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Today

Max-margin classification

SVM

I Hard SVM
I Duality
I Soft SVM
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Today

We are back to supervised learning

We are given training data {(x(i), t(i))}Ni=1

We will look at classification, so t(i) will represent the class label

We will focus on binary classification (two classes)

We will consider a linear classifier first (next class non-linear decision
boundaries)

Tiny change from before: instead of using t = 1 and t = 0 for
positive and negative class, we will use t = 1 for the positive and
t = −1 for the negative class
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Logistic Regression

y =

{
1 if (wTx + b) ≥ 0

−1 if (wTx + b) < 0
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Max Margin Classification

If the data is linearly separable, which separating hyperplane do you pick?

Aim: learn a boundary that leads to the largest margin (buffer) from points
on both sides

Why: intuition; theoretical support; and works well in practice

Subset of vectors that support (determine boundary) are called the support
vectors
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Hard SVM

Assume (for now) the data is linearly separable.

I There exists w and b such that ∀i : sign(wTx(i) + b) = t(i)

I Equivalently: ∀i : t(i) · (wTx(i) + b) > 0

We want to maximize the margin, how do we formulate it mathematically?

What is the distance of x(i) from the hyperplane wTx + b = 0? |w
T x(i)+b|
||w||

(show!). Equivalently (assuming w separates) t(i)·(wT x(i)+b)
||w||

The margin for w and b: mini
t(i)·(wT x(i)+b)

||w|| - distance to closest data point.
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Hard SVM Objective

Hard SVM objective V1:

w, b = arg max
w,b

[
min
i

t(i) · (wTx(i) + b)

||w||

]
s.t. ∀i : t(i) · (wTx(i) + b) > 0

The straightforward way to write the SVM objective.

Note: If the data is linearly separable you don’t really need the
t(i) · (wTx(i) + b) > 0 constraints (why?).

Writing it differently will lead to easier optimization.

The objective is scale invariant - we can normalize the ”margin” to one.

Hard SVM objective V2:

w, b = arg max
w,b

[
1

||w||

]
= arg min

w,b

1

2
||w||2

s.t. min
i

t(i) · (wTx(i) + b) = 1
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Hard SVM Objective

Further simplification - ”margin” is at least one.

Hard SVM (primal) objective:

w, b = arg min
w,b

1

2
||w||2

s.t. ∀i : t(i) · (wTx(i) + b) ≥ 1

Why is this equivalent?

I If the ”margin” isn’t exactly one we can scale w down and get a
smaller norm.

Convex quadratic programming problem.
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SVM Dual Form

Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

min
w,b

1

2
||w||2 + penalty term

For data {(x(i), t(i))}Ni=1, use the following penalty

max
αi≥0

αi [1− (wTx(i) + b)t(i)] =

{
0 if (wTx(i) + b)t(i) ≥ 1

∞ otherwise

Rewrite the minimization problem

min
w,b
{1

2
||w||2 +

N∑
i=1

max
αi≥0

αi [1− (wTx(i) + b)t(i)]}

where αi are the Lagrange multipliers

= min
w,b

max
αi≥0
{1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]}
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SVM Dual Form

Let:

J(w, b;α) =
1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]

Swap the ”max” and ”min”: This is a lower bound

max
αi≥0

min
w,b

J(w, b;α) ≤ min
w,b

max
αi≥0

J(w, b;α)

Equality holds in certain conditions

I Called ”strong duality”
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KKT conditions

Solving:

max
αi≥0

min
w,b

J(w, b;α) = max
αi≥0

min
w,b

1

2
||w||2 +

N∑
i=1

αi [1− (wTx(i) + b)t(i)]

Convex analysis theory: The solution satisfies all constraints and the
following KKT conditions:

∂J(w, b;α)

∂w
= w −

N∑
i=1

αix
(i)t(i) = 0⇒ w =

N∑
i=1

αi t
(i)x(i)

∂J(w, b;α)

∂b
= −

N∑
i=1

αi t
(i) = 0

αi [1− (wTx(i) + b)t(i)] = 0 (Complementary slackness)

Then substitute back to get final dual objective:

L = max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x(i)T · x(j))}

Set b∗ = − 1
2

(
maxi :t(i)=−1 w∗Tx(i) + maxi :t(i)=1 w∗Tx(i)

)
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Support Vectors

From KKT conditions we have

w =
N∑
i=1

αi t
(i)x(i), ∀i : αi [1− (wTx(i) + b)t(i)] = 0

If point x(i) isn’t on the boundary, then αi = 0!

