CSC411- Ensemble methods Gradient Boost Tree

0

What is ensemble ?

Why ensemble?

When three people are walking together, I am sure to find teachers among them.

Three stooges equal to one master

Ensemble error rate = $\binom{2}{3}(0.3)^2(0.7)^1 + \binom{3}{3}(0.3)^3(0.7)^0 = 21.6\%$

- If the individual error rate is 60%, then the ensemble error rate = 64.8%
- Ensemble error rate reduce to 2.6% (individual 30%) or increase to 82.6% (individual 60%) if there are 21 person.
- We want each individual accurate and make different errors.

Type of ensemble methods

Bayesian voting

Bagging (bootstrapping aggregation)

Boosting

Stacking

Recap: Supervised Learning

- Notations: $x_i \in \mathbf{R}^d$ i-th training example
- **Model**: how to make prediction \hat{y}_i given x_i
 - Linear model: $\hat{y}_i = \sum_j w_j x_{ij}$ (include linear/logistic regression)
 - The prediction score \hat{y}_i can have different interpretations depending on the task
 - Linear regression: \hat{y}_i is the predicted score
 - Logistic regression: $1/(1 + exp(-\hat{y}_i))$ is predicted the probability of the instance being positive
 - Others... for example in ranking \hat{y}_i can be the rank score
- **Parameters**: the things we need to learn from data
 - Linear model: $\Theta = \{w_j | j = 1, \cdots, d\}$

Objective Function

Objective function that is everywhere

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

Training Loss measures how well model fit on training data

Regularization, measures complexity of model

- Loss on training data: $L = \sum_{i=1}^{n} l(y_i, \hat{y}_i)$
 - Square loss: $l(y_i, \hat{y}_i) = (y_i \hat{y}_i)^2$
 - Logistic loss: $l(y_i, \hat{y}_i) = y_i \ln(1 + e^{-\hat{y}_i}) + (1 y_i) \ln(1 + e^{\hat{y}_i})$
- Regularization: how complicated the model is?
 - L2 norm: $\Omega(w) = \lambda \|w\|^2$
 - L1 norm (lasso): $\Omega(w) = \lambda \|w\|_1$

Objective Function - GBT

- Objective: $\sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_k \Omega(f_k), f_k \in \mathcal{F}$
- We can not use methods such as SGD, to find f (since they are trees, instead of just numerical vectors)
- Solution: Additive Training (Boosting)
 - Start from constant prediction, add a new function each time

Model at training round t

Keep functions added in previous round

GBT – Additive Training

- How do we decide which f to add?
 - Optimize the objective!!
- The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

This is what we need to decide in round t

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

$$\in \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$$

Goal: find f_t to minimize this

• Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

- Goal $Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$
 - Seems still complicated except for the case of square loss
- Take Taylor expansion of the objective
 - Recall $f(x + \Delta x) \simeq f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$
 - Define $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

• If you are not comfortable with this, think of square loss

$$g_i = \partial_{\hat{y}^{(t-1)}} (\hat{y}^{(t-1)} - y_i)^2 = 2(\hat{y}^{(t-1)} - y_i) \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 (y_i - \hat{y}^{(t-1)})^2 = 2$$

• Compare what we get to previous slide

• Objective, with constants removed

$$\sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$$

• where $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

- Why spending so much efforts to derive the objective, why not just grow trees ...
 - Theoretical benefit: know what we are learning, convergence
 - Engineering benefit, recall the elements of supervised learning
 - g_i and h_i comes from definition of loss function
 - The learning of function only depend on the objective via g_i and h_i
 - Think of how you can separate modules of your code when you are asked to implement boosted tree for both square loss and logistic loss

Refine the definition of tree

• We define tree by a vector of scores in leafs, and a leaf index mapping function that maps an instance to a leaf

Define Complexity of a Tree

• Define complexity as (this is not the only possible definition)

