
Description Logics for Consistency Checking of
Architectural Features in UML 2.0 Models

Jocelyn Simmonds and M. Cecilia Bastarrica

Departamento de Ciencias de la Computación
Facultad de Ciencias F́ısicas y Matemáticas

Universidad de Chile
{jsimmond,cecilia}@dcc.uchile.cl

Abstract. UML has become the de facto standard language for software
modeling. Although it was first created as a language for documenting
detailed object-oriented designs, its newest version -UML 2.0- introduced
new features for documenting software architectures as part of the stan-
dard. Models in UML include a series of diagrams that describe different
views of the system, and even though the standard does not enforce con-
sistency, good software engineering practices do. MCC is a tool based on
description logics for UML model checking. In this paper we present how
MCC can be used for reasoning about the consistency of UML models
and how it can be extended so that it can also deal with UML 2.0 new
architectural features following the same strategy.

1 Introduction

UML, as a visual modeling language, provides a family of diagrams with which
aspects like the structure and behavior of a system can be defined. A system
design is defined by a model composed of a collection of diagrams where each
diagram shows a different view of the system [4]. As these different views are dif-
ferent representations of possibly overlapping system definitions, inconsistencies
could arise due to omissions or lack of standardization.

The standard for UML 2.0 is defined by its metamodel. This specification
does not require that UML CASE tools implement consistency control neither
between model diagrams nor among individual model elements. The main reason
why this is so is because temporal model inconsistencies are not only introduced
accidentally but sometimes also desirable, mainly when these are the result of in-
termediate steps during the design process. For example, there can be incomplete
classifier specifications, or links that reference non-existing operations as the re-
sponsible for the operation still has not been determined. These inconsistencies
can be tolerated during the design phase, but final models must be consistent. As
models grow larger and more complex, automatic consistency checking between
the different diagrams and model elements is necessary in order to determine
whether a proposed model is valid or not.

One of the most salient new features introduced in the new UML 2.0 [22, 23]
is the expressiveness for component diagrams, enhancing the usability of UML



as an Architecture Description Language (ADL) [20]. But having yet another
specification dimension also brings new opportunities for inconsistencies.

Knowledge representation systems (KRS) are focused on providing high-level
descriptions of problem domains, in order to allow the discovery of implicit con-
sequences of the explicitly represented knowledge. Of special interest for our
work are KRSs using Description Logics (DL) [2] as a representation language,
as DL is a decidable fragment of first-order logic that possesses sound and com-
plete reasoning mechanisms. In order to be able to reason about UML models,
the UML metamodel is used to establish the domain representation and user
models are translated as individual knowledge. In [3], it is proved that DL can
be used to represent and reason about class diagrams. Translating both, the
UML metamodel and user defined models into DL, we can reason about them
and check for consistency.

We have built MCC1, a framework that provides UML 2.0 model checking
using automated reasoning provided by a DL implementation. It already includes
six different consistency checks. This article presents a new feature of MCC for
checking an architecture related inconsistency: service availability. Adding this
capability, we also show that MCC is an extensible tool that can incorporate new
checks with the same strategy followed in the previous ones. MCC is a plug-in
integrated into an existing UML 2.0 CASE tool, Poseidon for UML, as a way
of offering user-friendly consistency checking through a known user interface.
We take advantage of the rich user interface provided by Poseidon, while using
the power of the DL engine Racer 1.7 [11] behind the scenes. Both the UML
CASE tool and the DL engine are robust systems, seamlessly integrated using
well defined public APIs.

The paper is structured as follows. In Section 2, a description of the usage
of DL as a means for reasoning about UML models is presented. In Section 3,
the MCC tool is described. New architectural features included as part of the
UML 2.0 standard are explained in Section 4, and it is also shown how MCC
is extended in order to apply consistency checks on some of these architectural
features of UML models. A discussion on related work is included in Section 5.
Finally, some conclusions and a description of the ongoing work are presented
in Section 6.

