peptide interactions based on network motifs [RS04], and

to annotate previously unclassified genes by correlating a PPI net with a protein-DNA

net [MBV03].

In this thesis, we focus on the PPI net of the yeast Saccharomyces cerevisiae for

three reasons: S. cerevisiae is possibly one of the most well-studied, simple organisms

on the planet (along with E. coli ; H. sapiens is well-studied, but much more complex),

the complete genomes of S. cerevisiae and 11 of its close relatives are available, and

S. cerevisiae has a rich evoluationary history, including in particular a whole genome

duplication (WGD) [KBL04].

Genetic duplication, whether at the scale of a single gene, a chromosomal segment,

or a whole genome, is a significant mechanism in evolution [Ohn70]. When duplication

occurs, it is believed that the two members of a duplicate pair initially have identical

functions and interactions. Afterwards, there is a transient period during which

one of the duplicates will differentiate, diverge in function, or disappear altogether

[Wag02]. If the two duplicates differentiate so as to each take on a different part of

the ancestral function, they are said to have undergone subfunctionalization. If

one of the duplicates stays the same and the other takes on a novel function, it is said
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to have undergone neofunctionalization. Exactly how the divergence of duplicates

occurs, and the relative importance of these two processes, are still open questions.

In Chapters 4 and 5, we explore the effects of the WGD on the evolution of the

yeast PPI net. Chapter 4 introduces a model of network growth that reproduces many

properties of the actual yeast PPI net, and treats WGD and single-gene duplication in

a unified framework. In Chapter 5 we propose an experiment to study the divergence

of whole genome duplicates, and specifically to examine the asymmetry of divergence.

These experiments will also distinguish between cases of subfunctionalization and

neofunctionalization.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 goes over introductory

background material, which introduces terminology, definitions, and fundamental is-

sues in networks generally and biological networks specifically. Chapter 3 introduces

a new approach for detecting network motifs, which is faster than previous methods,

and also applicable to many other tasks that are wholly unavailable to previous meth-

ods. Whereas previous methods have only been able to discover motifs up to 8 nodes

due to combinatorial scaling, we present a motif of 15 nodes, and explore subgraphs

of 10 and 20 nodes with our new method, along with some basic analysis showing that

these larger motifs represent biologically relevant structures. Chapter 4 (joint work

with Alexei Vázquez, Matt Rasmussen, Manolis Kellis, and Albert-László Barabási)

introduces new methods for estimating parameters of network growth, providing a

biological grounding to models that were previously solely theoretical. Chapter 5 (in

collaboration with Jean-François Rual and Marc Vidal) discusses asymmetric diver-

gence of duplicated genes, and proposes experiments that will allow us to explore

this divergence and distinguish between instances of subfunctionalization and neo-

functionalization. More details may be found in Appendix C. The experiments are

being carried out in the lab of Marc Vidal at the Dana Farber Cancer Institute of

Harvard, and will be completed after the submission of this thesis.
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Chapter 2

Background

In this chapter we begin with examples of real-world networks (as opposed to theoret-

ical graphs) (§2.1), and we review some basic terminology associated to networks and

graphs (§2.2). We then review several interesting properties discovered in analyzing

real-world networks (§2.3), and recent work that unifies them with network motifs,

and provides a systematic framework for the analysis of networks (§2.4). Finally, we

review network motifs (§2.5), and some of the basic techniques and ideas that will

be used in Chapter 3, including the limitations of current methods of discovering

network motifs.

2.1 Networks in the Real World

Many real world networks have been studied in the past decade (see Table 2.1). It is

important to note that nearly all of these networks rely on raw data that is subject to

both experimental and human error, and sampling or ascertainment bias. For exam-

ple, the protein-protein interaction network of the yeast Saccharomyces cerevisiae has

been probed by several types of experiments, and each type of experiment has been

performed independently by several groups. This produces several networks with dif-

ferent biases, that often conflict with one another, and are probably still incomplete.

Several studies have been done on the effects of experimental bias [KGG06] and on

the effects of combining different network datasets [GSW04, HRO05, HV03]. Because
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of these potential inaccuracies, global statistics must be robust in order to examine

the properties of actual networks based on experimental data.

Network Nodes Edges Directed?

Internet routers physical connections undirected
WWW web pages hyperlinks directed
Social networks people social ties mixed
Organizational
networks

people
reporting /
directing

directed

Sexual networks people sexual relations undirected
Food webs species predator-prey relations directed
Protein interaction
networks

proteins protein interactions mixed

Metabolic networks
substrates
and enzymes

metabolic pathways directed

Genetic regulatory
networks

genes or
gene products

regulation of
gene expression

directed

Table 2.1: Real-world networks.

2.2 Network/Graph Terminology

Graphs and networks. The terms graph and network are used interchangeably

(though we typically use “graph” to refer to smaller graphs, such as motifs, and

“network” to refer to the real-world networks being studied). A graph is a set of

vertices or nodes, which may be connected in pairs by edges. Typically, graphs are

denoted by the capital letters G,H, . . ., vertices are denoted by the lowercase letters

u, v, w, . . ., and edges are denoted by the lowercase letters e, f, . . .. The set of vertices

is often denoted V or V (G) if the implied graph is not clear from context. Similarly,

the set of edges is denoted by E or E(G).

Subgraphs. H ⊂ G is used to denote that H is a subgraph of G, i.e. that

V (H) ⊂ V (G) and E(H) ⊂ E(G) such that both endpoints u, v of each edge in

E(H) are present in V (H). A vertex-based subgraph (also called an “induced

subgraph” or “full subgraph” in graph theory) of a graph G consists of a subset

of V (G), and all the edges in G connecting vertices in that subset. To make the
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distinction clear, we may refer to subgraphs as “general or edge-based subgraphs”.

The distinction is particularly relevant to network motifs (§2.5).

Unless otherwise stated, the graphs in this work are undirected and simple: they

contain no self-edges, and there can be at most one edge between any pair of vertices.

All of the methods in this paper are easily generalizable to graphs with directed edges,

and many of the methods are generalizable to graphs with self-edges and multiple-

edges.

Random graphs. In 1959, Paul Erdös and Alfréd Rényi introduced the notion

of a random graph [ER59]. An Erdős-Rényi random graph on n nodes has an edge

between each pair of vertices with fixed probability p. This model of random graph

has been well-studied, and it has many attractive properties. For example, the de-

gree distribution of an Erdős-Rényi graph is a Poissonian, sharply peaked around an

average degree, and the size of the largest connected component undergoes a well-

characterized phase transition as p increases.

In network science, however, Erdős-Rényi random graphs are most often cited as

examples of what real networks are not (see §2.3). But random graphs in the more

general sense still play an important role in the study of real-world networks (see

§2.5.2).

2.3 Network Properties and Statistics

Network statistics can be used to discriminate between networks, to evaluate the fi-

delity of models of network growth, and sometimes to uncover interesting and mean-

ingful properties of a system. In studying networks that grow and evolve – such as the

Internet, the World Wide Web, food chains, social networks, and biological networks

– a network statistic must be relatively stable with regards to small fluctuations in

the network and with regards to measurement inaccuracies. Simple statistics such

as number of nodes, number of edges, number of connected components, size of the

largest component, and to a certain extent the maximum path length (diameter)

provide a rough idea of the structure of the network. In addition, network scientists
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have moved beyond these classical graph-theoretic statistics to find more meaningful

properties of real-world networks.

For example, for networks that grow and evolve, the relationship between the

number of nodes and the number of edges over time can provide interesting insights.

This relationship is captured by the degree distribution: the number of nodes of

each degree. In the classical Erdős-Rényi model of random graphs – in which each pair

of nodes is connected by an edge with fixed probability p – the degree distribution is

a sharply peaked Poisson distribution around the average degree. The average degree

of such networks provides a characteristic scale for the topology of the network.

In many real networks, however, the degree distribution has a very long right tail,

and often follows a power law distribution [Bar03]. Such networks are called scale-

free, because there is no characteristic scale at which interactions take place. Figure

2-1 shows the difference between the distribution in an Erdős-Rényi random graph

and a scale-free network.
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Figure 2-1: The degree distributions of an Erdős-Rényi random graph (left) and a scale-free

network (right) with the same average degree.

The exponent α of the power law is sometimes called the “degree exponent”.

Since 1/kα is never zero, but the graph does not have infinitely many nodes, power

law degree distributions always have a cutoff value. Occasionally, this cutoff takes the

form of an exponential, such as P (k) = e−k/k0 1
kα

. Whereas the average degree was

sufficient to characterize the degree distribution of Erdős-Rényi random networks,

the degree exponent and the nature of the cutoff are both necessary to characterize
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a scale-free distribution.

Recently, questions have been raised as to how well a power law in fact fits the

degree distribution of various networks, and also whether or not the exact shape of

the degree distribution might be an artifact of the way in which the network data was

gathered. Some researchers have thus taken to speaking more generally of “broad-

tailed degree distributions” rather than scale-freeness in particular.

More information about the structure of a network can be discerned by examining

its degree correlations. The degree correlation distribution of a network is the

fraction of edges P (k1, k2) connecting a node of degree k1 with a node of degree k2. A

network is assortative if the high-degree nodes tend to link to high-degree nodes (i.e.

if P (k1, k2) is large when k1 and k2 are similar), and disassortative if high-degree

nodes tend to link to low-degree nodes.

Many real networks also exhibit the small-world property: they have a large

average clustering coefficient and a small diameter [WS98, Wat99]. The clustering

coefficient of a vertex v is the proportion of pairs of its neighbors that form a triangle

with v. If T (v) is the number of triangles intersecting v, then the clustering coefficient

C(v) is T (v) divided by
(

deg(v)
2

)

.

Real networks also tend to be modular and have a hierarchical structure. The

distribution of clustering coefficients has been repoted to capture these properties

[RSM+02]. The average clustering coefficient of nodes of degree k is denoted C(k).

If C(k) ∼ k−α, then α is sometimes called the “hierarchical exponent”. A network

is said to be “hierarchically modular” if C(k) ∼ k−1 [RSM+02]. It has been shown

that models of network growth involving only preferential attachment do not pro-

duce hierarchically modular networks, while models incorporating both preferential

attachment and node duplication (e.g. genetic duplication) do [Hal04].

Recently, Abdo and de Moura [Ad06] extended the notion of clustering coefficient.

The clustering coefficient is the first in a series known as the clustering profile. The

clustering profile of a vertex v is denoted Ci(v) for i = 1, 2, 3, . . ., where Ci(v) is the

proportion of pairs of neighbors of v that are distance i away from one another, where

the distance excludes paths that go through v. Thus C1(v) is the standard clustering
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coefficient. Also note that
∑

i C
i(v) = 1 (if the sum includes i = ∞, i.e. when two

neighbors of v are only connected through v). They observe that
∑3

i=1 Ci(v) is often

very close to 1. As an example of the utility of the clustering profile, Abdo and de

Moura examine the movie actors network [IMD06], in which two actors are connected

if they have acted together in a film. The clustering coefficient C1(k) decreases rapidly

with k for this network, leading one to believe that stars very often work with sets of

people that never work with one another. But C2(k) rises sharply with k, revealing

a richer structure.

Many models of network growth have been proposed to explain one or more of

these network statistics (with the exception of the clustering profile, because of its

recent novelty). Although these statistics are clearly relevant to the structure of a

network, it is unclear which properties are most relevant to identifying the process by

which a network grew. Network motifs (§2.5) provide yet another property that may

capture the finer aspects of a network’s structure, and there is a systematic series of

properties based on motifs that subsumes both motifs and the other properties listed

here ([MKFV06], summarized in §2.4).

2.4 Systematic Network Properties

The properties discussed in §2.3 have shed a great deal of light on the structure of real-

world networks. In this section, we present the findings of [VDS+04] and [MKFV06],

which provide a systematic set of properties against which models of growth can be

evaluated. Furthermore, these systematic properties naturally include many of the

properties discussed in §2.3, and by their construction are garaunteed to include any

further network properties discovered in the future.

The distribution of subgraphs of a network provides a great deal of information

about the network in an unbiased, general framework. The larger the subgraphs

counted, the more information the distribution contains. In the limit, the subgraph

distribution contains all of the information in the network, since every network can

be considered its own largest subgraph.
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In particular, the clustering coefficient is entirely captured by the distribution of

“spoked” subgraphs – subgraphs in which every node is connected to one central node,

and perhaps there are other edges. In the case of networks with power law degree

and clustering coefficient distributions, even more can be said about the distribution

of these “spoked” subgraphs. In [VDS+04], it is shown that the degree exponent γ

and the hierarchical exponent α (P (k) ∼ k−γ; C(k) ∼ k−α) carry the exact same

information as the distribution of any two spoked subgraphs. In other words, α and

γ can be determined by these distributions, and conversely. This can be understood

intuitively because the clustering coefficient and the degree distribution are entirely

captured by the number of triangles and 3-node lines (sometimes called “wedges”) in

the graph. Beyond the intuition, this is a very nice analytic result for this particular

class of networks, providing further evidence for the above claims.

For this class of power law networks, the spoked subgraphs can be divided into two

types [VDS+04]: type I subgraphs, whose number in a random ensemble of networks

with fixed (γ, α) follows a power law in the maximal degree kmax of the network, and

type II subgraphs, whose number remains proportional to the number of nodes in the

network. See Table 2.2 for details.

Type Condition Distribution
I C < 0 ∼ Nk−C

max

II C > 0 ∼ N

Table 2.2: The two types of subgraphs identified by [VDS+04], defined by their conditions, are

distributed as indicated. Here C = (m − n + 1)α − (n − γ) where n is the number of nodes in

the subgraph, m the number of edges, α the hierarchical exponent of the larger network, and γ the

degree exponent.

In [VDS+04] it is also noted that the abundance of subgraphs compared to the

total number of nodes leads to subgraph clustering, and the size of these clusters are

calculated analytically using methods of percolation theory. More details on motif

clustering can be found in §3.4.1.

Subgraph distributions can encompass not only the two parameters in a power

law network, but can encompass the exact distributions of nearly all the properties

27



discussed in §2.3 in networks of any topology, as shown in [MKFV06] and discussed

in the remainder of this section.

The distribution of “degree-correlated subgraphs” of d nodes – the so-called dK-

series – is exactly the systematic set of network properties desired. A degree-correlated

subgraph associates to each node in the subgraph its degree, e.g. a triangle with one

node of degree 10, one of degree 3, and one of degree 7. The distribution of degree-

correlated subgraphs on one node is exactly the degree distribution. The distribution

of degree-correlated subgraphs on two nodes is exactly the degree correlation distri-

bution. The distribution of degree-correlated subgraphs on three nodes captures not

only the clustering coefficient (number of triangles), but also the relationship between

the degree distribution and clustering coefficient distribution.

Note that the symmetries of the subgraphs must be taken into account in these dis-

tributions. For example, in the distribution of degree-correlated triangles P∆(k1, k2, k3),

the order of the arguments k1, k2, k3 is irrelevant, but in the distribution of degree-

correlated lines on 3 nodes, PΛ(k1, k2, k3), the only interchange of arguments that

leaves the distribution unchanged is the swapping of k1 and k3.

Part of the utility of the dK-series for evaluating models of network growth is that

the fidelity of different models can be more easily compared. For example, model A

might reproduce the dK-series up to 3 nodes with some error, while model B might

reproduce the dK-series up to 4 nodes but with a greater error. Without these

properties, such comparisons are all but impossible.

The dK-series can also be used as a very stringent background model for finding

network motifs (see §2.5). Milo et al. [MSOI+02] introduced the background model

whereby the distribution of (d − 1)-node subgraphs is preserved when identifying d-

node motifs. Preserving the dK-series (up to d−1 nodes) puts even more information

into the background model.
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2.5 Network Motifs

Modularity has been standard practice in systems design and engineering for decades.

Modular structure enables the re-use of common sub-parts. Engineers often impose

hierarchical organization to larger systems in order to help manage and control their

complexity. In addition, network science has also found that these properties are

prevalent in naturally occurring, evolving, and growing networks [RSM+02, HBH+04,

MSOI+02]. Studying these naturally occurring sub-networks has yielded insights into

the information-processing roles of sets of nodes in a network [MA03, SOMMA02].

Network motifs provide an important viewpoint for understanding the modularity

and the overall structure of networks [KMP+01, MZA03, RRSA02, ZMR+04]. Motifs

were first introduced in [MSOI+02]. The importance of network motifs as information-

processing modules was modeled theoretically in [SOMMA02] and [MA03], and veri-

fied experimentally in [KMP+01], [MZA03], [RRSA02], and [ZMR+04].

2.5.1 Definition

In the traditional sense, a network motif (or simply “motif”) is a recurring, sig-

nificant pattern of interaction. More recently, techniques have bren developed which

identify patterns of interactions conserved across evolution [FNS+06, KSK+03], which

may lead to a new method of identifying biologically significant network motifs. This

thesis is concerned with motifs in the former sense, though some of the techniques

developed in Chapter 3 are applicable to motif-finding in the latter sense.