Revisit the Objectives

- Define the instance set in leaf j as $I_j = \{i | q(x_i) = j\}$
- Regroup the objective by each leaf

$$\begin{aligned} Obj^{(t)} &\simeq \sum_{i=1}^{n} \left[g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i}) \right] + \Omega(f_{t}) \\ &= \sum_{i=1}^{n} \left[g_{i}w_{q(x_{i})} + \frac{1}{2}h_{i}w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2}\sum_{j=1}^{T} w_{j}^{2} \\ &= \sum_{j=1}^{T} \left[(\sum_{i \in I_{j}} g_{i})w_{j} + \frac{1}{2}(\sum_{i \in I_{j}} h_{i} + \lambda)w_{j}^{2} \right] + \gamma T \end{aligned}$$

• This is sum of T independent quadratic functions

The Structure Score

Two facts about single variable quadratic function

 $argmin_x Gx + \frac{1}{2}Hx^2 = -\frac{G}{H}, \ H > 0 \quad \min_x Gx + \frac{1}{2}Hx^2 = -\frac{1}{2}\frac{G^2}{H}$

• Let us define $G_j = \sum_{i \in I_j} g_i \ H_j = \sum_{i \in I_j} h_i$

$$Obj^{(t)} = \sum_{j=1}^{T} \left[(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2 \right] + \gamma T \\ = \sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T$$

 Assume the structure of tree (q(x)) is fixed, the optimal weight in each leaf, and the resulting objective value are

$$w_j^* = -\frac{G_j}{H_j + \lambda} \quad Obj = -\frac{1}{2} \sum_{j=1}^T \frac{G_j^2}{H_j + \lambda} + \gamma T$$

This measures how good a tree structure is!

The Structure Score Calculation

$$Obj = -\sum_j \frac{G_j^2}{H_j + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

- Enumerate the possible tree structures q
- Calculate the structure score for the q, using the scoring eq.

$$Obj = -\frac{1}{2}\sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

• Find the best tree structure, and use the optimal leaf weight

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$

• But... there can be infinite possible tree structures..

Greedy Learning of the Tree

- In practice, we grow the tree greedily
 - Start from tree with depth 0
 - For each leaf node of the tree, try to add a split. The change of objective after adding the split is

The complexity cost by introducing additional leaf

• Remaining question: how do we find the best split?

Efficient Finding of the Best Split

• What is the gain of a split rule $x_i < a$? Say x_j is age

• All we need is sum of g and h in each side, and calculate

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

• Left to right linear scan over sorted instance is enough to decide the best split along the feature

An Algorithm for Split Finding

- For each node, enumerate over all features
 - For each feature, sorted the instances by feature value
 - Use a linear scan to decide the best split along that feature
 - Take the best split solution along all the features
- Time Complexity growing a tree of depth K
 - It is O(n d K log n): or each level, need O(n log n) time to sort
 There are d features, and we need to do it for K level
 - This can be further optimized (e.g. use approximation or caching the sorted features)
 - Can scale to very large dataset

What about Categorical Variables?

- Some tree learning algorithm handles categorical variable and continuous variable separately
 - We can easily use the scoring formula we derived to score split based on categorical variables.
- Actually it is not necessary to handle categorical separately.
 - We can encode the categorical variables into numerical vector using one-hot encoding. Allocate a #categorical length vector

$$z_j = \begin{cases} 1 & \text{if } x \text{ is in category } j \\ 0 & otherwise \end{cases}$$

 The vector will be sparse if there are lots of categories, the learning algorithm is preferred to handle sparse data

Pruning and Regularization

Recall the gain of split, it can be negative!

 $Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda}$

- When the training loss reduction is smaller than regularization
- Trade-off between simplicity and predictivness
- Pre-stopping
 - Stop split if the best split have negative gain
 - But maybe a split can benefit future splits..
- Post-Prunning
 - Grow a tree to maximum depth, recursively prune all the leaf splits with negative gain

Recap: Boosted Tree Algorithm

- Add a new tree in each iteration
- Beginning of each iteration, calculate

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$

- Use the statistics to greedily grow a tree $f_t(x)$ $Obj = -\frac{1}{2}\sum_{j=1}^T \frac{G_j^2}{H_j + \lambda} + \gamma T$
- Add $f_t(x)$ to the model $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$
 - Usually, instead we do $y^{(t)} = y^{(t-1)} + \epsilon f_t(x_i)$
 - ϵ is called step-size or shrinkage, usually set around 0.1
 - This means we do not do full optimization in each step and reserve chance for future rounds, it helps prevent overfitting