The optimal solution is a sum of only the support vectors

Can show that if there are relatively few support vectors then SVM
generalizes well.
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Summary of Linear SVM

Binary and linear separable classification

Linear classifier with maximal margin

Showed two objectives, primal and dual

I Both are convex quadratic optimization problems.
I Primal optimizes d variables, dual optimizes N variables.

The weights are

w =
N∑
i=1

αi t
(i)x(i)

Only a small subset of αi ’s will be nonzero, and the corresponding x(i)’s are
the support vectors S

Prediction on a new example:

y = sign[b + xTw] = sign[b + xT · (
∑
i∈S

αi t
(i)x(i))]
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Non-separable data

So far we assume the data is separable, what do we do if its not?

the constraints t(i) · (wTx(i) + b) ≥ 1 cannot be satisfied for all data
points.

Solution: Allow the constraints to be violated, but penalize for it.

Introduce slack variables ξi ≥ 0 and make the new constraints
t(i) · (wTx(i) + b) ≥ 1− ξi

What is the minimal slack needed?
I ξi = max{1− t(i) · (wTx(i) + b), 0}

Penalty is C ·
∑

i ξi for some hyperparameter C .

Some variations use C ·
∑

i ξ
2
i penalty
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Soft-SVM

The new objective:

min
w,b,ξ

1

2
||w||2 + C

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i) + b) ≥ 1− ξi

Example lies on wrong side of hyperplane ξi > 1

Therefore
∑

i ξi upper bounds the number of training errors

C trades off training error vs model complexity

This is known as the soft-margin extension

Can show a dual form is the same except we have an additional αi ≤ C
constraint (and b∗ computation).
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Hinge Loss

Our objective:

min
w,b,ξ

1

2
||w||2 + C

N∑
i=1

ξi

s.t ξi ≥ 0; ∀i t(i)(wTx(i) + b) ≥ 1− ξi

We can plug in the optimal ξi and get the equivalent objective

min
w,b,

1

2
||w||2 + C

N∑
i=1

`hinge(wTx(i) + b, t(i))

We define the hinge loss as

`hinge(wTx(i) + b, t(i)) = max{1− t(i) · (wTx(i) + b), 0}

CSC411 Lec17 16 / 1



Hinge Loss

`hinge(z , t) = max{1− z · t, 0}
`logistic(z , t) = ln(1+exp(−z ·t))

Another surrogate loss for 0-1 loss.

Convex.

Not smooth at the kink but ok (can use subgradients, not covered in
this course)

Hinge loss can be used with other learning algorithms like neural
networks.
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Example: Pedestrian Detection

Big breakthrough in computer vision (2006)

Linear SVM + hand crafted features (HOG)

[Image credit: ”Histograms of Oriented Gradients for Human Detection”]
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SVM Theoretical Guarantees *

Assume the data is separated by a margin γ and that ||x|| ≤ 1

Can show that with probability at least 1− δ the 0-1 loss of (hard)
SVM will be bounded by

O

(√
1/γ2

N
+

√
log(1/δ)

N

)

Main observation: This does not depend on the dimension!

Can show similar results for ”soft” SVM.

Very important for kernels (soon)
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Recap

Maximum margin classifiers.

Convex quadratic optimization.

Primal and dual objective, which one to use depends on dimension
and data size.

I Open source packages like sklearn support both.

If data isn’t separable - use slack variables to penalize constraint
violations.

Another perspective - hinge loss with l2 regularization.

Important note: If you use a off-the-shelf quadratic solver it will be
very slow, special SVM solvers like SMO are much better.

Can use SGD, see Pegasos
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