A graph H is a motif of a network G if H appears as a subgraph of G signifi-

cantly more frequently than in randomized versions of G. Similarly, a graph H is an

antimotif if it appears significantly less frequently than in randomized versions of

the original network. Whether a subgraph is a motif or antimotif is a more robust

property of a network than the exact number of times it appears in the network. It

is thus useful to define the motif profile of a network as the set of connected graphs

up to a given size which are motifs, the set which are antimotifs, and the set which

do not deviate significantly from the background model.
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The frequency of a subgraph can be compared against several background models

by altering the method of randomization (see §2.5.2). Perhaps the simplest relevant

background model thought to be significant is to preserve the degree of each node. A

very popular model, developed in [MSOI+02], additionally preserves the distribution

of (k−1)-node subgraphs when looking for k-node motifs. (Preserving the distribution

of (k − 1)-subgraphs turns out to be infeasible for k > 4. See §3.5.) The dK-series

[MKFV06] (reviewed in §2.4, above) can also be used as a slightly more stringent

version of Milo et al.’s background model. It is unclear at this time whether this

model actually adds significant information into the background, or whether it is

mostly redundant for the purposes of network motifs.

Network motifs are often thought to be the building blocks of networks. A small

number of motifs – the feed-forward loop and the single-input module (Figure 2-2) –

have been shown to perform significant information-processing roles both theoretically

[MA03, SOMMA02] and experimentally [KMP+01, MZA03, RRSA02, ZMR+04]. In

addition to these examples, several other biologically significant patterns of interac-

tions are likely to have been missed by the current definition of network motifs, or

patterns deemed significant by the current motif definition may not in fact biologically

significant.

Feed-forward loop Single-input module

Figure 2-2: Two motifs whose dynamics have been studied both theoretically and experimentally:

the feed-forward loop and the single-input module.

Recent work suggests that motifs are not necessarily functional, but may be sim-

ply by-products of evolution [SV06]. Additionally, there is experimental evidence

[MIK+04, MSOI+02] that the networks of a similar nature have similar motifs. Thus

determining the motifs of a network may give a clue as to the process by which it

grows or evolves.
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There is a hidden ambiguity in these definitions: it is important to specify what

we mean by subgraph. In this work we consider only vertex-based subgraphs, which is

the more straightforward condition because of the relationships between edge-based

subgraphs. For example, consider the distribution of 3-node subgraphs shown in Table

2.3. Because each triangle contributes one triangle and three lines when counting

edge-based subgraphs, it is possible that the line might be considered more or less

significant when edge-based subgraphs are counted than when vertex-based subgraphs

are counted. It is even possible for the line to be a vertex-based motif, but an edge-

based antimotif (if the triangle were an antimotif).

Actual number vertex-based 1 19
Actual number edge-based 1 19 + 3 × 1
Vertex-based in random ensemble 5 ± 1 7 ± 2

Edge-based in random ensemble 5 ± 1 (7 + 3 × 5) ±
√

22 + 3 × 12

Vertex-based z-score -4 6
Edge-based z-score -4 0

Table 2.3: Edge-based subgraphs are assigned different levels of significance than vertex-based

subgraphs because of the linear relationships between edge-based subgraphs. We use only vertex-

based subgraphs.

2.5.2 Randomizing Networks

In the science of networks, a randomized version of a network – or a random network

with similar properties to the original – is often needed as a null model. The three

properties that are easiest to reproduce in a random graph are (in order): average

degree, degree distribution, the degree of each node. In this work we use rewiring

exclusively, which preserves the degrees of individual nodes.

An in-depth discussion of methods of randomization – including a rationale for

using rewiring – can be found in [MKFV06].

Random rewiring of a network proceeds as follows. A pair of edges e1, e2 is chosen

uniformly at random. If the edges do not share a common vertex, and if the comple-
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mentary edges (see Figure 2.5.2) are not already present in the graph, then e1 and e2

are removed and the complementary edges are added. This preserves the degrees of

all nodes involved. As with many Markov processes, it is unknown how quickly this

process converges, but [GMZ03] shows that this process is an irreducible, symmetric,

and aperiodic Markov chain which converges experimentally in O(|E|) steps.

Before After

Figure 2-3: Degree-preserving rewiring. Random pairs of non-incident edges are chosen (as shown).

If the solid edges are present and the dotted edges are not, these four nodes may be rewired by

removing the solid edges and adding the dotted ones.

After a randomized version of the initial network has been obtained by rewiring,

simulated annealing with rewiring can be used to simultaneously reproduce other

properties of the original graph, such as the distribution of k-node subgraphs [MKFV06,

MSOI+02]. Unfortunately, preserving the distribution of k-node subgraphs is prac-

tically infeasible for k > 3. In §3.5 we propose two new background models to help

alleviate this problem without relaxing the conditions on network motifs too much.

2.5.3 Graph Isomorphism

In Chapter 3 we introduce a method for counting all the instances of a graph as a

subgraph of a network, with many applications to network motifs. In performing this

counting, however, algorithms tend to find the same instance of a subgraph more

than once, because of its symmetries. Graph isomorphism captures this notion of

symmetry, and the notion of when two graphs are really “the same.”

Two graphs G and H are said to be isomorphic if they have the same edges. In

other words, if there is a map f(v) from V (H) to V (G) such that (v, w) ∈ E(H) if and

only if (f(v), f(w)) ∈ E(G). If such a map exists, it is called an isomorphism from

H to G. For example, the two graphs in Figure 2-4 are isomorphic. An isomorphism

32



from the left graph to the right graph is given by associating each vertex on the left

with the vertex of the same number on the right.

1

53

4

2 6

1 2 3

4 5 6

Figure 2-4: Two isomorphic graphs. The vertex labels denote an isomorphism.

As stated above, isomorphism is a form of equivalence. In particular, isomorphism

is a transitive relation between graphs because the composition of two isomorphisms

is again an isomorphism. Additionally, isomorphisms are invertible: for any isomor-

phism f : G → H, there is an inverse isomorphism f−1 : H → G such that f ◦ f−1 is

the identity map.

In general testing whether two graphs are isomorphic is computationally diffi-

cult. It is known that graph isomorphism is in the complexity class NP, though it is

unknown whether graph isomorphism is either in P or NP-complete (in fact, graph

isomorphism is one of the few problems thought to be in NP but not NP-complete,

if P 6= NP ). We will explore algorithms for isomorphism testing in §3.2.2.

An isomorphism from a graph to itself is called an automorphism. Note that

every graph has the identity map as a trivial automorphism. Because automorphisms

are also composable and invertible, the set of automorphisms of a graph has the

mathematical structure of a group [Art91, HEO05, Ser03], and we sometimes refer

to the automorphism group of a graph. See Appendix A for a brief review of the

theory of graph automorphism groups. Automorphisms play an important role in the

methods in Chapter 3, particularly in §3.3.2.
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2.5.4 Limitations of Current Motif-Finding Methods

Current motif-finding methods are limited to motifs of very few nodes. This is due to

a number of factors, discussed in more detail in Chapter 3, but perhaps the greatest

limting factor is the size of the search space. The number of non-isomorphic connected

graphs on n grows faster than exponentially in n, and the number of instances of such

graphs in the undirected PPI net of S. cerevisiae [HBH+04] appears to grow only

slightly less than exponentially (see Table 2.4).

Nodes Undirected Directed
Instances in the
undirected FYI
network [HBH+04]

3 2 13 11,881
4 6 199 69,865
5 21 9,364 408,295
6 112 1,530,843 2,280,781
7 853 8.8×108 12,353,532
8 11,117 1.8×1012 66,493,797
9 261,080 1.3×1016 —
10 1.1×107 3.4×1020 —
11 1.0×109 3.2×1025 —
12 1.6×1011 1.1×1031 —

Table 2.4: The number of non-isomorphic graphs represents the size of the search space for network

motifs, and partially explains why finding larger motifs is so difficult. Here we also present the

number of instances of subgraphs up to 8 nodes in the undirected protein-protein interaction network

of S. cerevisiae [HBH+04], determined using the new methods developed in Chapter 3

.

Exact counting methods have only been reported to find motifs up to 4 nodes

[MSOI+02] and motif generalizations up to 6 nodes [KIMA04b]. Subgraph sampling

methods have found motifs up to 8 nodes [BP06, KIMA04a, MZW05]. Using the

approach described in the next chapter, however, we are able to find a motif of 15

nodes, and explore subgraphs of 20 nodes (and potentially even larger subgraphs).
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Chapter 3

A New Approach for Discovering

Network Motifs

Network motifs – or frequently recurring circuits – have long been used in engineering

computer chips, and have recently been shown to exist in more naturally occurring

networks as well, such as food webs, the internet, and the protein interaction networks

of various species [MSOI+02]. By analogy with their engineered counterparts, it is

hoped that network motifs will allow us to understand these natural networks in terms

of their fundamental computational building blocks.

Several studies have demonstrated both theoretically [SOMMA02, MA03] and

experimentally [KMP+01, MZA03, RRSA02, ZMR+04] that network motifs can play

crucial information processing roles in cellular networks. However, in silico models of

network growth based on genetic mutation and duplication have also produced similar

network motifs [KBL06], raising the question of whether network motifs are in fact

functional, or are simply the by-products of the other evolutionary forces shaping

the networks in question [SV06]. Even if they are “merely” by-products, studying

network motifs can still provide insight into the processes by which networks grow

and evolve.

A network motif is formally defined as a subnetwork that appears more frequently

than by chance. Many different background models have been used to evaluate net-

work motifs (see §3.5). Rather than hoping to find a background model which reveals
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biologically meaningful motifs, we treat motifs as a language for describing the prop-

erties of a network. (Biologically relevant motifs are probably more likely to be found

by including more biological information than simply the network structure, e.g. cel-

lular dynamics and evoluationary history.) From this point of view, the background

model and the motif distribution are complementary sources of information. The

background model captures some information about the network (e.g. its degree dis-

tribution), and the network motifs capture the rest. The choice of background model

is thus a trade-off between how hard it is to create an ensemble of networks under

that model, and how much information about the network the model captures. In

§3.5, we explore various background models, and introduce a new model which is

both easily computable and captures more information than previous models.

Additionally, motif-finding methods can be applied to study networks more gener-

ally, based on their subgraphs. A particular type of subgraph introduced in [MKFV06]

generalizes many important network properties that have been studied to date, namely

the degree distribution, clustering coefficient, and degree correlations. We call this

type of subgraph a degree-correlated subgraph, in which the degrees of the nodes

in each instance of the subgraph are also taken into account. For example, one sub-

graph might be a triangle in which one node has degree 10 and the other two nodes

have degree 5. Note that single-node degree-correlated subgraphs capture the degree

distribution, two-node degree-correlated subgraphs capture degree correlations, and

three-node degree-correlated subgraphs capture the clustering coefficients. It is im-

portant and useful to have a systematic set of properties for evaluating models of

network growth – viz. model A reproduces the actual network up to size 2 degree-

correlated subgraphs, but model B reproduces it up to size 3. Since degree-correlated

subgraphs provide a systematic set of properties that encompass many informative

network properties, having efficient algorithms to find these subgraphs is important

for studying networks.

There are two basic methodologies for finding network motifs: exact counting (e.g.

[MSOI+02]) and subgraph sampling (e.g. [BP06, KIMA04a, MZW05]). Because exact

counting is so computationally expensive [KIMA04a], subgraph sampling has proven
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more effective at discovering larger motifs (up to 8 nodes, compared to 4 node motifs

and 6-node motif generalizations with exact counting).

There are at least two important questions for the application of network motifs:

1. How can biologically meaningful circuits be discovered in silico, and perhaps

used to guide experiment?

2. What are the larger structures that provide information and insight into a

network’s properties, and how can they be identified?

We propose several possible directions towards answering these questions, all of which

seem to require a common tool: an algorithm to find all instances of a given subgraph

(motif) in a network. Additionally, finding all instances of a motif allows us to explore

motif clustering; in doing so, we may learn how dependent a motif’s significance is

on the accuracy of the experiments that produced the network.

Thus the aim of this chapter is to improve exact counting techniques so that they

can be used to find all instances of a given subgraph, up to larger sizes than were

achievable with previous methods.

3.1 Advantages of the New Approach

3.1.1 Querying Whether a Given Subgraph is a Motif

Because this new approach only searches for instances of a particular motif, rather

than all motifs of a given size, it can be used to query whether a given subgraph is a

significant motif. Because the algorithm need not find all subgraphs of a given size,

query subgraphs can be much larger than motifs discovered using previous approaches.

In particular, any subgraphs determined experimentally or suspected for other reasons

to be significant can be queried, even if they are much larger than other network motifs

reported to date.
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3.1.2 Discovering Larger Motifs (Up to 15 Nodes) in Com-

bination with Subgraph Sampling

By picking a random connected subgraph on n nodes and then finding all instances of

that subgraph in the original network and in a random ensemble, the new approach

can be used to find much larger motifs than before. In §3.4, we present the first

network motif of 15 nodes, and we explore subgraphs of 10 and 20 nodes.

3.1.3 Applications to Motif Clustering (Up to 20 Nodes) and

Network Alignment

Because the new approach finds all instances of a subgraph, rather than simply de-

termining the significance of a motif (as with subgraph sampling), it can be used for

further motif studies as well. In particular, the way in which instances overlap and

interact – motif clustering – is easily explored. Based on the new, large subgraphs

we explore in §3.4, subgraph clustering seems to be even more important for larger

subgraphs than for smaller ones. Additionally, the new approach can be combined

with network alignment either by using the discovered motif instances as seeds for

alignment, or by finding larger motifs within aligned portions of networks.

3.1.4 Time and Space

Table 3.1 compares the running time of counting all subgraphs of a given size with

our method to the time of counting all subgraphs of a given size with previous exact

counting methods [MSOI+02]. In our implementation of the previous exact counting

method, we include all of the improvements listed in §3.2.2. Even with the improve-

ments to the previous method, our new approach is still about 3.5 times faster.

The new method can also take considerably less space than current methods.

Unlike current methods (§3.2.1), the new method does not need to keep track of

which subgraphs it has encountered – this is taken care of automatically. Thus if the

new method is used solely to count the number of instances, it saves considerable
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space compared to current methods. If used to output a list of those instances,

however, the new method must use the same amount of space as current methods to

keep such a list.

Size
Time of
new method

Time of
method of
[MSOI+02]

Speedup
Number of
connected
graphs

Instances of
connected
graphs

3 0.8 1.4 1.75x 2 11,811
4 3.0 11.3 3.75x 6 69,865
5 31 114 3.68x 21 408,295
6 462 (∼8 min) 1,541 (∼25 min) 3.33x 112 2,280,781
7 8,569 (∼143 min) [Out of memory] N/A 853 12,343,532

Table 3.1: Comparison of the running times of the original method of counting subgraphs

[MSOI+02] and our new method, on the FYI dataset [HBH+04]. Unless otherwise stated, all times

are in seconds. For seven nodes, the method of [MSOI+02] ran out of memory.

3.2 Comparison with Existing Methods of Exact

Counting

The current method of exact counting in widest use is due to Milo, et al. [MSOI+02].

It is essentially a depth-first search through the space of connected subgraphs (not to

be confused with a depth-first search on the network itself) to find all subgraphs of a

given size n.

The algorithm loops through all vertices v. It treats v as a subgraph of one node.

For each subgraph it has found so far, it loops through all possible extensions of

that subgraph by one neighboring node. This process is repeated recursively until all

n-node subgraphs are encountered. The number of subgraphs of each isomorphism

type is then tallied.

Once the subgraphs are enumerated, counting them by isomorphism type can

require extensive isomorphism testing. The simplest way to determine the number of

subgraphs of each isomorphism type is to test each subgraph to see if it is isomorphic

to any of the subgraphs encountered by the algorithm so far. Unfortunately, this
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algorithm runs in time O(NC) where N is the number of non-isomorphic graphs of

size n – which grows faster than exponentially – and C is the number of instances of

subgraphs of size n – which also grows quite rapidly (see Table 2.4).

In the §3.2.1, we show how to avoid the overcounting that results from walking a

subgraph in multiple different ways. In §3.2.2, we present two improvements to this

algorithm, which will also be useful in the new algorithm presented in §3.3.

3.2.1 Correcting for Overcounting

Note that a single subgraph can be discovered multiple times by the above algorithm,

because of the multiple ways of walking the subgraph. For example, consider the

triangle in Figure 3-1. This triangle will be discovered six times, when walked in the

following orders: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1. It may be tempting to see

this list and think of the six symmetries of the triangle, but this list in fact arises for

a different reason: the triangle is counted six times because it can be walked in six

different ways, and not because it has six symmetries.

1
3

2

Figure 3-1: A triangle. The numbers represent the order in which the counting algorithm loops

through vertices.

To correct for overcounting, the algorithm must keep track of exactly which sub-

graphs have been encountered so far. This is most efficiently done with a hash set, so

that discovering duplicates only takes O(1) time. Unfortunately, maintaining such a

set takes O(C) space, where C is the number of instances of subgraphs encountered

(see the last column of Table 2.4). Although the algorithm now returns the correct

counts, it still takes time counting each subgraph more than once.

