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@ Max-margin classification
e SVM

» Hard SVM
» Duality
» Soft SVM



@ We are back to supervised learning

o We are given training data {(x(), t())}N

o We will look at classification, so £ will represent the class label

e We will focus on binary classification (two classes)

e We will consider a linear classifier first (next class non-linear decision
boundaries)

@ Tiny change from before: instead of using t =1 and t = 0 for

positive and negative class, we will use t = 1 for the positive and
t = —1 for the negative class
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Logistic Regression

Recall logistic regression classifiers
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Max Margin Classification

@ If the data is linearly separable, which separating hyperplane do you pick?

@ Aim: learn a boundary that leads to the largest margin (buffer) from points
on both sides

@ Why: intuition; theoretical support; and works well in practice

@ Subset of vectors that support (determine boundary) are called the support
vectors



Hard SVM

@ Assume (for now) the data is linearly separable.

» There exists w and b such that Vi : sign(w’x{) + b) = t()
» Equivalently: Vi : t0) . (wTx() + b) >0

@ We want to maximize the margin, how do we formulate it mathematically?

@ What is the distance of x() from the hyperplane w”x + b = 0? W
0. (T
(show!). Equivalently (assuming w separates) %
. L) 0 . .
@ The margin for w and b: min; W distance to closest data point.
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Hard SVM ective

Hard SVM objective V1:

w, b= argnull?x {miin Twl]

sit. Vit (w'x®D 4+ p)>0

@ The straightforward way to write the SVM objective.

@ Note: If the data is linearly separable you don't really need the
t0) . (wTx() + b) > 0 constraints (why?).

@ Writing it differently will lead to easier optimization.

@ The objective is scale invariant - we can normalize the "margin” to one.

Hard SVM objective V2:

b : i 1|| I?
w =argmax | ——— | = arg min < ||W
: &S [Twll S5 7

sit. mintd) . (wTx(®) 4 p) =1
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Hard SVM Objective

@ Further simplification - "margin” is at least one.

Hard SVM (primal) objective:

1
b= in =||wl[?
w; b = arg min - ||w|

sit. Vit (wTx® 4 p)>1

@ Why is this equivalent?

» If the "margin” isn't exactly one we can scale w down and get a
smaller norm.

@ Convex quadratic programming problem.



SVM Dual Form

@ Convert the constrained minimization to an unconstrained optimization
problem: represent constraints as penalty terms:

.1 2
min = ||w|[” + penalty_term
w,b 2

@ For data {(x(), t())}N_, use the following penalty
{o it (wx® + p)t? >1

max o[l — (w’ x4+ b)t)] = .
oo otherwise

;>0
@ Rewrite the minimization problem
1 N
inf = 2 11— (wx(® ()
min{5|iwll +Z;gjg>5a,[1 (wx? + b))}
=
where «; are the Lagrange multipliers

N
— i L2 S a T () (7)
= mipmax{5liwll” + ._10"[1 (w X D)E]y
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SVM Dual Form

o Let: 1 N
o) — o 2 11 — (w7 x() ()
Jw, bia) = S|l + 3 aift = (wTx + b)el]

i=1

@ Swap the "max" and "min”: This is a lower bound

maxmin J(w, b;a) < min max J(w, b; @)
;>0 w,b w,b ;>

@ Equality holds in certain conditions

» Called "strong duality”
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KKT conditions

@ Solving:
1 N _ .
max mip J(w, bi) = maxmip HIWIf*+ ) aill - (T + B)el]

@ Convex analysis theory: The solution satisfies all constraints and the
following KKT conditions:

N N
78'/(‘2;:3' @) _ w— ; axt) =0 = w= ; aitDx
0J(w, b; o) N
] _ _ . (i) _
T ; ajt 0
aill = (w'x? + b)t] = 0 (Complementary slackness)

@ Then substitute back to get final dual objective:
N 1 ;
— = DDy ey (D )
L= 21;)8{21 @i— 3 Zl "tV aia(x x')}
i= ij=

@ Set b =—1 (max,:t(;):,l w*Tx() + max;.,i)_, W*Tx(i))



Support Vectors

@ From KKT conditions we have
N . . . .
w= Za;t(')x(’), Vit ai[l — (w x4+ )] =0
i-1
@ If point x() isn't on the boundary, then o; = 0!

