The	
00	
00	

Optimization 0000 Generalization oo oooo Probabilistic viewpoint o ooo

CSC 411: Lecture 2 - Linear Regression Ethan Fetaya, James Lucas and Emad Andrews

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● 今 Q @

The model	Optimization	Generalization	Probabilistic viewpoint
•• •• ••		00 0000	0 000
Intorduction			

Regression - predicting continuous outputs. Examples:

- Future stock prices.
- Tracking object location in the next time-step.
- Housing prices.
- Crime rates.

We don't just have infinite number of possible answers, we assume a simple geometry - closer is better.

We will focus on *linear* regression models.

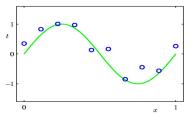
The model	Optimization	Generalization	
○ ○○ ○○	0000	00 0000	000
Intorduction			

What do I need in order to make predictions? In linear regression

- Inputs (features) x (x for vectors). A vector $\mathbf{x} \in \mathbb{R}^d$
- \blacksquare Output (dependent variable) y. $y \in \mathbb{R}$
- \blacksquare Training data. $(\mathbf{x}^{(1)},y^{(1)}),...,(\mathbf{x}^{(N)},y^{(N)})$
- A model/hypothesis class, a family of functions that represents the relationship between x and y. $f_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + \dots w_d x_d$ for $\mathbf{w} \in \mathbb{R}^{d+1}$
- A loss function $\ell(y, \hat{y})$ that assigns a cost to each prediction. $L_2(y, \hat{y}) = (y \hat{y})^2$, $L_1(y, \hat{y}) = |y \hat{y}|$
- Optimization a way to minimize the loss objective. Analytic solution, convex optimization

00 0000 00 0 ●0 0000 0000 000	
Features	

Linear model seems very limited, for example



is not close to linear.

In linear model we mean **linear in parameters not the** inputs!

<ロ> (日) (日) (日) (日) (日)

э

¹Images from Bishop

The model	Optimization	Generalization	Probabilistic viewpoint
		00 0000	0 000
Features			

Any (fixed) transformation $\phi(x) \in \mathbb{R}^d$ we can run linear regression with features $\phi(x)$.

Example: Polynomials $w_0 + w_1 x + \ldots + w_d x^d$ are a linear (in w) model.

Feature engineering - design good features and feed them to a linear model.

Commonly replaced with deep models that learn the features as well.

The model	Optimization	Generalization	Probabilistic viewpoint
00 00 ●0		00 0000	0 000
Loss			

Most common loss is
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$
.

Easy to optimize (convex, analytic solution), well understood, harshly punishes large mistakes. Can be good (e.g. financial predictions) or bad (outliers).

The optimal prediction w.r.t L_2 loss is the conditional mean $\mathbb{E}[y|x]$ (show!).

Equivalent to assuming Gaussian noise (more on that later).

The model	Optimization	Generalization	Probabilistic viewpoint
		00 0000	0 000
Loss			

Another common loss is
$$L_1(y, \hat{y}) = |y - \hat{y}|$$
.

Easyish to optimize (convex), well understood, Robust to outliers.

The optimal prediction w.r.t L_2 loss is the conditional median (show!).

Equivalent to assuming Laplace noise.

You can combine both - Huber loss.

The model	Optimization	Generalization	Probabilistic viewpoint
00 00 00	000	00 0000	0 000
Analytical solution			

Deriving and analyzing the optimal solution:

Notation: We can include the bias into \mathbf{x} by adding 1, $\mathbf{x}^{(i)} = [1, x_1^{(i)}, ..., x_d^{(i)}]$. Prediction is $\mathbf{x}^T \mathbf{w}$.

Target vector $\mathbf{y} = [y^{(1)}, ..., y^{(N)}]^T$.

Feature vectors $\mathbf{f}^{(j)} = [\mathbf{x}_j^{(1)}, ..., \mathbf{x}_j^{(N)}]^T$.

Design matrix $\mathbf{X}, \mathbf{X}_{ij} = \mathbf{x}_j^{(i)}$.

Rows correspond to data points, columns to features.

The model	Optimization	Generalization	Probabilistic viewpoint
00 00 00	0000	00 0000	0 000
Analytical solution			

Theorem

The optimal \mathbf{w} w.r.t L_2 loss, $w^* = \arg\min\sum_{i=1}^N (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2$ is $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$.

Proof (sketch): Our predictions vector are $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$ and the total loss is $L(\mathbf{w}) = ||\mathbf{y} - \hat{\mathbf{y}}||^2 = ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2$.