To avoid some of the time spent overcounting, the algorithm should take advantage

of the fact that it searches through the vertices in (an arbitrary) order. After all

subgraphs of size n including vertex i have been discovered, vertex i should never
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again be used.

But the triangle above will still get counted twice: 1-3-2, 1-2-3. It is tempting

to say that only in-order walks should be considered, i.e. not 1-3-2 because 2 comes

after 3 in the walk. Unfortunately, no such method can avoid overcounting without

missing some subgraphs, e.g. the subgraph in Figure 3-2, and thus the visited list

appears to be necessary.

1

3 2

4

Figure 3-2: An example of why ordering the vertices cannot be used to avoid overcounting sub-

graphs. If the algorithm only counted subgraphs that were walked with their labels in order, this

subgraph would never be counted.

3.2.2 Improving the Existing Methods

Any algorithm which counts the number of subgraphs exactly must take time which

is at least proportional to the number of subgraphs. However, the algorithm of

[MSOI+02], above, takes additional time doing many isomorphism tests. In this

section, we aim to improve their algorithm by reducing the number of isomorphism

tests performed and by improving the isomorphism tests themselves.

Although isomorphism is thought to be a difficult computational problem, it is

important to have a relatively efficient isomorphism algorithm when counting sub-

graphs with the algorithm of [MSOI+02]. The simplest isomorphism algorithm tries

all n! possible maps between two graphs on n nodes and then checks to see if any of

these maps preserves the structure of the graph.

Most improvements on this basic algorithm make use of graph or vertex invari-

ants. An invariant is a property that is necessarily the same for isomorphic graphs.

For example, the number of vertices, the number of edges, and the degree distribution

are all graph invariants that are easily checked. If two graphs differ in any of these

invariants, then they cannot be isomorphic.
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All efficiently computable (i.e. in polynomial time) graph invariants known to

date suffer from the fact that there are non-isomorphic graphs which have the same

invariant. If there were an efficiently computable graph invariant that were addi-

tionally garaunteed to be distinct for non-isomorphic graphs, it would immediately

provide an efficient graph isomorphism test, which is not known to exist.

There is a tradeoff between the complexity of computing an invariant and its

discriminative power. For example, there are many non-isomorphic graphs with the

same number of edges, but fewer non-isomorphic graphs with the same degree se-

quence. (See Table 3.2.) Another way of looking at it is that the number of edges

correctly discriminates undirected graphs up to 3 nodes (i.e. the first pair of non-

isomorphic graphs with the same number of edges has 4 nodes), while the degree

sequence correctly discriminates undirected graphs up to 4 nodes.

A pair of invariants which involve computing all-pairs shortest paths can correctly

discriminate non-isomorphic directed graphs up to 7 nodes [BP06], and correctly

discriminates most directed graphs up to 8 nodes. However, for undirected graphs,

these invariants do not provide a significant advantage over the degree distribution

(see Table 3.2), particularly given their cost.

Nodes Number of distinct values
Exact |E| Degree sequence ℓ1, ℓ2 from [BP06]

3 2 2 2 2
4 6 4 6 6
5 21 7 19 20
6 112 11 68 76
7 853 16 236 269
8 11,117 22 863 1021

Table 3.2: The number of classes of undirected graphs discriminated by several different graph

invariants. Each entry lists the number of distinct values of the invariant specified.

Hashing Based on Graph Invariants

To avoid the super-exponential factor of N , the number of non-isomorphic graphs on

n nodes, in the runtime of the above algorithm, the algorithm can employ hashing
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based on graph invariants. Rather than checking to see if each graph is isomorphic to

any of the graphs seen so far, the algorithm need only see if each graph is isomorphic

to any of the graphs seen so far with the same hash value of the invariant. Using a

hash of the degree sequence, the hashtable lookup can be computed in linear time.

Although Table 3.2 gives some sense of the utility of each invariant mentioned, Table

3.3 more directly measures the potential improvement gained by hashing graph in-

variants. Note that while the invariants of [BP06] had some advantage over the degree

distribution in Table 3.2, they have absolutely no advantage over the degree distrib-

ution in terms of hashing. Thus we employ hashing based on the degree distribution.

Table 3.4 shows the speed-up gained by hashing graph invariants.

Nodes Maximum with same invariant
Exact |E| Degree sequence ℓ1, ℓ2 from [BP06]

3 2 1 1 1
4 6 2 1 1
5 21 5 2 2
6 112 22 5 4
7 853 138 20 20
8 11,117 1579 184 184

Table 3.3: The maximum number of undirected graphs with the same invariant, for several different

graph invariants. This shows that hashing based on graph invariants can reduce, e.g. a factor of

11,117 to a factor of 184 in the counting algorithm of [MSOI+02].

Nodes Original Hashing by Deg. Seq. Speed-up
3 3.3 s 3.3 s 1.0x
4 13 s 10.4 s 1.25x
5 151 s 81.7 s 1.85x
6 4,821 s 1,698 s 2.84x

Table 3.4: Performance improvement by hashing graphs based on their degree sequences.

Using Vertex Invariants

Rather than trying all n! possible combinations and seeing which ones preserve the

graph structure, isomorphism testing can be significantly improved by taking advan-
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tage of vertex invariants. The algorithm only checks maps which preserve the degree

of each vertex, and the sequence of each vertex’s neighbors’ degrees. For example,

if a graph has one vertex of degree one, two vertices of degree two, and one vertex

of degree three, then rather than trying 4! = 24 possible maps, by incorporating the

vertex degrees, the algorithm need only try 1! · 2! · 1! = 2 possible maps.

This simple improvement to the basic isomorphism algorithm can have huge bene-

fits. Table 3.5 lists the average number of isomorphims tried by the original algorithm,

by including vertex degrees, and by also including neighbor degree sequences.

Nodes Original Using Degrees Using Nbr. Degrees Total Speed-up
3 6 3.13 ± 1.80 3.13 ± 1.80 1.9x
4 24 6.36 ± 6.11 6.36 ± 6.11 3.8x
5 120 13.0 ± 18.1 11.3 ± 18.7 10.6x
6 720 30.2 ± 58.3 24.5 ± 59.3 29.4x
7 5040 73.2 ± 186 49.2 ± 187 102x
8 40320 198 ± 649 107 ± 637 376x

Table 3.5: The average number of maps tested using the standard n! isomorphism test, the

isomorphism test taking into account vertex degrees, and the isomorphism test taking into account

vertex degrees and the neighbor degree sequence of each vertex. The distributions are weighted by

the number of occurrences in the protein-protein interaction network [HBH+04].

Additionally, the algorithm takes advantage of two vertex invariants. The algo-

rithm only attempts to map x to y if x and y have the same degree, and if they have

the same neighbor degree sequence.

3.3 Finding All Instances of a Subgraph

To find all instances of a query graph H in a network N , the algorithm attempts to

map a copy of H wherever possible in the network. This is essentially the same as the

isomorphism algorithm above, except it ensures that the subgraphs being searched are

connected. In the language of artificial intelligence and search, this is a backtracking

(depth-first) search with forward checking through the space of connected subgraphs.

The algorithm attempts to map H into the network N , ensuring that the graph

structure is preserved at each step of the way. For each vertex v ∈ H and each vertex
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w ∈ N , the algorithm attempts to find an map f which maps f(v) = w. Let D

be the domain of f and R its range, i.e. the vertices which have been mapped so

far and their images, respectively. At each step, the algorithm attempts to extend

f to some neighbor x of D and some neighbor y of R. This step succeeds if y is

appropriately connected to R, i.e. if y is neighbors with f(N(x)) and not neighbors

with f(D − N(x)) where N(x) denotes the neighborhood of x. See Figure 3-3. This

is the “forward checking” part of the algorithm, which effectively is an early abort.

Without this, the algorithm would examine all connected n-node subgraphs, and then

check whether each was isomorphic to H.

x

Query Graph H

f √

× y0

y1

Network N

= nodes in D or R
= not yet mapped

by f

Figure 3-3: Vizualization of the subgraph-finding algorithm. At each step, the algorithm attempts

to extend the partial map f to another vertex x, so that the resulting map continues to preserve the

graph structure. Vertex y0 is a possibility for f(x), but vertex y1 is not, because it is connected to

the image of one of x’s already-mapped non-neighbors.

Note that the forward checking is effectively an isomorphism test. However, be-

cause of the early aborts, the algorithm does not have to test every n-node subgraph

against every possible isomorphism type. Forward checking was not possible with the

previous exact counting method, because it was looking for any subgraph on n nodes,

and not just one particular isomorphism type.

The algorithm also takes into account two vertex invariants: the vertex degree,

and the ordered degree sequence of a vertex’s neighbors. If a vertex v ∈ H has degree

d, the algorithm will not attempt to map it to a vertex w of degree less than d.

A similar comparison is done on the neighbor degree sequence. Any ordered vertex

invariant can also be used: that is, it must be that if the invariant of a vertex w in the
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network is greater than the invariant of v ∈ H, then v could potentially be mapped

to w.

3.3.1 Taking Advantage of the Degree Distribution

Most real-world networks have a scale-free, or at least a broad-tailed, degree distri-

bution – i.e. they have many nodes with few neighbors and a few hubs with many

neighbors. In such networks, hubs contribute the most to the combinatorial factors

of the search. Because of the small path lengths and diameter (the FYI network

[HBH+04] has diameter 25, and average path length 9.39 ± 3.58), it is likely that no

matter where a search starts it will hit a hub. However, searches that start at hubs

have many more possibilities.

Since the algorithm ignores any nodes it has already fully searched (see §3.2.1), it

can effectively delete those nodes from the network for the remainder of the search.

This reduces the degrees of the remaining nodes to be searched. Thus by starting

with the low-degree nodes, the algorithm can reduce the degree of the high-degree

nodes before they can contribute even more to the combinatorial search.

To take advantage of the degree distribution, the algorithm starts by sorting the

nodes first by degree and then by the degree sequence of their neighbors. We have

found empirically that this second tie-breaker provides a moderate additional perfor-

mance improvement.

Since the algorithm now removes nodes once it has searched them fully, it is

effectively changing the degrees of the remaining nodes. It might be fruitful to re-

sort the remaining nodes. Empirically, however, this re-sorting ends up taking more

time than it saves. Even simply re-inserting the altered nodes into sorted position

takes more time than it saves, so it seems unlikely that re-sorting will provide an

advantage. This advice should be taken lightly, however, as our results may be biased

by the particular networks we are studying. Additionally, other re-sorting schemes

(e.g. only re-sorting every 100 nodes) might improve performance.
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3.3.2 Taking Advantage of Graph Symmetries

Unfortunately, the algorithm above counts each subgraph once for each symmetry it

has. Since the algorithm does not keep a set of all subgraphs visited so far (unlike

previous algorithms, see §3.2), it can find multiple maps from the query graph to

the target network whose images are all the exact same subgraph. This factor can

be corrected for by keeping a set of visited subgraphs (very space-intensive), or by

dividing by the number of symmetries of the query graph – which can be exhaustively

enumerated even for most graphs up to 20 or so nodes (and perhaps even larger using

the techniques of [McK81]). However, to avoid the time spent overcounting, the

algorithm can incorporate symmetry-breaking conditions into the forward checking.

To see how much this overcounting can slow down the algorithm, Table 3.6 lists

some statistics on the number of automorphisms by graph size. The table also presents

statistics which are weighted by the number of occurences of each graph in the FYI

network [HBH+04]. The average number of automorphisms begins to decrease after

size 6, because there are asymptotically more graphs with only the identity automor-

phism than with any other automorphism group. However, when weighted by the

number of instances in the scale-free FYI network, the average number of automor-

phisms follows an exponential trend.

Nodes # Graphs Avg. # Aut’s Wtd. Avg. Max # Aut’s

3 2 4 ± 2 3.13 ± 1.80 6
4 6 7.67 ± 7.61 5.77 ± 5.93 24
5 21 11.52 ± 24.84 10.85 ± 18.63 120
6 112 14.73 ± 68.69 22.16 ± 58.04 720
7 853 13.29 ± 174.90 46.29 ± 186.2 5040
8 11,117 9.05 ± 386.63 96.24 ± 627.8 40320

Table 3.6: Statistics on the number of automorphisms of connected graphs by size. The number of

automorphisms is the number of times a subgraph search will count a single instance of a subgraph.

The distributions in the fourth column are weighted by the actual number of subgraphs with a given

number of automorphisms in the FYI network [HBH+04].

The algorithm imposes a set of conditions on the graph that effectively removes all

of its symmetries. Recall that each vertex in the network being searched is considered
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to have a label, corresponding to the order in which it is searched in the outermost

loop of the algorithm (which, according to §3.3.1 above is in order by degree). The

symmetry-breaking conditions thus take the form: “The label of vertex f(v) must be

less than the labels of any of the vertices f(w0), . . . , f(wk),” where f is a map from

the query graph to the network, and v, w0, . . . , wk ∈ H. We abbreviate this condition

as v < w0, . . . , wk.

To determine the necessary symmetry-breaking conditions, first the algorithm

must determine the symmetries of the query graph H. This is very quick – it can be

done for all (not “each”) 11,117 8-node subgraphs exhaustively in about 30 seconds

on a standard laptop – and is easily parallelizable.

Next, the algorithm determines the vertex orbits of H. An orbit is a set of

vertices which can be mapped to one another via some set of automorphisms (see

Appendix A for a brief review of the underlying mathematics of symmetries, groups,

and orbits). If the set of automorphisms is not specified, the full automorphism group

of H is implied. The algorithm picks an orbit consisting of more than one vertex, and

then picks a vertex in that orbit to have the minimum label. This effectively fixes

the vertex, and thus removes any automorphisms that do not fix the vertex. The

algorithm repeats this process with the orbits under the remaining automorphisms,

until all the orbits are size 1 (at which point the only automorphism remaining is the

identity). See Figure 3-4 for an example of the symmetry-breaking process.

The algorithm is actually a bit more complicated than this, because nodes mapped

in the outermost loop are treated differently than nodes in the recursive calls. A

node mapped in the outermost loop can be considered fixed by any symmetries the

algorithm will overcount by. Thus for each node v ∈ H, a seperate set of symmetry-

breaking conditions must be found, starting by assuming that v is fixed. However,

because nodes in the same orbit of H are effectively the same, the algorithm need

only find a separate set of symmetry-breaking conditions for one representative from

each orbit. Additionally, for each vertex v in the network, the algorithm need only

start by assuming that each orbit representative (rather than each vertex of H), in

turn, is mapped to v.
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Graph Orbits
Minimality
Conditions

A

BC

D

E F {A,B,C,D,E,F} none

A

BC

D

E F {A},{D},{B,F},{C,E} A < B,C,D,E, F

A

BC

D

E F {A},{B},{C},{D},{E},{F} A < B,C,D,E, F
B < F

Figure 3-4: Finding minimality conditions that will break all the symmetries of a 6-node graph.

Nodes belonging to the same orbit under the automorphisms that obey the minimality conditions

are shaded similarly, except for white nodes which are fixed.

3.4 Discovering Larger Motifs

To find larger motifs than is currently feasible by exact counting or subgraph sam-

pling alone, we can combine the two using the algorithm presented above. Sample

connected subgraphs of size n from either the real network or the random ensemble –

using the random walk method of [MZW05] – and then use the algorithm of §3.3 to

count how many there are. While this will not systematically discover all motifs of a

given size, it is likely to discover some. Finding the query graph by sampling from the

random ensemble makes it easier to find antimotifs, as otherwise they might appear

so infrequently in the actual network that they would only get picked very rarely.

Additionally, any sub-networks discovered experimentally can be counted using

the algorithm presented here.

We have employed the method suggested above, and have found one motif of 15
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nodes (Figure 3-5). We have also used this method to explore the clustering properties

of the 15-node motif, a subgraph of 10 nodes (Figure 3-6) and a subgraph of 20 nodes

(Figure 3-7). We also found several graphs on 15 and 20 nodes that were relatively

easy to count in the FYI network [HBH+04] but, because of their abundance, took

very long to count in the random ensembles (too long to find all instances in 100

different randomized networks). We suspect that these are, therefore, antimotifs.
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Figure 3-5: A motif of 15 nodes and 34 edges (left). An edge from a group of nodes to a node

v indicates that each node in the group is connected to v. This motif appears 27,720 times in the

FYI network [HBH+04], and does not appear at all in the random ensembles based on the degree

distribution and the 3-node subgraph distribution. All 27,720 instances are clustered into a total of

29 nodes (right), yielding a subgraph clustering score (§3.4.1) of 19,454. Note that 3 nodes are chosen

from the group on the left and four from the complete graph at bottom, yielding
(

12

3

)(

9

4

)

= 27, 720

distinct instances.

3.4.1 Examining and Quantifying Motif Clustering

It has been observed that even the smallest subgraphs cluster together [VDS+04].

