
'

&

$

%

A Tool for Automatic UML Model Consistency Checking: MCC

Jocelyn Simmonds (University of Toronto/University of Chile) and M. Cecilia Bastarrica (University of Chile)

'

&

$

%

�
�

�
The need for automated verification for UML

• UML standard allows for inconsistencies between diagrams

• Manual verification - tedious and error-prone

• Goal: Automated Verification

• Must be scalable w.r.t.:

– Model size

– Number of UML elements considered

• Must be extensible:

– add new UML elements

– add new consistency checks

�
�

�
Motivational Examples

aCashDispenser:
CashDispenser

aCardReader:
CardReader

anATM: ATM aSession:
Session

1: checkIfCashAvailable

3: ejectCard

4: ejectCard

5: dispenseCash

6: dispenseCash

2: currentCash

AmountEntry VerifyAccount
Balance

GiveCash VerifyATM
Balance

PINEntry

ReturningCard

[valid PIN] verifyAccount()

checkIfCashAvailable()

dispenseCash()ejectCard()

[not valid PIN]

CONFLICTING BEHAVIOR!

PINEntry

ReturningCard
dispenseCash()ejectCard()

[not valid PIN] checkIfCashAvailable()

VerifyAccount
Balance

VerifyATM
Balance

GiveCash

missing transitions make some
states unreachable

INCOMPLETE BEHAVIOR SPECIFICATION

�
�

�
Related Work

Related work w.r.t. to UML consistency

Diagrams studied Formalism used

Engels et al. (EHK01) Protocol statecharts (w.r.t. inheritance) CSP

Ehrig and Tsiolakis (ET00) Class and sequence diagrams Graphs

Schfer et al. (SKM01) Collaboration and statecharts PROMELA models

Related work w.r.t. to existing tools

Diagrams included Formalism used

Rational Rose (IBM04) Class diagrams NA

Rose Model Checker (MM04) Class diagrams NA

Cortes et al. (CFd04) Component diagrams UML Profile

�
�

�
Our approach

• Formalise UML using Description Logics (DL)

• Offer a uniform verification for the widest possible range of consistency problems

• Usable framework - no interaction with the underlying formalism

• Extensible framework - must easily incorporate changes that originate from:

– the UML specification

– changing the subset of supported UML modeling elements

– the addition of new consistency checks

�
�

�
Framework Architecture

MCC: Model Consistency Checker - our framework (http://www.dcc.uchile.cl/
∼jsimmond)
Poseidon SE 3.2: UML CASE tool (http://www.gentleware.com)
RacerPro v1.8: DL reasoning engine (http://www.racer-systems.com)

<< component >>

Poseidon for
UML 2.0

<< component >>

Fact Extractor

<< component >>

Visual Query
Interface

<< component >>

Query Processor

<< component >>

Racer

MCC

Provide UML model

Provide user events

JRacer interface

This UML model is available
through the standard OMG
package definition:
org.omg.uml

�
�

�
Consistency Checks

Behavioral Structural

Specification invocable collaboration dangling (type) reference

behavior consistency inherited association

observable collaboration inconsistency

behavior inconsistency instance specification

missing

Specification / Instance incompatible specification instance specification

missing

Instance invocable behavior conflict disconnected model

observable behavior conflict

incompatible behavior conflict

Categories in blue have alredy been included into the framework

�
�

�
�Why use Description Logics (DL)?

DL is a Knowledge Representation formalism. Concepts, Roles and Instances are

used to represent knowledge.

• Theoretical Box (Tbox ): set of axioms that defines concepts and roles

• Assertion Box (Abox ): set of instances of concepts

PROS

• decidable two-variable fragment of

first order logic

• sufficiently expressive to express

UML (CCDGL02)

• existence of optimised DL reasoning

engines

• reasoning engines offer query lan-

guages

CONS

• reasoning on UML models is

EXPTIME-hard (but the UML

metamodel is bound to about 250

classes)

�
�

�
�DL - UML mapping (Tbox example)

instanceOf

0..1

*

Object

isLeaf
isAbstract

Class

name

ModelElement

Model

owned−element

1

*

�
�

�
Motivational Example revisited

�
�

�
Adding New Checks

• Checks implemented as nRQL queries over the ABox

• New checks easy to add:

– Implement the Check interface

– Add to the XML check configuration file

�
�

�
UML standard changes

• Each UML element type has its own translation method

• Check and modify the TBox definition

• Check and modify the element’s translation method

�
�

�
Adding new UML elements to the framework

• Add concepts and roles to the TBox

• Add translation methods

�
�

�
Limitations

• Can only reason w.r.t. horizontal evolution

• Both Poseidon and Racer are licensed products

�
�

�
Current Status

Aspect Status

Checks More on the way

UML 2.0 Sequence diagrams needs updating

Scalability Currently testing larger models

Interface updated to Poseidon 3.2

Reasoning Engine updated to RecerPro 1.8

Available at: http://www.dcc.uchile.cl/∼jsimmond

REFERENCES

[CCDGL02]Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A formal frame-
work for reasoning on uml class diagrams. In Proc. of the 13th Int. Sym. on Methodologies for Intelligent
Systems (ISMIS 2002), volume 2366 of Lecture Notes in Computer Science, pages 503–513. Springer,
2002.

[CFd04]Mariela Cortés, Marcus Fontoura, and Carlos de Lucena. Using Refactoring and Unification Rules to
Assist Framework Evolution. UPGRADE, 5(2):49–55, April 2004.

[EHK01]Gregor Engels, Reiko Heckel, and Jochen Malte Küster. Rule-based specification of behavioral con-
sistency based on the UML meta-model. In Martin Gogolla and Cris Kobryn, editors, Proc. Int’l
Conf. UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts, and Tools, number
2185 in Lecture Notes in Computer Science, pages 272–286. Springer-Verlag, October 2001. Toronto,
Canada.

[ET00]H. Ehrig and A. Tsiolakis. Consistency analysis of UML class and sequence diagrams using attributed
graph grammars. In H. Ehrig and G. Taentzer, editors, ETAPS 2000 workshop on graph transformation
systems, pages 77–86, March 2000.

[IBM04]IBM. Rational Software, October 2004.
http://www-306.ibm.com/software/rational/.

[MM04]Michael Moors. Rose Model Checker, October 2004.
http://www.rationalrose.com/modelchecker/index.htm.

[SKM01]T. Schfer, A. Knapp, , and S. Merz. Model Checking UML State Machines and Collaborations. In
Electronic Notes in Theoretical Computer Science, 47:1–13, 2001.

This poster was prepared with Brian Wolven’s Poster LATEX macros v2.1.