2 Reasoning about UML models using DL

UML is defined by its metamodel, and it only establishes the elements that may
be included in each diagram as well as the well formedness rules. So, as UML
lacks formal semantics, consistency problems may arise in models and diagrams.
Thus, in order to allow manipulation of models and diagrams, based on the
meaning of the diagrams and not just their visual representation, a formalism is
required.

Knowledge representation systems (KRS) are focused on providing high-level
descriptions of problem domains, in order to reason and to allow the discovery of
1 MCC can be found at http://www.dcc.uchile.cl/~jsimmond.

2



implicit consequences of the explicitly represented knowledge. We decided to use
KRSs that have DL variants as the concept representation language for UML
models for several reasons. The first one is that DL is decidable, that is, given
a concept definition, it is possible to determine if this definition is consistent or
not with the existing concept definitions. Given an instance definition, it can
also be decided which is the concept definition that most suits it. DL also offers
concept subsumption, that is, it builds a concept hierarchy by classifying their
definitions, finding which are the more general concepts for a specific concept. We
use subsumption when modeling generalizations between metaclasses. Finally,
DL supports open-world semantics. This means that, when translating UML
models, as these models are rarely syntactically complete, we are able to specify
incomplete instances, inferring the rest of the instance specifications from the
concept definitions.

Besides all the theoretical reasons, it is also important to consider that mod-
ern DL reasoning engines are quite efficient, using tableau-based algorithms. This
is a key point when arguing tool usability, as results of model checking should
be available in a reasonable amount of time.

Various systems [11, 14, 18] based on description logics have been imple-
mented, each with its own expressive power. We can take advantage of these
tools and integrate them with existing UML CASE tools in order to add formal
semantics to UML models. Each of these systems has a concept specification
language that allows the definition of the terminology to be used in the creation
of knowledge bases, where inferences can later be performed. The set of concept
definitions is called the Terminological-Box (Tbox ). The part of the knowledge
base that contains the individuals that instantiate the concepts defined in the
Tbox, is called the Assertional-Box (Abox ). The Abox contains extensional knowl-
edge about the domain of interest, as a finite set of expressions relating concepts
and relationships to individuals. Greater detail about DL, Tbox and Abox can
be found in [1].

Figure 1 shows the relationship that exists between the UML metamodel and
different user models. The metamodel shown is just a small part; in this case, it
includes some of the metaclasses and meta-associations necessary for the specifi-
cation of class, component and sequence diagrams. The metamodel is completely
specified using class diagrams. Each element created in a user model instantiates
the corresponding metaclass. For example, in the class diagram, ShoppingCart
is a UML class, instantiating the UML metaclass Class. The association between
ShoppingCart and Customer is an instance of the Association metaclass. The
generalization relationship between Customer and PremiumCustomer instanti-
ates the Generalization metaclass.

These <<instantiate>> relationships also apply to the elements used in
other diagrams. For example, in the component diagram, the component Order is
an instance of the Component metaclass. The classes that implement the services
offered by the component obey the same specification as classes that belong to
a class diagram. In the sequence diagram, the objects instantiate the Object
metaclass.

3



ShoppingCart

addProduct():void

id:String

Customer

PremiumCustomer

belongsTo

1 1

shoppingCart:
ShoppingCartCustomer

customer:

1:addProduct()