Rewriting
$$L(\mathbf{w}) = ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = \mathbf{y}^T\mathbf{y} + \mathbf{w}^T\mathbf{X}^T\mathbf{X}\mathbf{w} - 2\mathbf{w}^T\mathbf{X}^T\mathbf{y}.$$

 $\nabla L(\mathbf{w}^*) = 2\mathbf{X}^T \mathbf{X} \mathbf{w}^* - 2\mathbf{X} \mathbf{y} = 0 \Rightarrow \mathbf{X}^T \mathbf{X} \mathbf{w}^* = \mathbf{X}^T \mathbf{y}.$ If the features aren't linearly dependent $\mathbf{X}^T \mathbf{X}$ is invertible.

Never actually invert! Use linear solvers (Conjugate gradients, Cholesky decomp,...)

Some intuition: Our predictions are $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}^*$ and we have $\mathbf{X}^T\mathbf{X}\mathbf{w}^* = \mathbf{X}^T\mathbf{y}$.

Residual
$$r = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{X}\mathbf{w}^*$$
, so $\mathbf{X}^T r = 0$.

This means r is orthogonal to $\mathbf{f}^{(1)}, \dots, \mathbf{f}^{(d)}$ (and zero mean).

Geometrically we are projecting \mathbf{y} to the subspace spun by the features.

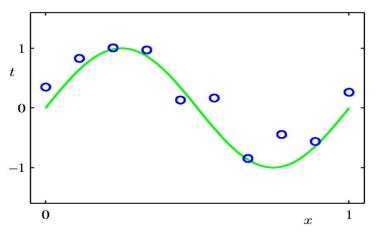
Assume the features have zero mean $\sum_{j} \mathbf{f}_{j}^{(i)} = 0$, in this case $[\mathbf{X}^T \mathbf{X}]_{ij} = \operatorname{cov}(\mathbf{f}^{(i)}, \mathbf{f}^{(j)})$ and $[\mathbf{X}^T \mathbf{y}]_j = \operatorname{cov}(\mathbf{f}^{(j)}, \mathbf{y})$.

If the covariance is diagonal (data-whitening, see tutorial), $\operatorname{var}(\mathbf{f}^{(j)}) \cdot w_j = \operatorname{cov}(\mathbf{f}^{(j)}, \mathbf{y}) \Rightarrow w_j = \frac{\operatorname{cov}(\mathbf{f}^{(j)}, \mathbf{y})}{\operatorname{var}(\mathbf{f}^{(j)})}.$

Good feature = large signal to noise ratio (loosely speaking).

The model Optimization	Generalization	Probabilistic viewpoint
00 0000 00 00	00 0000	0 000
Overfitting		

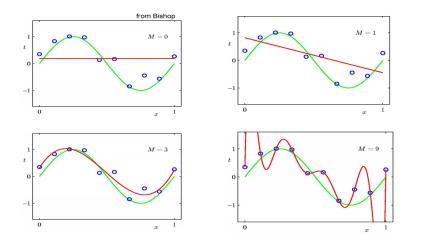
Back to our simple example - lets fit a polynomial of degree M.



▲ロト ▲御 ▶ ▲ 臣 ▶ ▲臣 ▶ ▲ 臣 → ���

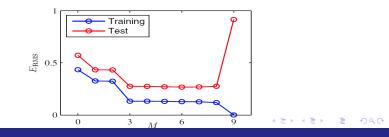
The model	Optimization	Generalization	
00 00 00		0 0000	0 000
Overfitting			

Back to our simple example - lets fit a polynomial of degree M.



The model oo oo oo	Optimization 0000	Generalization ⊙● ○○○○	Probabilistic viewpoint o ooo
Overfitting			

- Generalization = models ability to predict the held out data.
- Model with M = 1 underfits (cannot model data well).
- Model with M = 9 overfits (it models also noise).
- Not a problem if we have lots of training examples (rule-of-thumb 10×dim)
- Simple solution model selection (validation/cross-validation)



The model	Optimization	Generalization	Probabilistic viewpoint
00 00 00		00 ●000	0 000
Regularization			

Observation: Overfiting models term to have large norm.

