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The model Optimization Generalization Probabilistic viewpoint

Intorduction

Regression - predicting continuous outputs.
Examples:

Future stock prices.

Tracking - object location in the next time-step.

Housing prices.

Crime rates.

We don’t just have infinite number of possible answers, we
assume a simple geometry - closer is better.

We will focus on linear regression models.
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Intorduction

What do I need in order to make predictions? In linear
regression

Inputs (features) x (x for vectors). A vector x ∈ Rd

Output (dependent variable) y. y ∈ R
Training data. (x(1), y(1)), ..., (x(N), y(N))

A model/hypothesis class, a family of functions that
represents the relationship between x and y.
fw(x) = w0 + w1x1 + ...wdxd for w ∈ Rd+1

A loss function `(y, ŷ) that assigns a cost to each
prediction. L2(y, ŷ) = (y − ŷ)2, L1(y, ŷ) = |y − ŷ|
Optimization - a way to minimize the loss objective.
Analytic solution, convex optimization
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Features

Linear model seems very limited, for example

is not close to linear.

In linear model we mean linear in parameters not the
inputs!

1Images from Bishop
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Features

Any (fixed) transformation φ(x) ∈ Rd we can run linear
regression with features φ(x).

Example: Polynomials w0 + w1x+ ...+ wdx
d are a linear (in w)

model.

Feature engineering - design good features and feed them to a
linear model.

Commonly replaced with deep models that learn the features as
well.
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Loss

Most common loss is L2(y, ŷ) = (y − ŷ)2.

Easy to optimize (convex, analytic solution), well understood,
harshly punishes large mistakes. Can be good (e.g. financial
predictions) or bad (outliers).

The optimal prediction w.r.t L2 loss is the conditional mean
E[y|x] (show!).

Equivalent to assuming Gaussian noise (more on that later).
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The model Optimization Generalization Probabilistic viewpoint

Loss

Another common loss is L1(y, ŷ) = |y − ŷ|.

Easyish to optimize (convex), well understood, Robust to
outliers.

The optimal prediction w.r.t L2 loss is the conditional median
(show!).

Equivalent to assuming Laplace noise.

You can combine both - Huber loss.
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Analytical solution

Deriving and analyzing the optimal solution:

Notation: We can include the bias into x by adding 1,

x(i) = [1, x
(i)
1 , ..., x

(i)
d ]. Prediction is xTw.

Target vector y = [y(1), ..., y(N)]T .

Feature vectors f (j) = [x
(1)
j , ...,x

(N)
j ]T .

Design matrix X, Xij = x
(i)
j .

Rows correspond to data points, columns to features.
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Analytical solution

Theorem

The optimal w w.r.t L2 loss, w∗ = arg min
∑N

i=1(y
(i) −wTx(i))2

is w∗ = (XTX)−1XTy.

Proof (sketch): Our predictions vector are ŷ = Xw and the
total loss is L(w) = ||y − ŷ||2 = ||y −Xw||2.

Rewriting L(w) = ||y −Xw||2 = (y −Xw)T (y −Xw) =
yTy + wTXTXw − 2wTXTy.

∇L(w∗) = 2XTXw∗ − 2Xy = 0⇒ XTXw∗ = XTy.
If the features aren’t linearly dependent XTX is invertible.

Never actually invert! Use linear solvers (Conjugate gradients,
Cholesky decomp,...)
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Analytical solution

Some intuition: Our predictions are ŷ = Xw∗ and we have
XTXw∗ = XTy.

Residual r = y − ŷ = y−Xw∗, so XT r = 0.

This means r is orthogonal to f (1), ..., f (d) (and zero mean).

Geometrically we are projecting y to the subspace spun by the
features.
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Analytical solution

Assume the features have zero mean
∑

j f
(i)
j = 0, in this case

[XTX]ij = cov(f (i), f (j)) and [XTy]j = cov(f (j),y).

If the covariance is diagonal (data-whitening, see tutorial),

var(f (j)) · wj = cov(f (j),y)⇒ wj = cov(f (j),y)

var(f (j))
.

Good feature = large signal to noise ratio (loosely speaking).
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Overfitting

Back to our simple example - lets fit a polynomial of degree M .
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Overfitting

Back to our simple example - lets fit a polynomial of degree M .
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Overfitting

Generalization = models ability to predict the held out
data.
Model with M = 1 underfits (cannot model data well).
Model with M = 9 overfits (it models also noise).
Not a problem if we have lots of training examples
(rule-of-thumb 10×dim)
Simple solution - model selection
(validation/cross-validation)
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Regularization

Observation: Overfiting models term to have large norm.

Solution: Regularizer R(w) penalizing large norm,
w∗ = arg minw = LS(w) +R(w).

Commonly use R(w) = λ
2 ||w||

2
2 = λ

2w
Tw = λ

2

∑
w2
j

CSC411-Lec2



The model Optimization Generalization Probabilistic viewpoint

Regularization

L2 regularization R(w) = λ
2w

Tw

Objective
∑

i(w
Tx(i) − y(i))2 + λ

2w
Tw.

Analytic solution w∗ = (XTX + λI)−1Xy (show!)

Can show equivalence to Gaussian prior.

Normaly we do not regularize the bias w0.

Use validation/cross-validation to find a good λ.
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Regularization
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Regularization

Another common regularizer: L1 regularization
R(w) = λ||w||1 = λ

∑
|wi|

Convex (SGD) but no analytic solution

Tends to induce sparse solutions.

Can show equivalence to Laplacian prior.
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Maximum likelihood

Probabilistic viewpoint: Assume p(y(i)|x(i)) = wTx(i) + εi and εi

are i.i.d εi ∼ N (0, σ2). p(y|x) = N (wTx, σ2) =
exp

(
−||y−wT x||2

2σ2

)
√
2πσ2

.

w parametrizes a distribution. Which distribution to pick?
Maximize the likelihood of the observation.

Log-likelihood log(p(y(1), ...,y(N))|x(1), ...,x(N);w))

= log
(∏N

i=1 p(y
(i)|x(i);w)

)
=
∑N

i=1 log
(
p(y(i)|x(i);w)

)
.

Linear Gaussian model
⇒ log (p(y|x;w)) = −||y−wTx||2

2σ2 − 0.5 log(2πσ2)

maximum likelihood = minimum L2 loss.
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MAP

”When you hear hoof-beats, think of horses not zebras”Dr.
Theodore Woodward.

ML finds a model that makes the observation likely P (data|w),
we want the most probable model p(w|data).

Bayes formula P (w|y,X) = P (y|w,X)p(w)
p(y|X) ∝ P (y|w,X)p(w)

Need prior p(w) - what model is more likely?

MAP=Maximum a posteriori estimator
wMAP = arg maxP (w|y,X) = arg maxP (y|w,X)p(w)
= arg max log(P (y|w,X)) + log(p(w))
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MAP

Convenient prior (conjugate): p(w) = N (0, σ2w)

wmap = arg max log(P (y|w,X)) + log(p(w))

= − ||y−w
Tx||2

2σ2 − ||w||
2

2σ2
w

L2 regularization = Gaussian prior.
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MAP

Recap:

Linear models benefit: Simple, fast (test time), generalize
well (with regularization).

Linear models limitations: Performance crucially depends
on good features.

Modeling questions - loss and regularizer (and features)

L2 loss and regularization - analytical solution, otherwise
stochastic optimization (next week).

Difficulty with multimodel distribution - discretization
might work much better.
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