Classifier

Class

Object

Property

Association

*

0..1

* *

*

0..1

instanceOf

ownedAttribute
ownedAttribute

0..12..*

0..1

memberEnd association

ownedEnd owningAssociation

Component

Operation

*
ownedOp

0..1

Generalization*

1

specific

generalization

OrderHeader

*

1

Order
<<component>>

Item

Example Component
Diagram

<<instantiate>>
<<instantiate>> <<instantiate>>

<<instantiate>>

Example Class Diagram Example Sequence Diagram

User Model Level

Interface

0..1

provided
*

*
1

1 required

*

ownedOp

0..1

Meta−Model Level

Fig. 1. Relationship between the UML metamodel and user models

Figure 2 shows the translation into DL of a small part of the UML metamodel
seen in figure 1 so it is part of the Tbox. ModelElement, the metaclass from which
all metaclasses inherit, defines an attribute name. Model is by definition a Model-
Element, as it inherits from this class, but it also defines the role owned-element,
as a model is a namespace. In the same manner, Class is a ModelElement and
defines two attributes: isAbstract and isLeaf. In the definition of the Object
concept, qualified role restrictions are used to enforce the fact that an Object
can only be the instance one Class.

Figure 3 shows the translation into DL of a part of the class diagram shown in
figure 1, and so it is part of the Abox. All the diagrams belong to a model called
model1, so an instance of this concept is created and its name is set to the value
“model1”. The second set of definitions corresponds to the translation of the class
Customer. First, its name is set to the value “Customer”. It is then related to the
Model instance inst-model1, as the Customer class belongs to model1. Extra
details about the Customer class are stored - in this case, the fact that the class

4



(implies ModelElement (a name))
(implies Model

(and ModelElement (all owned-element ModelElement)))

(implies Class
(and ModelElement
(a isAbstract)
(a isLeaf)))

(implies Object
(and ModelElement
(exactly 1 instance-of)
(all instance-of Class)))

Fig. 2. Tbox for figure 1

is concrete and that it is a leaf (that is, it does not have descendants). The last
set of definitions corresponds to the translation of the object shoppingCart. The
name of the object instance is set to the value “shoppingCart”. This object also
belongs to model1, so it is also related to inst-model1 using the owned-element
role. Finally, the relationship between the class ShoppingCart and the instance
shoppingCart is registered, relating the instances representing the two model
elements using the instance-of role.

; Instance representing model1
(instance inst-model1 model)
(constrained inst-model1 name-of-model1 name)
(constraints (string= name-of-model1 ”model1”))

; Instance representing the Customer class
(instance inst-Customer class);
(constrained inst-Customer name-of-Customer name)
(constraints (string= name-of-Customer ”Customer”))
(related inst-model1 inst-Customer owned-element)
(constrained inst-Customer abstract-Customer isAbstract)
(constraints (string= abstract-Customer ”false”))
(constrained inst-Customer leaf-Customer isLeaf)
(constraints (string= leaf-Customer ”true”))

; Instance representing the shoppingCart object
(instance inst-shoppingCart object)
(constrained inst-shoppingCart name-of-shoppingCart name)
(constraints (string= name-of-shoppingCart ”shoppingCart”))
(related inst-model1 inst-shoppingCart owned-element)
(related inst-shoppingCart inst-ShoppingCart instance-of)

Fig. 3. Part of the Abox (for figure 1)

The following theorems prove that DL is expressive enough to represent all
well-formed user-defined UML models.

5



Theorem 1 The UML metamodel can be completely described in terms of de-
scription logics.

Proof. The UML metamodel is completely defined in terms of class diagrams [22].
And, according to [3], class diagrams can be completely described in terms of
description logics.

2

Theorem 2 All user defined UML models can be completely described in terms
of description logics.

Proof. All well formed user-defined UML models are instantiations of the UML
metamodel [23]. And by Lemma 1, the UML metamodel can be completely
described in terms of description logics.

2

So, the Tbox and the Abox can be built using the information contained
in the UML metamodel and the user defined model, respectively. Checks are
implemented using queries to retrieve sets of objects that obey certain conditions.

3 MCC

MCC (Model Consistency Checker) is a visual tool that allows consistency check-
ing at the UML level. MCC uses DL as a means for consistency checking hiding
the formalism, so all that the user sees are UML models. This has the advantage
that the system abstractions can be captured and shown in a visual manner. As
a result, the authors believe that by giving the designer the opportunity to only
deal with UML diagrams will make it easier to maintain evolving systems, as
designers only focus on the modeling level of abstraction.