Furthermore, based on our experience with larger subgraphs, it would appear that

combinatorial factors introduced by motif clustering play a much larger role with

larger subgraphs than with smaller subgraphs. For example, all instances of the 15-

node motif above cluster into a total of 29 nodes (Figure 3-5). Every instance of the

15-node motif shares the same core of 8 nodes, and the remaining nodes result from
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Figure 3-6: An anti-motif of 10 nodes and 12 edges. This appears 95,754 times in the FYI network

[HBH+04], covering 472 proteins, yielding a subgraph clustering score (§3.4.1) of 18,858. It appears

2, 596, 601±640, 778 (z = −3.9) times on average in a random ensemble of 100 graphs with the same

degree distribution as the FYI network, and 5, 804, 173 ± 4, 768, 333 (z = −1.19) times on average

in a random ensemble of 100 graphs with the same degree distribution and distribution of 3-node

subgraphs as the FYI network.

a choice of 3 out of 12 nodes (on the left in the figure) and 4 out of 9 nodes (the

cluster at the bottom of the figure). The 20-node graph we examined has similar

properties (Figure 3-7), but there are dependencies between which nodes are chosen

for each instance of the graph because of connections between the attaching nodes

(on the right in the figure).

In addition to this anecdotal evidence, we find that in the random ensembles

these highly clustered subgraphs (the 15-node and 20-node subgraphs) either appear

a combinatorial number of times, or not at all. For example, in the random ensemble

of 100 graphs which preserve the degree distribution and the distribution of 3-node

subgraphs, the 20-node subgraph appears 0 times in 92 out of the 100 graphs, but

appears an average of 9, 585±60, 463 times across the whole ensemble. (The 15-node

motif does not appear at all in any of the random ensembles we examined.)

Quantifying the clustering of motifs may turn out to be an important aspect in

identifying relevant motifs with more than ∼ 8 nodes. We define the subgraph

clustering score of a subgraph G in a network N is the average over all instances

m of G in N of

1

|V (G)|
∑

V ertices v∈m

|{Instances m′|m′ 6= m and v ∈ m′}|
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Figure 3-7: A subgraph of 20 nodes and 27 edges. An edge from a group of nodes to a node v

indicates that each node in the group is connected to v. This motif appears 5,020 times in the FYI

network [HBH+04], and 9, 585 ± 60, 463 (z = −0.08) times on average in a random ensemble of 100

graphs with the same degree distribution and distribution of 3-node subgraphs as the FYI network.

All 5,020 instances are clustered into a total of 31 nodes, shown here, yielding a subgraph clustering

score of 3,965.

The subgraph clustering score has the following nice properties:

• Scores of subgraphs of varying sizes can be meaningfully compared because the

value is divided by the number of vertices in the subgraph;

• Subgraphs are not considered more clustered simply because they appear more

frequently, since the index is the average over all instances (rather than, e.g.

the sum);

• The more instances overlapping at any vertex, the higher the score;

• The more vertices shared by any two instances, the higher the score.

The graphs in Table 3.7 are ordered from intuitively “most clustered” to intuitively

“least clustered,” and the subgraph clustering score correctly puts the graphs in the

desired order. Note that both the sum and the average correctly order the five toy

examples (all of which have the same number of vertices and the same number of
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instances), but only the average correctly orders the real examples (which have both

different numbers of vertices and different numbers of instances).
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Motif and Graph
1

|m|

∑

v∈m |{m′ 6= m|v ∈ m′}|
Sum over
motif instances m

Average over
motif instances m

Motif: Figure 3-5, 15 nodes
27,720 instances in 29 nodes

0.54 × 109 19,454

Motif: Figure 3-6, 10 nodes
95,754 instances in 472 nodes

1.80 × 109 18,858

Motif: Triangle

· · ·

n instances in n + 2 nodes

253.33 12.66 (= 2
3
(n − 1))

Motif: Triangle

· · ·
n instances in 2n + 1 nodes

126.66 6.33 (= 1
3
(n − 1))

Motif: Triangle

n instances in 2n nodes

13.33 0.66 (= 2/3)

Motif: Triangle

×n/2

n instances in 2.5n nodes

6.66 0.33 (= 1/3)

Motif: Triangle

×n

n instances in 3n nodes

0 0 (= 0)

Table 3.7: The motif clustering score of two subgraphs of 10 and 15 nodes in the PPI network of S.

cerevisiaeand of four toy subgraphs. The order of the motif clustering scores for the toy subgraphs

shows that the score agrees well with our intuition of clustering. All values here are reported for

n = 20 for the toy subgraphs, with the score as a function of n in parentheses.
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3.4.2 Biological Relevance

The 29-node subgraph which encompasses all instances of the 15-node motif (Figure

3-5) comprise a biologically meaningful part of the PPI net of S. cerevisiae. The

proteins corresponding to the 8 node “core” shared by all instances of the 15-node

motif, and the 11-node complete graph (including the two hubs in the core) are listed

in Table 3.8. The 12 attachments are: YOR250C (CLP1), YPR115W, YER013W

(PRP2), YPL089C (RLM1), YFL033C (RIM15), YLR228C (ECM22), YNL216W

(RAP1, GRF1, TBA1, TUF1), YDR259C (YAP6, HAL7), YIL129C (TAO3, PAG1),

YKL012W (PRP40), YDR207C (UME6, CAR80, NIM2, RIM16), and YGR097W

(ASK10).

8-node Core 11-node Complete Graph
Systematic
Name

Common
Names

Systematic
Name

Common
Names

YDR167W* TAF10, TAF23,
TAF25

YDR448W ADA2, SWI8

YGL112C* TAF6, TAF60 YDR176W NGG1, ADA3, SWI7
YML015C TAF11, TAF40 YBR081C SPT7, GIT2
YCR042C TAF2, TAF150,

TSM1
YLR055C SPT8

YGR274C TAF1, TAF130,
TAF145

YOL148C SPT20, ADA5

YML09W TAF13, FUN81,
TAF19

YGR252W GCN5, ADA4, SWI9

YPL129W TAF14, SWP29,
TAF30, TFG3,
ANC1

YDR392W SPT3

YMR227C TAF7, TAF67 YPL254W HFI1, ADA1,
SUP110, SRM12,
GAN1

YHR099W TRA1

Table 3.8: The proteins involved in all instances of the 15-node motif of Figure 3-5. The 8-node

core is the transcription factor TFIID complex; the 11-node complete graph (including the two

proteins marked with a * from the core) is the SAGA complex; and the 12 attachments – activators

and suppressors – are listed in the text.

The 11-node complete graph is the SAGA complex, and almost all of its proteins

are involved in chromatin modification and histone acetylation; the 8-node core is the
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transcription factor TFIID complex; and the 12 attachments are known activators

and suppressors of these two complexes [LY00]. Using our new approach to motif-

finding, we have re-discovered the cellular transcription machinery based solely on

the structure of the protein interaction network.
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3.5 Background Models

The background model most in use today is a random ensemble of graphs with the

same degree distribution as the network being studied. Random graphs with this

property are easily computed by edge swapping (see §2.5.2). In fact, all of the back-

ground models discussed here will preserve this property, as they are based on edge

swapping followed by simulated annealing with edge swapping (so at every step the

degrees of each vertex are preserved).

Milo et al. [MSOI+02] additionally preserve the distribution of (k − 1)-node sub-

graphs when identifying motifs of size k. Unfortunately, due to correlations induced

by edge swapping and local minima that are not surmountable using simulated an-

nealing, this is practically infeasible for k > 4.

Rather than preserving the distribution of (k − 1)-node subgraphs, we propose a

background model in which only the distribution of 3-node subgraphs is preserved

(along with the degree distribution, as always), regardless of the size k of the motifs

being identified.

This simple (and easily computable) background model seems to capture much of

the information in the motif profile against a degree-preserving background model.

Using the new algorithm of §3.3, we counted all connected subgraphs with between 3

and 7 nodes in the protein-protein interaction network of S. cerevisiae using the FYI

dataset [HBH+04], and two random ensembles of 100 networks each (one preserving

only the degree distribution, the other also preserving the distribution of 3-node

subgraphs). Note that there are 994 isomorphism types of connected graphs of these

sizes.

Using a significance cutoff of |z| ≥ 2.0, 657 of the 994 subgraphs were significant

against the degree-preserving background, while only 111 were significant against the

3-node-subgraph-preserving background. Using a significance cutoff of |z| ≥ 10.0,

these numbers are 216 and 32, respectively. (It is interesting to note that all of the

subgraphs significant at the |z| > 10.0 level against the 3-node-subgraph-preserving

distribution are motifs, and not antimotifs.) Data and further details can be found
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in Appendix B.

One way to incorporate more information into the background model is to use the

dK-series ([MKFV06] and §2.4) up to d = 3 node degree-correlated subgraphs.

Since it is believed that whether or not a subgraph is a (anti)motif is more im-

portant than the exact number of occurences, we propose another background model:

preserve the motif profile of the graph. We define the motif profile as the set of

subgraphs which are motifs, the set which are antimotifs, and the set which are not

significant against some other background model. This definition is recursive, as the

5-node motif profile relies on the 4-node motif profile, etc.

We also generated a random ensemble of 100 graphs with the same 4-node motif

profile as the FYI network [HBH+04], where the significance of the 4-node subgraphs

was evaluated against the exact distribution of 3-node subgraphs. We did not include

the distribution of 3-node subgraphs in the background for this ensemble, though it

is feasible to do so. Without the distribution of 3-node subgraphs, preserving the 4-

node motif profile yielded similar results to preserving only the distribution of 3-node

subgraphs as above, at the |z| ≥ 10 level. There were 31 significant subgraphs against

the 4-node motif profile and 32 against the 3-node-subgraph distribution, though

which were significant and which were over- or under-represented differs between the

two background distributions.

3.6 Discussion and Future Directions

In this chapter we have presented an algorithm for finding all instances of a given

subgraph. This algorithm can be used to find all subgraphs of a given size faster and

with less memory than the method of [MSOI+02], which is the standard method of

exact counting to date. Additionally, by counting only one subgraph at a time, the

new method is easily paralellizable – an important property as cluster computing is

becoming cheaper and more popular in the biological and other sciences.

Recall the two questions posed in the introduction:

1. How can biologically meaningful circuits be discovered in silico, and perhaps
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used to guide experiment?

2. What are the larger structures that provide information and insight into a

network’s properties, and how can they be identified?

In §3.6.3, we propose a method to answer Question 1 by combining network alignment

and network motifs. Question 2 can be answered either by looking for larger motifs

as in §3.4 and §3.6.2, or by developing a language to describe larger, more flexible

network structures, such as the motif generalizations of [KIMA04b], and searching

for those. Before these proposals, however, §3.6.1 suggests ways this algorithm could

be applied to even larger structures.

3.6.1 Further Applications of the New Algorithm

One of the limiting factors of the current algorithm is the amount of space required to

store all the symmetries of the query graph, though for most graphs on 20 nodes, and

possibly larger, the current algorithm suffices. To search for even larger structures,

however, this bottleneck would have to be improved.

To remove this bottleneck, the algorithm could find only the generators of the

automorphism group of the query graph H, and note the whole group. (For a brief

review of group theory and more on generators, see Appendix A.) The generators of

the automorphism group are a set of automorphisms S such that any automorphism

can be written as a composition of automorphisms from S. Such a generating set

can be found using the methods in [McK81]. The algorithm then needs the sequence

of subgroups attained by fixing various vertices. These can be obtained by assign-

ing an appropriate order to the vertices, and then finding a strong generating set

[HEO05, Ser03] for the automorphism group. A strong generating set can be found

in O(|V (H)|2) time, and has the property that it is easy to find generators of the

subgroup which fixes a particular set of vertices.
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3.6.2 Finding Even Larger Motifs

As with sequence motifs, it may be possible to take already-known network motifs

of a given size and extend them to larger motifs. Simply pick an already-known

motif, extend it by one or more vertices, and then use the new approach presented

in this chapter to find all instances of it in the network being studied and in the

random ensemble being used for motif-finding. Using either subgraph sampling or

exact counting this was impossible, as determining the significance of the extended

subgraph is just as hard as finding larger motifs to begin with, in these previous

approaches.

3.6.3 Combining Network Alignment and Network Motifs

By analogy with sequence motifs, one attempt to answer Question 1 would involve

finding subgraphs that are not only more frequent than expected, but also conserved

across multiple species. The approach presented in §3.4 could be used to find large,

meaningful structures in the aligned portion of two or more networks. See Figure 3-8.

Figure 3-8: One way of combining network motifs and network alignment is to only count conserved

instances of subgraphs when determining their significance as motifs (as is standard in searching

for sequence motifs). After aligning several networks (left), search for significant subgraphs in the

aligned portions of the networks (right). Note that the triangles on the right in the uppermost graph

and in the back of the middle graph are not counted, as they is not conserved across species.
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Additionally, one could find all instances of large network motifs using the ap-

proach of §3.4, and then use these instances to help seed the network alignment.

(Currently network alignment seeding is typically based solely on cross-species infor-

mation, such as homology, and the network structure is not taken into account until

after the seeding phase of the alignment.)
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Chapter 4

Biologically Grounded Models of

Network Growth

(This chapter is related to joint work with Alexei Vázquez, Manolis Kellis, Matt

Rasmussen, and Albert-László Barabási, to be submitted.)

4.1 Models of Network Growth

Models of network growth are often designed by incorporating one or more features

known to be relevant to the network being studied, and then incorporating other

features or optimizing parameters in an attempt to get the statistics (§2.3) of the

model to agree with the actual network.

In biological networks, this has resulted in models of network growth that incorpo-

rate preferential attachment [Bar03], genetic duplication and divergence [CLDG03,

IKMY05, KBL06, PEKK06, PSSS03], and sometimes even whole genome duplica-

tions, e.g. [WG05].

But in the age of whole genomes, model parameters for biological network growth

can be determined by observation, rather than by fitting. Previous modelling tech-

niques assume the model is correct, and fit the parameters to the data. But if a model

with observed parameter values reproduces the properties of the actual network, then

we know we are on the right track.
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Additionally, for some networks the actual history of growth is available. For

example, in the movie actors’ network [IMD06] – in which nodes are actors that are

connected by an edge if they have performed in a movie together – the date of each

movie puts a timestamp on when each link was created. For such networks, models

can be developed by actually watching the network grow!

We propose a model of protein interaction network growth based on binding do-

mains. For the purposes of the model, a domain is considered atomic, and all in-

teractions must be mediated by a pair of interacting domains. The domain-domain

interactions are modelled as an Erdős-Rényi random graph, though any model can

be substituted for this, and the resulting protein interaction network studied. Each

protein is modelled as a linear chain of domains, where a single type of domain can

appear more than once in the chain. The “library” of domains can be either fi-

nite or infinite – we allow it to be infinite. The three operations of the model are:

gene/protein duplication (since the domains are copied, the protein interactions are

automatically duplicated), domain loss, and domain creation. The model is validated

by reproducing properties of the observed protein interaction network when using the

observed parameter values. In the next section we show how these three parameters

can be estimated using phylogenetic data.

4.2 Estimating the Parameters

We estimate the three main parameters (genetic duplication, domain loss, and do-

main creation) using data from seven closely related yeast species: S. cerevisiae, S.

paradoxus, S. mikatae, S. bayanus, K. waltii, K. lactis, and A. gossypii. The para-

meters were each estimated in terms of number of events from the common ancestor

of A. gossypii and S. cerevisiae (the root of the phylogenetic tree containing these

seven species) to S. cerevisiae, and then normalized for use in the model. This part

of the phylogenetic tree corresponds to roughly 0.11 substitutions per site.
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4.2.1 Rate of Gene Duplication

We reconstructed 1083 gene trees and reconciled them to the seven-species yeast tree

using the methods of [RK06]. We normalize the depth of each gene tree to the median

depth of any of the present-day genes (often this is the most evolved gene from the

four species closest to S. cerevisiae). The rate of gene duplication is the average

number of duplications per substitution per site, over the period of time where there

is enough meaningful data (i.e. until the normalized depth of 1 – see Figure 4-1).

There are approximately 1715 gene duplication events over this time period.
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Figure 4-1: Number of gene duplications per substitutions per site. The sharp dropoff at 1 SPS

is because the depth of the gene trees was normalized to 1, which roughly corresponds to the most

evolved gene in the four species closest to S. cerevisiae.

4.2.2 Rate of Domain Loss

A protein domain is considered present in a protein if 40% of the domain sequence

is present in the protein sequence without many gaps in the alignment [CL86]. Thus

if more than 60% of a domain’s amino acids are modified (i.e. more than 0.6 substi-

tutions per site), the domain is considered lost. Since S. cerevisiae is 0.11 SPS from
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the root of the seven-species tree, we estimate that one in every 6 domains is lost, or

approximately 290 domains.

We have not yet taken into account any additional evoluationary pressure to

conserve binding domains, and this might give a more accurate measure of the rate

of domain loss.