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

▲ロト ▲御ト ▲理ト ▲理ト → 理 → のへの

Solution: Regularizer $R(\mathbf{w})$ penalizing large norm, $w^* = \arg\min_{\mathbf{w}} = L_S(\mathbf{w}) + R(\mathbf{w}).$

Commonly use
$$R(\mathbf{w}) = \frac{\lambda}{2} ||\mathbf{w}||_2^2 = \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} = \frac{\lambda}{2} \sum \mathbf{w}_j^2$$

The model	Optimization	Generalization	Probabilistic viewpoint
00 00 00		00 0●00	0 000
Regularization			

$$L_2$$
 regularization $R(\mathbf{w}) = \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$

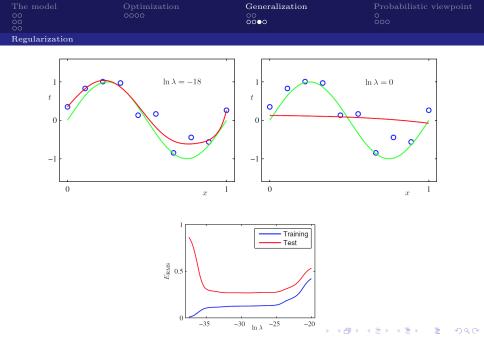
Objective
$$\sum_{i} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)})^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}.$$

Analytic solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X} \mathbf{y}$ (show!)

Can show equivalence to Gaussian prior.

Normaly we do not regularize the bias w_0 .

Use validation/cross-validation to find a good λ .

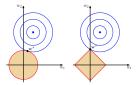


00 0000 00 0	
00 000 000 000	
Regularization	

Another common regularizer: L_1 regularization $R(\mathbf{w}) = \lambda ||\mathbf{w}||_1 = \lambda \sum |w_i|$

Convex (SGD) but no analytic solution

Tends to induce *sparse* solutions.



Can show equivalence to Laplacian prior.

The model oo oo oo	Optimization 0000	Generalization 00 0000	$\begin{array}{c} \text{Probabilistic viewpoint} \\ \bullet \\ \circ \circ \circ \end{array}$
Maximum likelihood			

Probabilistic viewpoint: Assume
$$p(y^{(i)}|x^{(i)}) = \mathbf{w}^T \mathbf{x}^{(i)} + \epsilon_i$$
 and ϵ_i
are i.i.d $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. $p(y|x) = \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2) = \frac{\exp\left(\frac{-||y-\mathbf{w}^T \mathbf{x}||^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$.

 \mathbf{w} parametrizes a distribution. Which distribution to pick? Maximize the *likelihood* of the observation.

Log-likelihood log(
$$p(\mathbf{y}^{(1)}, ..., \mathbf{y}^{(N)}) | \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}; \mathbf{w})$$
)
= log $\left(\prod_{i=1}^{N} p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \mathbf{w})\right) = \sum_{i=1}^{N} \log \left(p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}) \right).$

Linear Gaussian model $\Rightarrow \log \left(p(\mathbf{y} | \mathbf{x}; \mathbf{w}) \right) = \frac{-||y - \mathbf{w}^T \mathbf{x}||^2}{2\sigma^2} - 0.5 \log(2\pi\sigma^2)$

maximum likelihood = minimum L_2 loss.

The model	Optimization	Generalization	Probabilistic viewpoint
00 00 00		00 0000	0 ●00
MAP			

"When you hear hoof-beats, think of horses not zebras" *Dr. Theodore Woodward.*

ML finds a model that makes the observation likely P(data|w), we want the most probable model p(w|data).

Bayes formula
$$P(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{P(\mathbf{y}|\mathbf{w}, \mathbf{X})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})} \propto P(\mathbf{y}|\mathbf{w}, \mathbf{X})p(\mathbf{w})$$

Need prior $p(\mathbf{w})$ - what model is more likely?

MAP=Maximum a posteriori estimator $\mathbf{w}_{MAP} = \arg \max P(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \arg \max P(\mathbf{y}|\mathbf{w}, \mathbf{X})p(\mathbf{w})$ $= \arg \max \log(P(\mathbf{y}|\mathbf{w}, \mathbf{X})) + \log(p(\mathbf{w}))$

・ロト ・四ト ・ヨト ・ヨト

Convenient prior (conjugate):
$$p(\mathbf{w}) = \mathcal{N}(0, \sigma_w^2)$$

$$\mathbf{w}_{map} = \arg\max \log(P(\mathbf{y}|\mathbf{w}, \mathbf{X})) + \log(p(\mathbf{w}))$$
$$= -\frac{||\mathbf{y} - \mathbf{w}^T \mathbf{x}||^2}{2\sigma^2} - \frac{||\mathbf{w}||^2}{2\sigma_w^2}$$

 L_2 regularization = Gaussian prior.

The model oo oo oo	Optimization 0000	Generalization oo oooo	Probabilistic viewpoint ° oo●
MAP			

Recap:

- Linear models benefit: Simple, fast (test time), generalize well (with regularization).
- Linear models limitations: Performance crucially depends on good features.
- Modeling questions loss and regularizer (and features)
- L₂ loss and regularization analytical solution, otherwise stochastic optimization (next week).
- Difficulty with multimodel distribution discretization might work much better.