3.1 Implementation Issues

Figure 4 shows the three components that make up the MCC tool:

– Visual Query Interface: interface that provides easy access to existing incon-
sistency detection predicates in an encapsulated manner. Also allows plug-in
configuration and Tbox loading.

– Fact Extractor: provides facts needed in order to populate the Abox using a
user-created UML model.

– Query Processor: acts as the communication channel between the Visual
Query Interface and Racer.

This figure also shows the relationships that exist between MCC, Poseidon for
UML and Racer.

The Visual Query Interface is implemented as a plug-in for Poseidon for
UML 2.0. This CASE tool provides a graphical interface where UML models

6



<< component >>

Poseidon for
UML 2.0

<< component >>

Fact Extractor

<< component >>

Visual Query
Interface

<< component >>

Query Processor

<< component >>

Racer

MCC

Provide UML model

Provide user events

JRacer interface

This UML model is available
through the standard OMG
package definition:
org.omg.uml

Fig. 4. MCC components

can be designed by dragging and dropping UML element templates like compo-
nents and associations. This software has a large amount of users because, even
though it is not opensource, it is free (the Community edition) and evaluation
(the Standard edition) versions are available2. It is implemented in Java, which
makes it completely portable. This software is robust, currently version 2.6, and
releases updates on a monthly basis. It also provides facilities for third-party
extensions, through a plug-in API which allows access to all model elements
and the graphical display. This makes MCC user-friendly for previous Poseidon
users, as we only require that the user know UML and invoke the consistency
checker through an existing, known interface.

Racer [11] was chosen as the DL tool to be used. The reasons for this choice is
that it possesses a very expressive concept definition language and it also offers
efficient reasoning algorithms based on tableau calculus. This system implements
the description logic ALCQHIR+ also known as SHIQ (see [15]). This is the
basic logic ALC augmented with qualifying number restrictions, role hierarchies,
inverse roles and transitive roles. In addition to these basic features, Racer also
provides facilities for algebraic reasoning including concrete domains for dealing
with:

– min/max restrictions over the integers,
– linear polynomial (in)equations over the reals or cardinals with order rela-

tions,
– nonlinear multivariate polynomial (in-)equations over complex numbers,
– equalities and inequalities of strings.

Racer also supports the specification of general terminological axioms. A Tbox
may contain general concept inclusions (GCIs), which state the subsumption
2 The plug-in requires the Standard edition, version 2.5, since plug-ins can not be

loaded into the Community version.

7



relation between two concept terms. Multiple definitions or even cyclic definitions
of concepts can be handled by Racer.

The instance query mechanism has been improved, offering not only an API
of functions for querying the Tbox and Abox, but also a flexible instance retrieval
mechanism, allowing the construction of complex queries with placeholders [12],
which will be used in MCC to implement the consistency checks. Another ad-
vantage is its Client / Server architecture, which allows easy access from other
applications. Racer also offerers an extensible Java client interface, JRacer, mak-
ing it straightforward to implement interactions between the reasoning engine
and Java-based user interfaces. The Fact Extractor and Query Processor com-
ponents are implementations of this interface.

After the user has loaded the MCC plug-in into the Poseidon framework3, any
model loaded into Poseidon will be loaded into Racer using the Fact Extractor
component. Intra-model consistency analysis can then be applied by selecting
consistency problems to detect from a pre-established list of implemented detec-
tion predicates. These are available in a user-friendly manner, and the user will
never manipulate DL predicates directly. When applying a predicate, the Query
Processor will communicate with Racer, which will reason using the facts already
provided by the Fact Extractor, and this component translates the Racer output
into user-readable information. Later versions will offer inconsistency solutions
whenever possible, directly manipulating the user-created model.