4.2.3 Rate of Domain Creation

To determine the rate of domain creation, we aligned the PFAM [BCD+04] domains

in S. cerevisiae to their orthologs in A. gossypii using CLUSTALW [THG94]. Orthol-

ogy was determined using the method of [RK06]. As above, we considered a domain

present in A. gossypii– and thus in the common ancestor of A. gossypii and S. cere-

visiae– if more than 60% of the domain sequence was conserved in the alignment. The

number of domain creation events is the number of domains present in S. cerevisiae

but not in A. gossypii. We ensured this count was independent of homology: i.e. a

domain that was present in several homologs in S. cerevisiae but not in their ortholog

in A. gossypii was considered a single domain creation event (presumably followed

by one or more single gene duplications). There were 229 and such events.

Although the rate of domain creation is less than the rate of domain loss, the

model can still produce a network with many domains because protein duplication is

the driving force.
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Chapter 5

Asymmetric Divergence of

Duplicates and the K. waltii

Interactome

(This chapter represents joint work with Jean-François Rual, Manolis Kellis, Albert-

László Barabási, and Marc Vidal, in preparation.)

Genetic duplication, whether at the scale of a single gene, a chromosomal seg-

ment, or a whole genome, is a significant mechanism in evolution [Ohn70]. Single

gene duplicates have been identified in S. cerevisiae for many years, and more re-

cently it was identified that S. cerevisiae underwent a whole genome duplication

(WGD) about 30 million years ago [KBL04]. When duplication occurs, it is believed

that the two members of a duplicate pair initially have identical functions and inter-

actions. Afterwards, there is a transient period during which one of the duplicates

will differentiate, diverge in function, or disappear altogether [Wag02]. Exactly how

this divergence occurs is still an open question, though it has been studied both

theoretically [BLW04, IKMY05, PSSS03, Wag03] and observationally [ZLKK05].

For the purposes of this chapter, we use protein interactions as an indication of

function.

In the next section, we discuss some of the theoretical work that has been done to

date on the process of divergence after duplication. Then in §5.2 we propose a set of
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experiments that will help shed light on this process more directly. The experiments

are currently being undertaken in the lab of Jean-François Rual and Marc Vidal at the

Dana Farber Cancer Institute of Harvard, and will be completed after the submission

of this thesis.

5.1 Duplication and Divergence

After duplication, the two members of the duplicate pair can each gain or lose inter-

actions, including the auto-interaction between the two duplicates themselves. See

Figure 5-1.

Duplication ⇒ Divergence ⇒

Loss

Gain

Figure 5-1: A single gene duplicates, along with all of its protein-protein interactions, and then

the two duplicates differentiate and diverge.

Note that an interaction partner which only interacts with a single member of the

duplicate pair could have been gained by one partner, or lost by the other. Divergence

after duplication is said to be symmetric if the probabilities of gain and loss are both

equal to 50%, and asymmetric if these probabilities deviate significantly from 50%.

There are two main theories as to how the functions of the duplicates evolve

after duplication: neofunctionalization and subfunctionalization. A pair of duplicates

is said to have undergone neofunctionalization if one of the pair maintains the

function of the ancestral gene and the other takes on one or more new functions. A

pair of duplicates is said to have undergone subfunctionalization if each member

of the pair maintains a different part of the function of the ancestral gene. Typically
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it is assumed that every function of the ancestral gene is taken up by at least one

member of the pair.

Note that whether an instance of duplication and divergence is symmetric or not

is independent of whether it is an instance of neofunctionalization or an instance of

subfunctionalization.

By comparing the results of stochastic computational experiments in which the

ancestral network is modelled probabilistically with observed network data, Wagner

[Wag02] showed that asymmetric divergence occurs much more frequently than sym-

metric divergence. Additionally, [Wag02] provides a theoretical analysis suggesting

that functions (interactions) are least likely to be lost from the species entirely in the

maximally asymmetric case.

Since a WGD provides a wealth of examples of duplicated genes, all of which

duplicated at the same time, it makes sense to study duplication and divergence

by examining the ohnologs and their interaction partners. An ohnolog – named

for Susumu Ohno, who first proposed genetic duplication as a significant process in

evolution [Ohn70] – is a gene that was duplicated in a WGD event.

Amongst the ohnologs in the protein interaction network of S. cerevisiae, we find

a correlation between the rate of sequence divergence and the degree of the protein in

the PPI net. (We use the rates of sequence divergence calculated in [KBL04].) The

ohnologs can be divided into three classes based on the rate of sequence divergence:

1. Ohnolog pairs that have diverged at relatively similar rates from their common

ancestor (“undifferentiated”),

2. Ohnologs that have diverged significantly faster than their duplicate partners,

and

3. Ohnologs that have diverged significantly slower than their duplicate partners.

In general, the second two classes come paired: that is, one ohnolog partner is rapidly

diverging and the other is slowly diverging. However, in the FYI network [HBH+04],

not all proteins from S. cerevisiae are present, and so the number of rapidly diverging

ohnologs differs from the number of slowly diverging ohnologs.
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Ohnolog pairs that have diverged at different rates tend to have lower degree than

ohnolog pairs that have diverged at similar rates. Furthermore, amongst the ohnolog

pairs diverging at different rates, the rapidly diverging ohnologs have lower degree

than the slowly diverging ohnologs. See Table 5.1.

Divergence Class Average Degree Number present in FYI network [HBH+04]
Rapid 1.9 19
Slow 2.6 40

Undifferentiated 4.7 126
All ohnologs 4.0 185
All proteins 3.6 1379

Table 5.1: The correlation between sequence divergence and number of protein interactions in the

ohnologs of S. cerevisiae. In addition to the three classes of ohnologs based on sequence divergence,

the table also includes statistics for all ohnologs together, and for all proteins in the FYI network

[HBH+04]. For each set of proteins studied here, the degree distribution roughly follows a power

law.

5.2 Proposed Experiment

We propose to experimentally explore protein-protein interactions in K. waltii, a pre-

WGD ancestor of S. cerevisiae. For each interaction in S. cerevisiae involving at least

one ohnolog, there are four possible interactions to test:

1. S. cerevisiae ohnolog with S. cerevisiae interaction partner

2. S. cerevisiae ohnolog with K. waltii ortholog of S. cerevisiae interaction partner

3. K. waltii ortholog of S. cerevisiae ohnolog with S. cerevisiae interaction partner

4. K. waltii ortholog of S. cerevisiae ohnolog with K. waltii ortholog of S. cerevisiae

interaction partner

Experiment 1 duplicates previous work, but would ensure that all the data is coming

from consistent experimental techniques. Experiment 2 allows us to determine if

an interaction was gained or lost due to changes in the interaction partner since the

WGD. Experiment 3 allows us to determine if an interaction was gained or lost due to
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changes in the duplicated gene. Experiment 4 allows us to determine if an interaction

was gained or lost since the WGD, and also provides the first glimpse into the protein-

protein interaction network of a pre-WGD yeast species. For reasons of cost, we

limit our experiments to the most informative regarding asymmetric divergence of

duplicates: experiment 3.

Based on the union of two high-confidence datasets [GAG+06, HBH+04] we se-

lected 683 interactions to test, involving 407 S. cerevisiae proteins and 129 K. waltii

proteins (see Appendix C for the complete list). Orthology was determined based on

[KBL04].

The FYI dataset [HBH+04] consists of 1379 proteins and 2493 interactions (its

largest connected component consists of 778 proteins and 1798 interactions). We

modified the Gavin, et al. dataset [GAG+06] by taking only those interactions whose

“socio-affinity score” – a log-odds ratio developed in [GAG+06] – was above 6.5,

resulting in a network with 1204 proteins and 3512 interactions (its largest connected

component consists of 781 proteins and 2968 interactions). We chose the threshold

of 6.5 by comparing the socio-affinity scores of edges in the FYI dataset with the

socio-affinity scores of edges that are not present in the FYI dataset (see Figure 5-2).

Although ∼4.5 would provide the maximum likelihood cutoff, we chose the higher

values of 6.5 based on the highest score of edges not present in the FYI dataset, since

the FYI dataset is significantly based on yeast two-hybrid experiments, which are

known to have more false positives than false negatives.

71



2234

1787

1340

894

447

0
-5  0  5  10  15  20  25

127

102

76

51

25

0

N
um

be
r 

of
 E

dg
es

 A
bs

en
t f

ro
m

 F
Y

I N
et

w
or

k

N
um

be
r 

of
 E

dg
es

 P
re

se
nt

 in
 F

Y
I N

et
w

or
k

Socio-affinity score

Figure 5-2: Frequency of socio-affinity scores [GAG+06] of the 1272 edges present in the FYI

network [HBH+04] and of the 22,341 edges absent from the FYI network. The scale for each group

(edges present and edges absent) is normalized to a percentage of the group total for the purposes

of visual comparison.
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Chapter 6

Contributions

In this thesis we have explored the structure of real-world networks and the evolution

of protein interaction networks, using the yeast S. cerevisiae as a model organism.

Chapter 5 sets out to explore experimentally the process of genetic duplication

and divergence by examining the interactions involving pairs of ohnologs, and their

pre-WGD ancestors. By seeing if the pre-WGD ancestral proteins from K. waltii

interact with the post-WGD proteins in S. cerevisiae, we will be able to distinguish

between cases of neofunctionalization and subfunctionalization in the ohnologs of S.

cerevisiae. The yeast two-hybrid experiments are currently underway, and will be

completed after the submission of this thesis. These are the first experiments to

probe the relationship between the protein interactions in two species separated by a

WGD.

In Chapter 4, we introduce a new model of protein interaction network growth,

based on the underlying binding domains of the proteins. Our main contribution here

is to estimate parameters for the model based on phylogenetic evidence, rather than

fitting the model parameters to observed network data. Unlike previous modelling

techniques, this ensures that we do not consider our model validated solely because

it manages to overfit the observed data.

In Chapter 3, we introduce a new approach to finding network motifs. This

new approach is significant for any network science, not just biological networks.

Rather than determining the significance of all motifs of a given size, as the previous
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methods of subgraph sampling and exact enumerating do, we present an algorithm

to count all instances of a particular subgraph (§3.3). By using this algorithm on

all non-isomorphic subgraphs of a given size, the new approach can recapitulate the

previous exact counting approach. Despite the costs of counting all instances of

each subgraph one at a time, rather than altogether, our algorithm manages to out-

perform previous exact counting methods by a factor of ∼ 3.5 (even when we improve

the exact counting algorithm by the standard but important techniques in §3.2.2) by

taking advantage of the scale-free degree distribution (3.3.1) and the symmetries of

the query graphs (3.3.2). Neither of these adaptations can be used in previous exact

counting techniques because of the structure of the algorithms.

In §3.5, we introduce two new background models against which network motifs

can be identified. We show that one of these models – preserving the distribution

of 3-node subgraphs, regardless of the size k of the motifs being sought – is effec-

tively computable and captures much more information about the network than the

degree distribution alone. Against this background model, there are very few motifs

smaller than six nodes, suggesting that the degree distribution and the distribution

of triangles in the PPI net of S. cerevisiae contain nearly all the relevant information

regarding subgraphs up to 5 nodes.

The ability to find all instances of a given subgraph means that our new approach

has many more applications than previous approaches. The new approach can be

combined with subgraph sampling to find larger (anti)motifs than ever before, by

picking a random large connected subgraph and then finding all instances of it in the

network being studied and in a random ensemble of related networks. In §3.4, we

use this technique and present the first ever 15-node motif, and we explore 10- and

20-node subgraphs. Additionally, the 15-node motif is biologically relevant: it is part

of the cellular transcription machinery.

The new approach can also be used to study motif clustering. Based on the

larger motifs found in §3.4, we believe that studying motif clustering may be even

more important for large subgraphs than for the smaller subgraphs found by previous

methods. In §3.4.1 we introduce the subgraph clustering score, which allows the
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clustering of subgraphs of differing sizes to be meaningfully compared. We show that

the subgraph clustering score makes sense both for a carefully constructed series of

graphs that can be clearly ordered in terms of how clustered they are intuitively, and

for comparing the 10-node subgraph explored in §3.4 to the new 15-node motif.

Finally, in §3.6, we discuss further possible application of the new approach:

• finding larger significant structures which are regular expression-like generaliza-

tions of subgraphs, rather than fixed subgraphs;

• finding still larger motifs by extending current motifs and then counting all

instances of the resulting extension;

• combining network alignment and network motifs by searching for large struc-

tural motifs in the aligned portion of multiple networks; and

• combining network alignment and network motifs by using all instances of sig-

nificant motifs to help seed the alignment process.
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Appendix A

Graph Symmetries: A Group

Theory Primer

A.1 Introduction and Definitions

In §3.3.2, we present part of an algorithm for counting subgraphs which effectively

“removes” all the symmetries of a graph. At first glance, it might appear to many

computer scientists (and others) that this might require log2(n) symmetry-breaking

conditions if the graph has n symmetries. But in fact the relationship between the

symmetries is more complicated than that, and often all of the symmetries of a graph

can be broken with many fewer conditions. This appendix briefly reviews some basic

group theory, which is the mathematical theory of symmetries. Determining exactly

how many symmetry-breaking conditions are necessary serves as a guiding example.

As mentioned in §2.5.3, the automorphisms of a graph G form a group, denoted

Aut(G). An automorphism of a graph G is a map f : G → G such that if (v, w) is an

edge of G then (f(v), f(w)) is also an edge of G, and vice versa. The automorphisms

of a graph have the following properties:

1. The composition of two automorphisms is again an automorphism.

2. The composition of automorphisms (as with the composition of any functions)

is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h).
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3. Every graph has the identity map id as a (trivial) automorphism. Furthermore,

composing any automorphism with the identity leaves it unchanged: id ◦ f =

f ◦ id = f .

4. Every automorphism f has a unique inverse f−1, since automorphisms are one-

to-one and onto functions. In particular, f ◦ f−1 = f−1 ◦ f = id.

These four properties – closure, associativity, identity, and inverses – are the defining

properties of a group.

Abstractly, a group is any set with a binary operation (in the case of graph auto-

morphisms the binary operation is functional composition) which satisfies the above

properties. Very often, regardless of the binary operation, multiplicative notation is

used. So rather than writing f ◦ g for the composition of two automorphisms, write

fg. Note that this means “first apply g, then apply f ,” as in the composition of func-

tions. Additionally, write fn for the n-fold composition of f with itself. The usual

rules of integer exponentiation apply (faf b = fa+b, f 0 is defined to be the identity,

etc.) Finally, the group identity is often written e or 1.

To clearly specify the underlying set of a group and the binary operation, write e.g.

(Aut(G), ◦). This notation is often abused however, and the name of the underlying

set is also typically used as the name of the group.

Because groups contain inverses, cancellation is allowed. In other words, if ab = ac

in a group G, then multiplying by a−1 on the left yields b = c. Using cancellation, it

is not hard to show that the identity is unique, and that each element of a group has

only one inverse.

In finite groups, f−1 = fn for some n. Consider the automorphisms of a finite

graph G. If f ∈ Aut(G), then so is fn for any n. But because |Aut(G)| is finite,

f i = f j for some i, j (otherwise the sequence f, f2, f 3, . . . would contain infinitely

many distinct elements of Aut(G)). Then, since f is invertible we can compose both

of these maps with f−i−1, to get f−1 = f j−i−1.

A cyclic group consists of all the powers of a single element, and is defined

entirely by its size. The abstract cyclic group of n elements is denoted Cn.
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Other examples of groups you are probably familiar with are:

• (Z, +), the integers under addition,

• (Z/nZ, +), the integers modulo n under addition,

• (C − {0},×), the non-zero complex numbers under multiplication (zero has no

multiplicative inverse),

• (Z/pZ − {0},×), the non-zero integers modulo a prime p under multiplication,

and

• GLn(C), the set of all invertible n×n complex matrices under matrix multipli-

cation.

Note that matrix multiplication and composition of functions are non-commutative,

i.e. it is not necessarily the case that ab = ba.

A subgroup is simply a subset of a group which is itself a group with respect to the

same operation as its parent. Write H < G to denote that H is a subgroup of G (the

notation is purposefully distinct from subset notation). This is a very important con-

cept for studying groups, and in particular for our aim of finding symmetry-breaking

conditions on graphs. Each symmetry-breaking condition imposed effectively reduces

the automorphism group to one of its subgroups.

To determine how many symmetry-breaking conditions are necessary to remove all

symmetries of a graph, it is necessary to understand something about the relationship

between the size of a group and the size of its subgroups. The size of a group |G| is

called its order. The first theorem taught in almost all, if not all, courses on group

theory is Lagrange’s theorem: The order of a subgroup H divides the order of its

parent group G.

To see why, consider the left cosets of H, which are all the sets aH = {ah|h ∈ H}
for a ∈ G.

Step 1. Because of cancellation, each coset is the same size as H.