@ The optimal solution is a sum of only the support vectors

Can show that if there are relatively few support vectors then SVM
generalizes well.



Summary of Linear SVM

@ Binary and linear separable classification
@ Linear classifier with maximal margin
@ Showed two objectives, primal and dual

» Both are convex quadratic optimization problems.
» Primal optimizes d variables, dual optimizes N variables.

@ The weights are
N
w = Za;t(i)x(i)
i=1
@ Only a small subset of a;'s will be nonzero, and the corresponding x()'s are
the support vectors S
@ Prediction on a new example:

y = sign[b+ XTW] = sign[b + x| - (Z oz,-t(")x("))]
i€s



Non-separable data

@ So far we assume the data is separable, what do we do if its not?

o the constraints t()) . (w7x() 4 b) > 1 cannot be satisfied for all data
points.

Solution: Allow the constraints to be violated, but penalize for it.

Introduce slack variables &; > 0 and make the new constraints
t0 . (wTx() 4 p) > 1—¢

What is the minimal slack needed?
» & =max{1l —t0) . (wTx() + b),0}

Penalty is C - ). ¢ for some hyperparameter C.

Some variations use C - >_.£2 penalty



Soft-SVM

+1 plane
/

@ The new objective:

N
o1 >
min gl +€2_&

»0,

st &>0, Vi 9w xD+p)>1-¢

[ ]
’ ’ /, ®
[ ]

@ Example lies on wrong side of hyperplane §; > 1

Therefore 3, & upper bounds the number of training errors

C trades off training error vs model complexity

This is known as the soft-margin extension

@ Can show a dual form is the same except we have an additional a; < C
constraint (and b* computation).



@ Our objective:

N

min 2wl + 3

st &>0; Vi tDw x)4p)>1-¢
@ We can plug in the optimal &; and get the equivalent objective

1 N . .

W'b" 5||w||2 + Ciz;fhinge(WTX(') + b, 1))

@ We define the hinge loss as
Eh;,,ge(wa(i) + b, t) = max{1 — t0 . (wTx() + b),0}
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— Zero-one loss
— Hinge loss
— Logistic loss

;)

® lhinge(z,t) = max{l —z-t,0}

s, ® liogistic(z,t) = In(14+-exp(—z-t))
i ;(T,)
@ Another surrogate loss for 0-1 loss.
o Convex.
@ Not smooth at the kink but ok (can use subgradients, not covered in
this course)
(]

Hinge loss can be used with other learning algorithms like neural
networks.
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Example: Pedestrian Detection
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

e Big breakthrough in computer vision (2006)
o Linear SVM + hand crafted features (HOG)

[Image credit: "Histograms of Oriented Gradients for Human Detection”]
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SVM Theoretical Guarantees *

@ Assume the data is separated by a margin 7 and that ||x|| <1

@ Can show that with probability at least 1 — § the 0-1 loss of (hard)
SVM will be bounded by

o7 -4

@ Main observation: This does not depend on the dimension!

@ Can show similar results for "soft” SVM.

@ Very important for kernels (soon)



@ Maximum margin classifiers.

o Convex quadratic optimization.

@ Primal and dual objective, which one to use depends on dimension
and data size.

» Open source packages like sklearn support both.

o If data isn’t separable - use slack variables to penalize constraint
violations.

@ Another perspective - hinge loss with /, regularization.

@ Important note: If you use a off-the-shelf quadratic solver it will be
very slow, special SVM solvers like SMO are much better.

@ Can use SGD, see Pegasos


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8513&rep=rep1&type=pdf