3.2 Design Decisions

In order to ensure usability, inconsistency detection and solution is a user ac-
tivated process. This is due to the fact that while a model is being edited, it
is usually in a temporal inconsistent state. Activating inconsistency detection
automatically would imply developing predicate application strategies, for ex-
ample, defining milestones at which model consistency should be checked, or
macro-changes after which consistency should be checked. The development of
this type of heuristics is an open problem [10]. Our decision has two direct con-
sequences: the user is always in control and the implementation of the tool is
simpler.

Model loading from Poseidon to Racer and model checking are independent.
This allows the user to reload the model when major changes are introduced. Any
number of consistency checks can then be applied without the extra overhead
of re-translating the model between checks. An XML file stores the plug-in’s
configuration, identifying which checks are implemented and by which classes.
This allows easy extension of the set of checks that the tool supports, as reflexion
is used to load the classes responsible for the individual checks. The detection
predicate only inform the user about the inconsistencies that were found. It is
up to the user to decide if an inconsistency is deliberate or if it has to be solved.

The Poseidon plug-in API is used to obtain the objects that represent the
user model elements. These are passed to the translator, a singleton instance,

3 Using the Plug-in menu provided by Poseidon.

8



that returns the translation into DL of the object. The translator instance uses
the model element’s dynamic type in order to determine which individual trans-
lation method should be invoked. This allows for the seamless integration of
translation methods for new element types and the application of changes to
existing translations.

3.3 Existing Functionality

A set of 18 consistency relationships not forced by the metamodel definition
has been studied in [26]. From this list, five consistency checks are already im-
plemented as part of MCC: abstract object, incompatible behavior (state vs.
sequence diagrams), multiplicity, classless instance and observable behavior con-
flicts (state vs. state). Abstract object refers to the case in which an abstract
class that has no concrete subclasses in the class diagrams of the model is in-
stantiated in a sequence diagram. Incompatible behavior arises when the ordered
collection of stimuli received by an object in a sequence diagram does not ex-
ist as a sequence of events in the protocol state machine of the object’s class.
Multiplicity conflicts arise when a link between objects in a sequence diagram
does not respect the multiplicity restrictions imposed by the corresponding as-
sociation in the class diagram. Classless instance conflicts arise when an object
in a sequence diagram is the instance of a class that does not exist in any of the
class diagrams of the model. Finally, observable behavior refers to the fact that
after all new events have been hidden, each trace of the subclass state diagram
should be contained in the set of traces of the superclass state diagram.

The definition of these consistency relationships originally included in [26]
had to be modified so as to comply with the new UML specification (2.0). Most
changes had to be applied to the predicates that involve sequence diagrams, as
the metamodel for this diagram changed dramatically.

Other relevant changes introduced to the UML 2.0 specification are with
respect to component-based development and activities, neither of which were
covered by the previous set of predicates. In order to test the extensibility of the
framework, we experimented with including support for consistency checking
involving component diagrams. In order to include new diagram elements, the
model translation facility had to be extended, including the translation rules for
the new elements. This was achieved in a straightforward manner, treating the
new elements like the rest of the translated UML metamodel. The new check
had to be included in the XML that configures the available checks. Finally, the
check was implemented by extending the established interface for consistency
checks. This resulted in the seamless integration of a new type of consistency
check, including reasoning about new diagrams.

4 Software Architecture Specification using UML

Object-orientation has been one of the most popular paradigms of the last two
decades as it promotes good software engineering practices as separation of con-

9



cerns, encapsulation and inheritance, and reuse. First, object-oriented program-
ming languages appear, but soon it was clear that a methodology or a guideline
for supporting the complete life cycle was also required. UML had a big suc-
cess as an object-oriented design notation mainly because there was an evident
need for it in the object-orientation community, and also because it brought
a standard notation everybody involved in the design process could agree on.
UML served its purpose successfully, and a big user community adopted it as
the standard design notation.