Step 2. Every element of G lies in some coset of H. Since 1 ∈ H, a ∈ aH for

every a ∈ G.
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Step 3. Any two cosets aH, bH are either identical or disjoint. Suppose two

cosets aH and bH are not disjoint. Then there is some element c ∈ aH ∩ bH. Let

c = ah1 = bh2, for some h1, h2 ∈ H. Then b−1a = h2h
−1
1 . Since H is a subgroup, it

is closed under multiplication and inversion, and thus b−1a = h2h
−1
1 ∈ H, and also

(b−1a)−1 = a−1b ∈ H. But then any element bh ∈ bH is equal to

bh = b(b−1aa−1b)h

= (bb−1)a(a−1bh)

= a(h1h
−1
2 h) ∈ aH

so bH ⊂ aH. By symmetry , bH = aH. Thus the left cosets of H partition G.

Step 4. Since the left cosets of H all have size |H|, and they partition G, |H|
evenly divides |G|.

The index of a subgroup H in a group G is the number of distinct left cosets of

H, and is denoted [G : H]. By the proof above, |G| = [G : H]|H|, which is the more

traditional form of the statement of Lagrange’s theorem.

For any set of automorphisms S, the group generated by S, denoted 〈S〉 is the

smallest group containing S. If the resulting group is finite, it is easy to see that it

simply consists of all possible compositions of the automorphisms in S.

By Lagrange’s theorem, any group of prime order has no subgroups other than

itself and the trivial subgroup {1}. In fact, it turns out that every group of prime

order is cyclic. Suppose G is a group of prime order, and let a be any non-identity

element of G. If G 6= 〈a〉, then 〈a〉 is a nontrivial cyclic subgroup of G, contradicting

the fact that |G| is prime.

A.2 Orbits and Symmetry-Breaking

The automorphisms of a graph G are said to act on the vertices of G. Each automor-

phism is essentially just a permutation of the vertices. For a set of automorphisms

S and a vertex v, the orbit of v under S is the set of vertices to which v can be
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mapped by the automorphisms in S. Note that the orbit of v under S and the orbit

of v under 〈S〉 are identical if 〈S〉 is finite.

The stabilizer of a vertex v in a group of automorphisms G is the set of all

automorphisms which fix v, denoted StabG(v) or Gv. Gv is a subgroup of G since (a)

the identity fixes v, (b) the composition of two automorphisms fixing v again fixes

v, and (c) the inverse of an automorphism fixing v also fixes v. In particular, |Gv|
divides |G|.

Each symmetry-breaking condition used in §3.3.2 effectively reduces the auto-

morphism group from H to Hv. Let H = Aut(G) for some graph G. Thus the

search for symmetry breaking conditions corresponds to finding a chain of groups

H > Hv0
> H(v0,v1) > · · · > {1}. Since the order of each stabilizer divides the order

of its parent, each step in this chain reduces the size of the remaining group by at

least 2, validating the intuition that it takes at most log2(|Aut(G)|) steps to break all

the symmetries. More generally, the number of symmetry-breaking conditions can be

estimated by examining the prime factorization of the number of automorphisms of

a graph.

In order to need log2(|Aut(G)|) symmetry-breaking conditions, each stabilizer

must have index 2 in the previous stabilizer, and in parituclar |H| = |Aut(G)| must

be a power of 2. Asymptotically, there are many groups of order 2n (typically there

are more groups of order 2n than there are groups of any other order with exactly n

prime factors). However, there are not nearly so many graph automorphism groups

of order 2n, particularly for small graphs.

A.2.1 Minimizing the Number of Symmetry Breaking Con-

ditions

Group theory can also help optimize the number of symmetry breaking conditions

by providing a means to choose which orbit to break up next. The orbit-stabilizer

theorem says that |H| = |Orbit(v)||Stab(v)|, or equivalently [H : Hv] = |OrbitH(v)|.

Step 1. [H : Hv] ≥ |OrbitH(v)|. For any g ∈ Hv and any a ∈ H, ag(v) = a(v).
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So every element of the left coset aHv sends v to the same element of its orbit. Thus

there are at least as many left cosets as there are elements in v’s orbit.

Step 2. |Orbit(v)| ≥ [H : Hv]. If a(v) = b(v), then ab−1 fixes v, and so ab−1 ∈ Hv.

Thus aHv = bHv, so there are no more left cosets of Hv than the number of elements

in v’s orbit.

Thus to maximize [H : Hv] at each step in the chain corresponding to symmetry-

breaking, the algorithm should choose to break up the largest orbit first.
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Appendix B

All Motifs up to 7 Nodes With

Exact Counting in the PPI

Network of S. cerevisiae

Using the exact counting method of Chapter 3, we determined the significance of

every subgraph up to 7 nodes in the PPI net of S. cerevisiae[HBH+04] against two

different ensembles: one which preserves only the degree distribution, and one which

additionally preserves the distribution of 3-node subgraphs (i.e. triangles).

The list is sorted in terms of the significance (z-score) of the subgraph against the

distribution of triangles. We have displayed only those subgraphs which have a z-score

greater than 4.0 in magnitude. The complete list can be found at

http://compbio.mit.edu/networks/.

It is interesting to note that, of the most significant subgraphs, many more of them

are motifs (51) than antimotifs (3) against the background distribution of triangles.

At the |z| > 10.0 level, the only significant subgraphs are motifs.

Additionally, the background model which includes the distribution of triangles

captures much more of the graph structure than the background model which only

preserves the degrees. At the |z| > 2.0 level, 657 subgraphs are significant against the

degree distribution, while only 111 subgraphs are significant against the distribution

of triangles and degrees. (Note there are only 994 isomorphism types of connected

83



undirected graphs with between 3 and 7 nodes.) At the |z| > 4.0 level, these numbers

become 392 and 54, respectively, and at the |z| > 10.0 level, 216 and 32.

Finally, we highlight the importance of specifying the background model and/or

the significance cutoff when calling a subgraph a motif or an anti-motif. Table B.1

displays the number of graphs which are considered e.g. motifs against the degree

distribution and anti-motifs against the degree and triangle distribution for |z| > 2.0.

For |z| > 4.0, there are only 3 graphs which switch from anti-motif to motif and 3

vice versa, and for |z| > 10.0 there are is only 1 graph which switches from motif to

anti-motif, and none in the other direction.

Degree and Triangle Background
Anti-motif Insignificant Motif

Degree
Background

Anti-motif 8 386 13
Insignificant 13 313 10

Motif 26 183 41

Table B.1: The number of graphs which have different status as motifs against the two background

models considered, e.g. motif against one background model and anti-motif against the other.

Original Degrees Degrees & Triangles

Graph Count Motif? (z-score) Motif? (z-score)

7,015 Motif (51.9) Motif (1,607)

1,237 Motif (103) Motif (123)

288,288 Motif (83,363) Motif (75.4)

15,057 Motif (174) Motif (68.9)

2,419 Motif (446) Motif (53.8)

2,147 None (2.76) Motif (53.8)

556 Motif (12.7) Motif (44.6)
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64,555 Motif (26,481) Motif (42.6)

125,192 Motif (1,365) Motif (41.2)

300,743 Motif (5,210) Motif (38.5)

4,378 None (-2.49) Motif (37.1)

1,358 None (0.17) Motif (31.7)

20,120 Motif (54.4) Motif (27.1)

4,972 Motif (5.47) Motif (24.9)

22,930 Motif (31.1) Motif (24.8)

1,801 Motif (947) Motif (24.4)

18,175 Motif (648) Motif (23.8)

14,703 Motif (88.3) Motif (22.9)

252,604 Motif (89.3) Motif (21.6)

6,685 None (-3.40) Motif (21.2)

6,461 None (-0.21) Motif (20.7)

609,862 Anti (-13.2) Motif (18.7)

182,118 Motif (4.39) Motif (15.3)

14,833 None (0.92) Motif (15.0)

147,227 Motif (420,425) Motif (13.4)
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4,994 None (-3.89) Motif (13.4)

2,676 None (-3.32) Motif (12.6)

142,221 None (2.83) Motif (11.8)

479 None (-2.36) Motif (11.7)

178,974 None (-3.81) Motif (11.5)

12,875 Motif (2,153) Motif (11.0)

4,702 None (-0.13) Motif (10.1)

196,270 Motif (68.5) Motif (9.56)

5,922 Motif (278) Motif (8.21)

94,313 Motif (9,714) Motif (8.16)

1,624 Motif (131) Motif (7.92)

155,299 Motif (372) Motif (7.90)

33,359 Motif (3,164) Motif (7.63)

278 Motif (4.13) Motif (7.42)

12,993 Anti (-9.45) Motif (7.39)

136,187 Motif (541) Motif (6.84)

81,582 Motif (21.2) Motif (5.61)

7,914 None (-3.75) Motif (5.51)
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20,573 Motif (1,729) Anti (-5.01)

1,512 None (-0.23) Motif (5.01)

672 None (1.26) Motif (4.93)

22,730 Motif (100) Motif (4.91)

12,102 Motif (547) Anti (-4.54)

387 Motif (32.9) Motif (4.51)

1,513 None (-3.52) Motif (4.41)

4,109 Motif (11.8) Anti (-4.39)

209,776 Anti (-20.1) Motif (4.32)

92,372 Motif (82.9) Motif (4.19)

81,947 None (1.88) Motif (4.15)
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Appendix C

Protein-Protein Interactions Being

Explored in K. waltii and S.

cerevisiae

Protein-protein interactions being explored in K. waltii and S. cerevisiae. FYI in-

dicates the FYI dataset [HBH+04] and TAP indicates the Gavin, et al. dataset

[GAG+06]. The interactions to test are based on reported interactions between S.

cerevisiae ohnologs (second column) and other S. cerevisiae proteins (third column).

We test the K. waltii ancestor (first column) of the S. cerevisiae ohnologs against

the S. cerevisiae interaction partners in order to determine if an interaction was

gained or lost because of changes in the ohnologs after duplication. This data can

also be found in text-only format (i.e. machine-parseable but still human-readable) at

http://compbio.mit.edu/networks/, along with the ORF sequences used for each pro-

tein in the experiment, and is included here only for completeness.

K. wal. ancestor of

ohnolog(s)
S. cer. ohnolog(s) S. cer. interaction partner Dataset

Kwal 92 YFR013W YAR007C TAP

Kwal 92 YFR013W YBL003C TAP

Kwal 92 YFR013W YBR245C TAP

Kwal 92 YFR013W YFR037C TAP

Kwal 92 YFR013W YGL133W TAP

Kwal 92 YFR013W YKR001C TAP
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Kwal 92 YFR013W YOL004W TAP

Kwal 92 YFR013W YPL082C TAP

Kwal 96 YOL016C, YFR014C YBR109C FYI

Kwal 99 YLR258W YIL045W FYI

Kwal 99 YLR258W YLR273C FYI

Kwal 167 YLR249W YBR118W FYI

Kwal 167 YLR249W YPR080W FYI

Kwal 250 YCL011C YDL014W TAP

Kwal 250 YCL011C, YNL004W YDR138W TAP

Kwal 250 YCL011C, YNL004W YHR167W TAP

Kwal 250 YCL011C, YNL004W YNL139C TAP

Kwal 250 YNL004W YML062C TAP

Kwal 1015 YGR239C YDR142C FYI

Kwal 1019 YGR238C YHR158C FYI

Kwal 1019 YHR158C YGR238C FYI

Kwal 1382 YGR034W, YLR344W YBL027W FYI

Kwal 1382 YGR034W, YLR344W YBL087C FYI

Kwal 1382 YGR034W, YLR344W YBL092W FYI

Kwal 1382 YGR034W, YLR344W YBR031W FYI

Kwal 1382 YGR034W, YLR344W YBR084C-A FYI

Kwal 1382 YGR034W, YLR344W YDL136W FYI

Kwal 1382 YGR034W, YLR344W YDL191W FYI

Kwal 1382 YGR034W, YLR344W YDR012W FYI

Kwal 1382 YGR034W, YLR344W YDR418W FYI

Kwal 1382 YGR034W, YLR344W YEL054C FYI

Kwal 1382 YGR034W, YLR344W YER117W FYI

Kwal 1382 YGR034W, YLR344W YGL103W FYI

Kwal 1382 YGR034W, YLR344W YGL135W FYI

Kwal 1382 YGR034W, YLR344W YGL147C FYI

Kwal 1382 YGR034W, YLR344W YGR085C FYI

Kwal 1382 YGR034W, YLR344W YIL018W FYI

Kwal 1382 YGR034W, YLR344W YIL133C FYI

Kwal 1382 YGR034W, YLR344W YJL177W FYI

Kwal 1382 YGR034W, YLR344W YKL180W FYI

Kwal 1382 YGR034W, YLR344W YLR075W FYI

Kwal 1382 YGR034W, YLR344W YLR340W FYI

Kwal 1382 YGR034W, YLR344W YNL067W FYI

Kwal 1382 YGR034W, YLR344W YNL069C FYI

Kwal 1382 YGR034W, YLR344W YOL127W FYI

Kwal 1382 YGR034W, YLR344W YOR063W FYI

Kwal 1382 YGR034W, YLR344W YPL131W FYI

Kwal 1382 YGR034W, YLR344W YPL220W FYI

Kwal 1382 YGR034W, YLR344W YPR102C FYI

Kwal 1436 YDL175C YJL050W TAP

Kwal 1436 YDL175C YLR347C TAP
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Kwal 1436 YDL175C YMR125W TAP

Kwal 1436 YDL175C YNL251C TAP

Kwal 1436 YDL175C YPL190C TAP

Kwal 1436 YIL079C, YDL175C YOL115W FYI,TAP

Kwal 1812 YBR216C YML007W FYI

Kwal 2150 YLL021W YER149C FYI

Kwal 2150 YLR313C YBL016W FYI

Kwal 2150 YLR313C, YLL021W YDL159W FYI

Kwal 2150 YLR313C, YLL021W YLR319C FYI

Kwal 2150 YLR313C, YLL021W YLR362W FYI

Kwal 2150 YLR313C, YLL021W YOR231W FYI

Kwal 2150 YLR313C, YLL021W YPL140C FYI

Kwal 2313 YLL016W YLR310C FYI

Kwal 2313 YLR310C YAL005C FYI

Kwal 2313 YLR310C YBL075C FYI

Kwal 2313 YLR310C YDL047W TAP

Kwal 2313 YLR310C YER103W FYI

Kwal 2313 YLR310C YGL197W TAP

Kwal 2313 YLR310C YJL098W TAP

Kwal 2313 YLR310C YLL016W FYI

Kwal 2313 YLR310C YLL024C FYI

Kwal 2313 YLR310C YPL240C FYI

Kwal 2313 YLR310C, YLL016W YNL098C FYI

Kwal 2421 YJL076W YDL042C FYI

Kwal 2421 YKR010C YOL006C FYI

Kwal 2935 YNL096C YOR361C TAP

Kwal 2935 YNL096C YPR041W TAP

Kwal 2935 YOR096W YDR091C TAP

Kwal 3650 YHL034C YGR162W TAP

Kwal 3650 YHL034C YMR230W TAP

Kwal 3650 YHL034C YOL139C TAP

Kwal 3747 YGR085C YFR031C-A TAP

Kwal 3747 YGR085C, YPR102C YBL027W FYI

Kwal 3747 YGR085C, YPR102C YBL092W FYI

Kwal 3747 YGR085C, YPR102C YBR084C-A FYI

Kwal 3747 YGR085C, YPR102C YDL136W FYI

Kwal 3747 YGR085C, YPR102C YDL191W FYI

Kwal 3747 YGR085C, YPR102C YGL103W FYI

Kwal 3747 YGR085C, YPR102C YGR034W FYI

Kwal 3747 YGR085C, YPR102C YIL018W FYI

Kwal 3747 YGR085C, YPR102C YLR075W FYI

Kwal 3747 YGR085C, YPR102C YLR344W FYI

Kwal 3747 YGR085C, YPR102C YOL127W FYI

Kwal 3747 YGR085C, YPR102C YOR063W FYI

Kwal 3747 YGR085C, YPR102C YPL131W FYI
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Kwal 3747 YPR102C YER006W TAP

