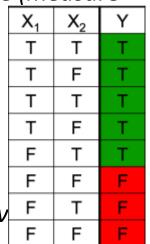
Steps to Build a DT

- A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous)
- To build a decision tree, we need to calculate two types of entropy using frequency tables
 - a) Entropy using the frequency table of the target attribute.
 - b) Joint Entropy using the frequency table (Target, other attribute)
- Step 1: Calculate Entropy of the Target (*Measure the uncertainty associated with the target*)

$$H(Y) = -\sum_{i=1}^{c} p(Y=i) \log_2 p(i)$$

$$H(Y) = -\frac{5}{8}\log_2\left(\frac{5}{8}\right) - \frac{3}{8}\log_2\left(\frac{3}{8}\right) = 0.95$$


X ₁	X ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

- Step 2: Calculate Conditional Entropy for the target and each feature (measure the uncertainty associated with target given each feature)
 X₁ X₂ Y
 - $H(Y|X_1)$
 - $H(Y|X_2)$
 - Note that: $H(Y|X_1) \le H(Y)$
- Step 3 : Calculate Information Gain for each feature:

Think of IG as "How much uncertainty remains in the target after remov F effect of the feature"

$$IGain(Y, X_1) = H(Y) - H(Y|X_1)$$

$$IGain(Y, X_2) = H(Y) - H(Y|X_2)$$

- Step 4: Choose attribute with the largest information gain as the decision node.
 - A branch with entropy of 0 is a leaf node.
 - A branch with entropy more than 0 needs further splitting.
- Step 5: Recourse on non-leaf branches until all data is classified