Kwal 3747 YPR102C YPL093W TAP

Kwal 3932 YBR118W YKL081W FYI

Kwal 3932 YBR118W YPL048W FYI

Kwal 3932 YPR080W, YBR118W YAL003W FYI

Kwal 3932 YPR080W, YBR118W YLR249W FYI

Kwal 3992 YGR092W YAL021C FYI

Kwal 3992 YGR092W YDL160C FYI

Kwal 3992 YGR092W YNR052C FYI

Kwal 3992 YGR092W, YPR111W YIL106W FYI

Kwal 4144 YDL075W YDR060W TAP

Kwal 4144 YDL075W YDR101C TAP

Kwal 4144 YDL075W YNL110C TAP

Kwal 4144 YDL075W, YLR406C YJL189W FYI

Kwal 4144 YDL075W, YLR406C YMR242C FYI

Kwal 4144 YDL075W, YLR406C YOR312C FYI

Kwal 4144 YLR406C YHR052W TAP

Kwal 4144 YLR406C YNR053C TAP

Kwal 4240 YDL061C, YLR388W YGL123W FYI

Kwal 4240 YDL061C, YLR388W YHL015W FYI

Kwal 4240 YDL061C, YLR388W YHR203C FYI

Kwal 4240 YDL061C, YLR388W YJR123W FYI

Kwal 4240 YDL061C, YLR388W YJR145C FYI

Kwal 4240 YDL061C, YLR388W YNL178W FYI

Kwal 4240 YDL061C, YLR388W YOL040C FYI

Kwal 4569 YDL226C YDR264C FYI

Kwal 4733 YIL133C, YNL069C YDL136W FYI

Kwal 4733 YIL133C, YNL069C YDL191W FYI

Kwal 4733 YIL133C, YNL069C YDR395W FYI

Kwal 4733 YIL133C, YNL069C YGL103W FYI

Kwal 4733 YIL133C, YNL069C YGR034W FYI

Kwal 4733 YIL133C, YNL069C YIL018W FYI

Kwal 4733 YIL133C, YNL069C YLR075W FYI

Kwal 4733 YIL133C, YNL069C YLR344W FYI

Kwal 4733 YIL133C, YNL069C YNL301C FYI

Kwal 4733 YIL133C, YNL069C YOL120C FYI

Kwal 4733 YIL133C, YNL069C YOL127W FYI

Kwal 4733 YIL133C, YNL069C YOR063W FYI

Kwal 4733 YIL133C, YNL069C YPL131W FYI

Kwal 4911 YIL113W YHR030C FYI

Kwal 4925 YIL109C YDR517W TAP

Kwal 4925 YIL109C YLR208W TAP

Kwal 4925 YIL109C, YNL049C YPL085W TAP

Kwal 4925 YIL109C, YNL049C YPR181C TAP

Kwal 5298 YOL115W YDL175C TAP
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Kwal 5298 YOL115W YFL008W FYI

Kwal 5298 YOL115W YFR031C FYI

Kwal 5298 YOL115W YIL079C FYI

Kwal 5298 YOL115W YNL251C TAP

Kwal 5298 YOL115W YPL190C TAP

Kwal 5576 YHR030C YIL113W FYI

Kwal 5576 YHR030C YOR231W FYI

Kwal 5576 YHR030C YPL140C FYI

Kwal 5764 YER054C YER133W FYI

Kwal 5764 YER054C, YIL045W YBR045C FYI

Kwal 5764 YIL045W YLR258W FYI

Kwal 5799 YIL052C, YER056C-A YDR395W FYI

Kwal 5799 YIL052C, YER056C-A YHL001W FYI

Kwal 5799 YIL052C, YER056C-A YKL006W FYI

Kwal 5807 YER059W, YIL050W YPL031C FYI

Kwal 5887 YER070W YIL066C FYI

Kwal 5887 YER070W YML058W FYI

Kwal 5887 YIL066C YER070W FYI

Kwal 5887 YIL066C, YER070W YGR180C FYI

Kwal 5887 YIL066C, YER070W YJL026W FYI

Kwal 5953 YER081W YIL074C FYI

Kwal 5953 YIL074C YER081W FYI

Kwal 6006 YDL179W, YDL127W YDR388W FYI

Kwal 6006 YDL179W, YDL127W YPL031C FYI

Kwal 6069 YPL256C, YMR199W YBR135W FYI,TAP

Kwal 6069 YPL256C, YMR199W YBR160W FYI,TAP

Kwal 6069 YPL256C, YMR199W YDL132W FYI

Kwal 6225 YCR052W YBR245C TAP

Kwal 6225 YCR052W YDR303C TAP

Kwal 6225 YCR052W YFR037C FYI,TAP

Kwal 6225 YCR052W YGR056W TAP

Kwal 6225 YCR052W YIL126W TAP

Kwal 6225 YCR052W YKR008W TAP

Kwal 6225 YCR052W YLR033W TAP

Kwal 6225 YCR052W YLR321C FYI,TAP

Kwal 6225 YCR052W YLR357W TAP

Kwal 6225 YCR052W YML127W TAP

Kwal 6225 YCR052W YMR072W TAP

Kwal 6225 YCR052W YMR091C TAP

Kwal 6225 YCR052W YPR034W TAP

Kwal 6225 YCR052W, YNR023W YMR033W TAP

Kwal 6225 YNR023W YBR289W FYI,TAP

Kwal 6225 YNR023W YHL025W TAP

Kwal 6225 YNR023W YJL176C TAP

Kwal 6225 YNR023W YML007W TAP
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Kwal 6225 YNR023W YPL016W TAP

Kwal 6325 YCR073C YMR117C FYI

Kwal 6325 YCR073C, YNR031C YLR006C FYI

Kwal 6344 YCR073W-A YER133W TAP

Kwal 6344 YCR073W-A YLR028C TAP

Kwal 6373 YGR118W, YPR132W YGL123W FYI

Kwal 6373 YGR118W, YPR132W YHL015W FYI

Kwal 6373 YGR118W, YPR132W YJR123W FYI

Kwal 6373 YGR118W, YPR132W YNL178W FYI

Kwal 6373 YGR118W, YPR132W YOL040C FYI

Kwal 6805 YAL051W YOR363C FYI

Kwal 6805 YOR363C YAL051W FYI

Kwal 6945 YAL038W YNL307C FYI

Kwal 7054 YAL030W YBL050W FYI

Kwal 7054 YAL030W YDR468C FYI

Kwal 7054 YAL030W YPL232W FYI

Kwal 7054 YOR327C YOL018C FYI

Kwal 7054 YOR327C, YAL030W YGR009C FYI

Kwal 7055 YAL029C YBR130C TAP

Kwal 7055 YAL029C YFL039C FYI

Kwal 7055 YAL029C YKL130C TAP

Kwal 7055 YOR326W YBR109C FYI,TAP

Kwal 7055 YOR326W YIL070C TAP

Kwal 7055 YOR326W YOR035C TAP

Kwal 7055 YOR326W, YAL029C YGL106W FYI,TAP

Kwal 7055 YOR326W, YAL029C YHR023W FYI,TAP

Kwal 7154 YAL017W YDR099W TAP

Kwal 7338 YJL099W YLR330W TAP

Kwal 7338 YJL099W YMR116C TAP

Kwal 7338 YJL099W YMR237W TAP

Kwal 7338 YJL099W YOR299W TAP

Kwal 7338 YKR027W YGR161C TAP

Kwal 7343 YJL098W YER155C TAP

Kwal 7343 YJL098W YGL197W TAP

Kwal 7343 YJL098W YGR161C TAP

Kwal 7343 YJL098W YLR310C TAP

Kwal 7343 YJL098W YOR267C TAP

Kwal 7343 YKR028W YPL049C TAP

Kwal 7343 YKR028W, YJL098W YDL047W FYI,TAP

Kwal 7462 YGL049C YNL251C TAP

Kwal 7462 YGL049C YPL178W TAP

Kwal 7462 YGR162W YAL036C TAP

Kwal 7462 YGR162W YCR077C TAP

Kwal 7462 YGR162W YDL043C FYI

Kwal 7462 YGR162W YDL051W TAP
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Kwal 7462 YGR162W YDL087C TAP

Kwal 7462 YGR162W YGR285C TAP

Kwal 7462 YGR162W YHL034C TAP

Kwal 7462 YGR162W YIL061C TAP

Kwal 7462 YGR162W YJL138C FYI,TAP

Kwal 7462 YGR162W YKR059W FYI

Kwal 7462 YGR162W YLR175W TAP

Kwal 7462 YGR162W YMR230W TAP

Kwal 7462 YGR162W YNL262W TAP

Kwal 7462 YGR162W YOR243C TAP

Kwal 7462 YGR162W YOR276W FYI

Kwal 7462 YGR162W, YGL049C YER165W FYI

Kwal 7462 YGR162W, YGL049C YIR001C TAP

Kwal 7462 YGR162W, YGL049C YMR125W TAP

Kwal 7462 YGR162W, YGL049C YOL139C FYI,TAP

Kwal 7587 YMR109W YBR109C TAP

Kwal 7587 YMR109W YBR177C TAP

Kwal 7587 YMR109W YDL019C TAP

Kwal 7913 YHL001W, YKL006W YER056C-A FYI

Kwal 7913 YHL001W, YKL006W YIL052C FYI

Kwal 8043 YMR072W YBR245C TAP

Kwal 8043 YMR072W YCR052W TAP

Kwal 8043 YMR072W YDR303C TAP

Kwal 8043 YMR072W YFR037C TAP

Kwal 8043 YMR072W YOL004W TAP

Kwal 8043 YMR072W YPL082C TAP

Kwal 8387 YNL098C YLL016W FYI

Kwal 8387 YNL098C YLR310C FYI

Kwal 8387 YNL098C YOL081W FYI

Kwal 8433 YNL104C YOR108W TAP

Kwal 8433 YOR108W YNL104C TAP

Kwal 8703 YOR231W, YPL140C YHR030C FYI

Kwal 8703 YOR231W, YPL140C YJL095W FYI

Kwal 8703 YOR231W, YPL140C YLL021W FYI

Kwal 8703 YOR231W, YPL140C YLR313C FYI

Kwal 9752 YAR042W YAR042W TAP

Kwal 9752 YAR042W, YDL019C YER120W TAP

Kwal 9752 YDL019C YMR109W TAP

Kwal 10318 YML109W, YMR273C YAL016W TAP

Kwal 10318 YML109W, YMR273C YDL188C TAP

Kwal 10318 YML109W, YMR273C YGL190C TAP

Kwal 10393 YML100W YMR261C FYI

Kwal 10393 YML100W, YMR261C YBR126C FYI,TAP

Kwal 10393 YML100W, YMR261C YDR074W FYI,TAP

Kwal 10393 YMR261C YML100W FYI
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Kwal 10573 YBL106C, YPR032W YGR009C FYI

Kwal 10573 YPR032W YHR023W FYI

Kwal 10720 YBL087C YDR496C TAP

Kwal 10720 YBL087C YPL211W TAP

Kwal 10720 YER117W YOL077C TAP

Kwal 10720 YER117W, YBL087C YBL027W FYI

Kwal 10720 YER117W, YBL087C YBL092W FYI

Kwal 10720 YER117W, YBL087C YBR084C-A FYI

Kwal 10720 YER117W, YBL087C YDL136W FYI

Kwal 10720 YER117W, YBL087C YDL191W FYI

Kwal 10720 YER117W, YBL087C YGL103W FYI

Kwal 10720 YER117W, YBL087C YGR034W FYI

Kwal 10720 YER117W, YBL087C YIL018W FYI

Kwal 10720 YER117W, YBL087C YLR075W FYI

Kwal 10720 YER117W, YBL087C YLR344W FYI

Kwal 10720 YER117W, YBL087C YOL127W FYI

Kwal 10720 YER117W, YBL087C YOR063W FYI

Kwal 10720 YER117W, YBL087C YPL131W FYI

Kwal 10733 YBL085W YLR229C FYI

Kwal 10733 YBL085W, YER114C YBR200W FYI

Kwal 10817 YBL075C, YER103W YLR310C FYI

Kwal 10827 YBL072C YOR056C TAP

Kwal 10827 YBL072C YPL012W TAP

Kwal 10827 YBL072C YPR144C TAP

Kwal 10827 YER102W YLR192C TAP

Kwal 10911 YER089C, YBL056W YDR071C TAP

Kwal 10991 YDR001C YDR099W TAP

Kwal 10991 YDR001C YER177W TAP

Kwal 11859 YDR480W, YPL049C YBL016W FYI

Kwal 11859 YDR480W, YPL049C YGR040W FYI

Kwal 11859 YDR480W, YPL049C YHR084W FYI

Kwal 11859 YPL049C YKR028W TAP

Kwal 12088 YBR189W YDL060W TAP

Kwal 12088 YBR189W YGR081C TAP

Kwal 12088 YBR189W YNL132W TAP

Kwal 12088 YBR189W YOR056C TAP

Kwal 12088 YPL081W YBR079C TAP

Kwal 12088 YPL081W YNL207W TAP

Kwal 12088 YPL081W YPL204W TAP

Kwal 12088 YPL081W, YBR189W YNL178W FYI

Kwal 12200 YBR177C YMR109W TAP

Kwal 12262 YPL106C YGL206C TAP

Kwal 12262 YPL106C YML028W TAP

Kwal 12461 YBL027W, YBR084C-A YBL087C FYI

Kwal 12461 YBL027W, YBR084C-A YBL092W FYI
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Kwal 12461 YBL027W, YBR084C-A YBR031W FYI

Kwal 12461 YBL027W, YBR084C-A YDL136W FYI

Kwal 12461 YBL027W, YBR084C-A YDL191W FYI

Kwal 12461 YBL027W, YBR084C-A YDR012W FYI

Kwal 12461 YBL027W, YBR084C-A YER117W FYI

Kwal 12461 YBL027W, YBR084C-A YGL103W FYI

Kwal 12461 YBL027W, YBR084C-A YGL147C FYI

Kwal 12461 YBL027W, YBR084C-A YGR034W FYI

Kwal 12461 YBL027W, YBR084C-A YGR085C FYI

Kwal 12461 YBL027W, YBR084C-A YIL018W FYI

Kwal 12461 YBL027W, YBR084C-A YJL177W FYI

Kwal 12461 YBL027W, YBR084C-A YKL180W FYI

Kwal 12461 YBL027W, YBR084C-A YLR344W FYI

Kwal 12461 YBL027W, YBR084C-A YNL067W FYI

Kwal 12461 YBL027W, YBR084C-A YOL127W FYI

Kwal 12461 YBL027W, YBR084C-A YOR063W FYI

Kwal 12461 YBL027W, YBR084C-A YPL131W FYI

Kwal 12461 YBL027W, YBR084C-A YPR102C FYI

Kwal 12655 YJL110C YKR034W FYI

Kwal 12655 YKR034W YJL110C FYI

Kwal 12693 YBR031W, YDR012W YBL027W FYI

Kwal 12693 YBR031W, YDR012W YBL092W FYI

Kwal 12693 YBR031W, YDR012W YBR084C-A FYI

Kwal 12693 YBR031W, YDR012W YDL136W FYI

Kwal 12693 YBR031W, YDR012W YDL191W FYI

Kwal 12693 YBR031W, YDR012W YGL103W FYI

Kwal 12693 YBR031W, YDR012W YGR034W FYI

Kwal 12693 YBR031W, YDR012W YIL018W FYI

Kwal 12693 YBR031W, YDR012W YLR075W FYI

Kwal 12693 YBR031W, YDR012W YLR344W FYI

Kwal 12693 YBR031W, YDR012W YOL127W FYI

Kwal 12693 YBR031W, YDR012W YOR063W FYI

Kwal 12693 YBR031W, YDR012W YPL131W FYI

Kwal 12745 YHR152W YDR267C FYI

Kwal 12745 YHR152W YER032W FYI

Kwal 12745 YHR152W YHR073W FYI

Kwal 12745 YHR152W YHR128W FYI

Kwal 12745 YHR152W YJL168C FYI

Kwal 12745 YHR152W YJR148W FYI

Kwal 12745 YHR152W YLR016C FYI

Kwal 12745 YHR152W YLR132C FYI

Kwal 12745 YHR152W YLR288C FYI

Kwal 12745 YHR152W YPR118W FYI

Kwal 12745 YHR152W YPR152C FYI

Kwal 13222 YCL024W YDR507C TAP
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Kwal 13222 YDR507C YCL024W TAP

Kwal 13222 YDR507C YCR002C FYI

Kwal 13222 YDR507C YDL225W FYI

Kwal 13222 YDR507C YHR107C FYI

Kwal 13222 YDR507C YJR076C FYI

Kwal 13222 YDR507C YLR314C FYI

Kwal 13222 YDR507C, YCL024W YKR048C FYI

Kwal 13256 YDR502C YLR153C TAP

Kwal 13256 YDR502C YLR180W TAP

Kwal 13256 YLR180W YDR502C TAP

Kwal 13256 YLR180W YER090W TAP

Kwal 13256 YLR180W YGL195W TAP

Kwal 13676 YCR031C, YJL191W YGL123W FYI

Kwal 13676 YCR031C, YJL191W YHL015W FYI

Kwal 13676 YCR031C, YJL191W YJR123W FYI

Kwal 13676 YCR031C, YJL191W YNL178W FYI

Kwal 13676 YCR031C, YJL191W YOL040C FYI

Kwal 13736 YKL180W, YJL177W YBL027W FYI

Kwal 13736 YKL180W, YJL177W YBL092W FYI

Kwal 13736 YKL180W, YJL177W YBR084C-A FYI

Kwal 13736 YKL180W, YJL177W YDL136W FYI

Kwal 13736 YKL180W, YJL177W YDL191W FYI

Kwal 13736 YKL180W, YJL177W YGL103W FYI

Kwal 13736 YKL180W, YJL177W YGR034W FYI

Kwal 13736 YKL180W, YJL177W YIL018W FYI

Kwal 13736 YKL180W, YJL177W YLR075W FYI

Kwal 13736 YKL180W, YJL177W YLR344W FYI

Kwal 13736 YKL180W, YJL177W YOL127W FYI

Kwal 13736 YKL180W, YJL177W YOR063W FYI

Kwal 13736 YKL180W, YJL177W YPL131W FYI

Kwal 13846 YJL164C YKL166C FYI

Kwal 13846 YJL164C, YKL166C YIL033C FYI

Kwal 13846 YJL164C, YKL166C YPL203W FYI

Kwal 13846 YKL166C YJL164C FYI

Kwal 14000 YJL138C YKR059W TAP

Kwal 14000 YKR059W YJL138C TAP

Kwal 14000 YKR059W, YJL138C YGR162W FYI,TAP

Kwal 14267 YML085C YCL029C FYI

Kwal 14267 YML085C YFL037W FYI

Kwal 14267 YML085C YNL223W FYI

Kwal 14267 YML085C YOL086C FYI

Kwal 14267 YML124C YER016W FYI

Kwal 14353 YDR309C YER149C FYI

Kwal 14353 YDR309C YLR319C FYI

Kwal 14353 YHR061C, YDR309C YLR229C FYI
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Kwal 14596 YHR135C YER123W FYI

Kwal 14596 YHR135C YNL154C FYI

Kwal 14596 YNL154C YHR135C FYI

Kwal 14899 YHR161C, YGR241C YGL206C FYI

Kwal 14899 YHR161C, YGR241C YGR167W FYI

Kwal 14899 YHR161C, YGR241C YIR006C FYI

Kwal 14989 YKL068W YMR047C FYI

Kwal 14989 YMR047C YER107C FYI

Kwal 14989 YMR047C YJL061W FYI

Kwal 14989 YMR047C YKL068W FYI

Kwal 14989 YMR047C, YKL068W YLR347C FYI

Kwal 14989 YMR047C, YKL068W YPL169C FYI

Kwal 15007 YGR180C YJL026W FYI,TAP

Kwal 15007 YGR180C, YJL026W YER070W FYI

Kwal 15007 YGR180C, YJL026W YIL066C FYI

Kwal 15007 YJL026W YGR180C FYI,TAP

Kwal 15889 YOR312C, YMR242C YDL075W FYI

Kwal 15889 YOR312C, YMR242C YGL030W FYI

Kwal 15889 YOR312C, YMR242C YJL189W FYI

Kwal 15889 YOR312C, YMR242C YLR406C FYI

Kwal 16748 YHR203C, YJR145C YBR048W FYI

Kwal 16748 YHR203C, YJR145C YDL061C FYI

Kwal 16748 YHR203C, YJR145C YDR025W FYI

Kwal 16748 YHR203C, YJR145C YGL123W FYI

Kwal 16748 YHR203C, YJR145C YJL190C FYI

Kwal 16748 YHR203C, YJR145C YLR367W FYI

Kwal 16748 YHR203C, YJR145C YLR388W FYI

Kwal 16748 YHR203C, YJR145C YNL178W FYI

Kwal 16748 YHR203C, YJR145C YOL040C FYI

Kwal 16781 YHR208W YJR148W TAP

Kwal 16781 YHR208W YLR259C TAP

Kwal 16781 YJR148W YHR152W FYI

Kwal 16781 YJR148W YHR208W TAP

Kwal 16977 YLR442C YDR227W FYI

Kwal 16977 YLR442C YNL216W FYI

Kwal 16977 YML065W YBR060C FYI,TAP

Kwal 16977 YML065W YHR118C FYI,TAP

Kwal 16977 YML065W YKR101W FYI

Kwal 16977 YML065W YLL004W FYI,TAP

Kwal 16977 YML065W YNL261W FYI,TAP

Kwal 16977 YML065W YPR162C FYI,TAP

Kwal 16988 YLR441C, YML063W YDR064W FYI

Kwal 17049 YJR009C YDL188C TAP

Kwal 17056 YML058W YER070W FYI

Kwal 17070 YLR433C, YML057W YBR109C FYI
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Kwal 17070 YLR433C, YML057W YKL190W FYI

Kwal 17202 YAL007C YAR002C-A FYI,TAP

Kwal 17202 YAL007C YGL200C FYI,TAP

Kwal 17202 YAL007C YML012W FYI,TAP

Kwal 17263 YER129W YDR422C TAP

Kwal 17263 YER129W YDR477W TAP

Kwal 17263 YER129W YER027C TAP

Kwal 17263 YER129W YGL115W TAP

Kwal 17576 YAR002C-A YAL007C FYI,TAP

Kwal 17576 YAR002C-A YGL200C FYI,TAP

Kwal 17576 YAR002C-A YML012W FYI,TAP

Kwal 17726 YLR028C YCR073W-A TAP

Kwal 17726 YLR028C YER133W TAP

Kwal 17726 YLR028C YER177W TAP

Kwal 17733 YLR029C, YMR121C YPR043W FYI

Kwal 18059 YGR056W YHR056C TAP

Kwal 18059 YGR056W YMR033W TAP

Kwal 18059 YLR357W YBR049C TAP

Kwal 18059 YLR357W YBR245C TAP

Kwal 18059 YLR357W YDR224C TAP

Kwal 18059 YLR357W YDR225W TAP

Kwal 18059 YLR357W YGR275W TAP

Kwal 18059 YLR357W, YGR056W YCR052W TAP

Kwal 18059 YLR357W, YGR056W YDR303C TAP

Kwal 18059 YLR357W, YGR056W YFR037C TAP

Kwal 18059 YLR357W, YGR056W YIL126W TAP

Kwal 18059 YLR357W, YGR056W YKR008W TAP

Kwal 18059 YLR357W, YGR056W YLR033W TAP

Kwal 18059 YLR357W, YGR056W YLR321C TAP

Kwal 18059 YLR357W, YGR056W YML127W TAP

Kwal 18059 YLR357W, YGR056W YMR091C TAP

Kwal 18059 YLR357W, YGR056W YPR034W TAP

Kwal 18439 YML028W YPL106C TAP

Kwal 18456 YDR450W, YML026C YGL123W FYI

Kwal 18456 YDR450W, YML026C YHL015W FYI

Kwal 18456 YDR450W, YML026C YJR123W FYI

Kwal 18456 YDR450W, YML026C YNL178W FYI

Kwal 18456 YDR450W, YML026C YOL040C FYI

Kwal 18631 YML007W YBR081C TAP

Kwal 18631 YML007W YBR216C FYI

Kwal 18631 YML007W YBR253W TAP

Kwal 18631 YML007W YBR289W TAP

Kwal 18631 YML007W YCL010C TAP

Kwal 18631 YML007W YDR359C TAP

Kwal 18631 YML007W YDR448W TAP
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Kwal 18631 YML007W YER110C FYI

Kwal 18631 YML007W YFL024C TAP

Kwal 18631 YML007W YGL112C TAP

Kwal 18631 YML007W YGL151W TAP

Kwal 18631 YML007W YGR218W FYI

Kwal 18631 YML007W YHR041C TAP

Kwal 18631 YML007W YHR058C TAP

Kwal 18631 YML007W YJL081C TAP

Kwal 18631 YML007W YJL176C TAP

Kwal 18631 YML007W YNL236W TAP

Kwal 18631 YML007W YNR023W TAP

Kwal 18631 YML007W YOL148C TAP

Kwal 18631 YML007W YOR244W TAP

Kwal 18631 YML007W YOR290C TAP

Kwal 18631 YML007W YPL254W TAP

Kwal 18631 YML007W YPR070W TAP

Kwal 18673 YDR418W YAL035W TAP

Kwal 18673 YDR418W YGR285C TAP

Kwal 18673 YDR418W YHR064C TAP

Kwal 18673 YEL054C YGL099W TAP

Kwal 18673 YEL054C, YDR418W YDL136W FYI

Kwal 18673 YEL054C, YDR418W YDL191W FYI

Kwal 18673 YEL054C, YDR418W YGL103W FYI

Kwal 18673 YEL054C, YDR418W YGR034W FYI

Kwal 18673 YEL054C, YDR418W YIL018W FYI

Kwal 18673 YEL054C, YDR418W YLR075W FYI

Kwal 18673 YEL054C, YDR418W YLR344W FYI

Kwal 18673 YEL054C, YDR418W YOL127W FYI

Kwal 18673 YEL054C, YDR418W YOR063W FYI

Kwal 18673 YEL054C, YDR418W YPL131W FYI

Kwal 19040 YER027C YDR422C TAP

Kwal 19040 YER027C YER129W TAP

Kwal 19040 YER027C YGL208W FYI

Kwal 19040 YGL208W YER027C FYI

Kwal 19040 YGL208W, YER027C YDR477W FYI,TAP

Kwal 19040 YGL208W, YER027C YGL115W FYI,TAP

Kwal 19987 YDR264C YAL041W FYI

Kwal 19987 YDR264C YDL226C FYI

Kwal 19987 YDR264C YDR103W FYI

Kwal 19987 YDR264C YJR086W FYI

Kwal 19987 YDR264C YOR212W FYI

Kwal 19987 YDR264C YPL242C FYI

Kwal 20268 YMR237W, YOR299W YJL099W TAP

Kwal 20268 YMR237W, YOR299W YLR330W TAP

Kwal 20419 YFR031C-A YAL035W TAP
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Kwal 20419 YFR031C-A YDL082W TAP

Kwal 20419 YFR031C-A YNL301C TAP

Kwal 20419 YFR031C-A, YIL018W YGR085C FYI,TAP

Kwal 20419 YIL018W YBL027W FYI

Kwal 20419 YIL018W YBL087C FYI

Kwal 20419 YIL018W YBL092W FYI

Kwal 20419 YIL018W YBR031W FYI

Kwal 20419 YIL018W YBR084C-A FYI

Kwal 20419 YIL018W YDL136W FYI

Kwal 20419 YIL018W YDL191W FYI

Kwal 20419 YIL018W YDR012W FYI

Kwal 20419 YIL018W YDR418W FYI

Kwal 20419 YIL018W YEL054C FYI

Kwal 20419 YIL018W YER117W FYI

Kwal 20419 YIL018W YGL103W FYI

Kwal 20419 YIL018W YGL135W FYI

Kwal 20419 YIL018W YGL147C FYI

Kwal 20419 YIL018W YGR034W FYI

Kwal 20419 YIL018W YIL133C FYI

Kwal 20419 YIL018W YJL177W FYI

Kwal 20419 YIL018W YKL180W FYI

Kwal 20419 YIL018W YLR075W FYI

Kwal 20419 YIL018W YLR340W FYI

Kwal 20419 YIL018W YLR344W FYI

Kwal 20419 YIL018W YNL067W FYI

Kwal 20419 YIL018W YNL069C FYI

Kwal 20419 YIL018W YOL127W FYI

Kwal 20419 YIL018W YOR063W FYI

Kwal 20419 YIL018W YPL131W FYI

Kwal 20419 YIL018W YPL220W FYI

Kwal 20419 YIL018W YPR102C FYI

Kwal 20474 YPR120C YLR079W FYI

Kwal 20474 YPR120C, YGR109C YBR160W FYI

Kwal 20479 YPR119W YBR135W FYI

Kwal 20479 YPR119W YDR025W FYI

Kwal 20479 YPR119W YER111C FYI

Kwal 20479 YPR119W YKR048C FYI

Kwal 20479 YPR119W, YGR108W YBR160W FYI

Kwal 20547 YGR097W, YPR115W YDR167W FYI

Kwal 20756 YER132C YDR103W FYI

Kwal 20756 YGL197W YDL047W TAP

Kwal 20756 YGL197W YJL098W TAP

Kwal 20756 YGL197W YLR310C TAP

Kwal 20756 YGL197W YMR117C FYI

Kwal 21903 YPR162C YBR060C FYI,TAP
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Kwal 21903 YPR162C YHR118C TAP

Kwal 21903 YPR162C YML065W FYI,TAP

Kwal 21903 YPR162C YNL261W TAP

Kwal 22001 YNL307C YAL038W FYI

Kwal 22001 YNL307C YGR140W FYI

Kwal 22001 YNL307C YLR175W FYI

Kwal 22853 YDL042C YDR227W FYI

Kwal 22853 YDL042C YJL076W FYI

Kwal 22992 YBR048W, YDR025W YGL123W FYI

Kwal 22992 YBR048W, YDR025W YHL015W FYI

Kwal 22992 YBR048W, YDR025W YHR203C FYI

Kwal 22992 YBR048W, YDR025W YJR123W FYI

Kwal 22992 YBR048W, YDR025W YJR145C FYI

Kwal 22992 YBR048W, YDR025W YNL178W FYI

Kwal 22992 YBR048W, YDR025W YOL040C FYI

Kwal 22992 YDR025W YPR119W FYI

Kwal 22993 YBR049C YDR303C TAP

Kwal 22993 YBR049C YLR357W TAP

Kwal 22993 YBR049C YPL082C TAP

Kwal 22993 YBR049C YPR110C TAP

Kwal 23042 YBR052C YDR032C TAP

Kwal 23042 YDR032C YBR052C TAP

Kwal 23144 YOL081W YNL098C FYI

Kwal 23198 YOL086C YML085C FYI

Kwal 23262 YLR273C YLR258W FYI

Kwal 23262 YOR178C YBR045C FYI

Kwal 23294 YLR277C YDR228C TAP

Kwal 23294 YLR277C YDR301W TAP

Kwal 23294 YLR277C YJR093C TAP

Kwal 23294 YLR277C YKL059C TAP

Kwal 23294 YLR277C YKR002W TAP

Kwal 23294 YLR277C YLR115W TAP

Kwal 23294 YLR277C YNL317W TAP

Kwal 23294 YLR277C YPR107C TAP

Kwal 23294 YOR179C YGR156W TAP

Kwal 23294 YOR179C, YLR277C YAL043C TAP

Kwal 23294 YOR179C, YLR277C YDR195W TAP

Kwal 23294 YOR179C, YLR277C YER133W TAP

Kwal 23294 YOR179C, YLR277C YKL018W TAP

Kwal 23506 YDR098C, YER174C YGL220W FYI

Kwal 23522 YDR099W YAL017W TAP

Kwal 23522 YDR099W YER177W TAP

Kwal 23522 YER177W YDR099W TAP

Kwal 23522 YER177W YER133W TAP

Kwal 23522 YER177W YLR028C TAP
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Kwal 23522 YER177W, YDR099W YDR001C TAP

Kwal 23522 YER177W, YDR099W YGL252C TAP

Kwal 24014 YGL076C, YPL198W YBL092W FYI

Kwal 24014 YGL076C, YPL198W YOL127W FYI

Kwal 24014 YGL076C, YPL198W YPL131W FYI

Kwal 24134 YGL133W YBR245C TAP

Kwal 24134 YGL133W YDR121W TAP

Kwal 24134 YGL133W YDR224C TAP

Kwal 24134 YGL133W YFR013W TAP

Kwal 24134 YGL133W YOR304W TAP

Kwal 24151 YGL134W, YPL219W YPL031C FYI

Kwal 24153 YGL135W, YPL220W YDL136W FYI

Kwal 24153 YGL135W, YPL220W YDL191W FYI

Kwal 24153 YGL135W, YPL220W YGL103W FYI

Kwal 24153 YGL135W, YPL220W YGR034W FYI

Kwal 24153 YGL135W, YPL220W YIL018W FYI

Kwal 24153 YGL135W, YPL220W YLR075W FYI

Kwal 24153 YGL135W, YPL220W YLR344W FYI

Kwal 24153 YGL135W, YPL220W YOL127W FYI

Kwal 24153 YGL135W, YPL220W YOR063W FYI

Kwal 24153 YGL135W, YPL220W YPL131W FYI

Kwal 24259 YPL232W YAL030W FYI

Kwal 24259 YPL232W, YMR183C YGR009C FYI

Kwal 24289 YMR186W YHR102W FYI

Kwal 24289 YPL240C YAL005C FYI

Kwal 24289 YPL240C YKL117W FYI

Kwal 24289 YPL240C YLR216C FYI

Kwal 24289 YPL240C YLR310C FYI

Kwal 24289 YPL240C YOR027W FYI

Kwal 24289 YPL240C, YMR186W YBR155W FYI

Kwal 24289 YPL240C, YMR186W YLR362W FYI

Kwal 24375 YMR192W YNL112W TAP

Kwal 24375 YMR192W YPL249C TAP

Kwal 24375 YPL249C YMR192W TAP

Kwal 24388 YMR194W YGL099W TAP

Kwal 24388 YMR194W YNL132W TAP

Kwal 24388 YPL249C-A YBR142W TAP

Kwal 24388 YPL249C-A YDR101C TAP

Kwal 24388 YPL249C-A YNL301C TAP

Kwal 24430 YDL188C YJR009C TAP

Kwal 24430 YDL188C YML109W TAP

Kwal 24430 YDL188C YMR273C TAP

Kwal 24430 YDL188C, YDL134C YAL016W FYI,TAP

Kwal 24430 YDL188C, YDL134C YGL190C TAP

Kwal 24430 YDL188C, YDL134C YMR028W FYI
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Kwal 24430 YDL188C, YDL134C YOR014W FYI,TAP

Kwal 24561 YDL155W YBR135W FYI

Kwal 24561 YLR210W, YDL155W YBR160W FYI
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