Meanwhile, the characteristics of the systems being developed continue evolv-
ing, growing in size and complexity, and fine grain objects started to be too small
as the modeling abstraction for the new setting. Component-based development
appeared as the new design paradigm and new concepts were involved. Also,
software architecture matured in the last decade as an independent research
area within software engineering. It is mainly concerned with the definition of
components, interfaces, interaction between components, connectors, and config-
urations. New languages appeared for dealing with architectural specifications:
architecture description languages (ADLs); they have been created and used
almost exclusively in academia.

Software engineering practitioners had to face these new challenges with the
available tools, so UML started to be commonly used for architectural specifica-
tion even though it lacked the required constructs [9]. Thus, the new UML 2.0
standard [23] included some elements that basically add semantics to already
existing component diagrams. In this way, components can not only define a set
of interfaces of provided services, but also a set of interfaces of required services.
Moreover, now component interfaces –named ports– are defined as stereotyped
classes whose behavior can be specified using already existing state diagrams.
These new features enhance the expressive power of UML as an ADL [20].

4.1 Consistency in Architectural Specifications

Component-based development allows designers to reason about systems in a
high level of abstraction. Each component or subsystem has clearly defined re-
sponsibilities and they interact through a well established interface. Systems are
specified as possibly small sets of interacting components. Classifiers that form
part of a component should be highly coupled and must work together in order
to provide the services that the component offers to other components. A com-
ponent can also require services from other components in order to carry out
its responsibilities. Classifiers belonging to different components should never be
directly associated - they should always be indirectly associated through com-
ponent required and provided interfaces. If component interfaces are strictly
obeyed, old component implementations can be removed and replaced by new
component implementations without repercussions in the rest of the system. So,
respecting component required and provided interfaces is important when build-
ing evolvable component-based systems. This is especially true if the components
are developed independently.

10



In order to offer a service through an interface, a classifier belonging to the
component should implement the service as a public operation. The UML spec-
ification does not force this consistency. The reason for this is that component
diagrams are usually built in a top-down fashion, that is, the services are first
established, determining the internal classifier who is responsible for each at a
later point in time. Designers usually divide the system into logical components,
deciding what responsibilities each component will have and the dependencies
between them. This diagram is later refined as classifiers are added to the com-
ponents. As classifiers are added, the designers should be careful to remember
to add the offered services as public operations of the necessary classifiers. If
these diagrams become too complex, it is easy to forget to add an operation, or
if a service changes, to propagate these changes into the classifiers that belong
to the component. If no class belonging to the component implements a service
offered by a component, or if it is a private or protected operation, it is said that
the service offered by the component is not available.

Definition 1. There is a service not available inconsistency in a UML model
whenever there are services offered as part of one of its components offered in-
terface that are not public operations implemented by any of the component’s
internal classifiers.

MODEL(m) - m is a UML model
COMP(m) - set of all components that are part of model m
COS(i) - set of component i offered services
Class(i) - set of classifiers internal to component i
ClPO(j) - set of public operations of classifier j

Service not available(m) ⇔ MODEL(m) ∧
∃i | i ∈ COMP (m) ∧
COS(i) 6⊆

⋃
j|j∈Class(i)

ClPO(j)

We are assuming that offered services of a component are elements of the
same type as classifier operations.

4.2 Inconsistency detection example

We now show how MCC can be used to detect the Service Not Available in-
consistency. The component diagram shown in figure 5 is taken from the UML
2.0 superstructure specification [22, 23]. The component Order has two internal
classifiers, OrderHeader and LineItem. In this model, no operations have been
specified yet for these classes, but OrderEntry, a offered interface for Order, of-
fers the operation getOrderEntry. This is a Service Not Available inconsistency,
as none of the internal classifiers implement this operation.

11



Fig. 5. Example of Service Not Available inconsistency

5 Related Work

A wide range of different approaches for checking consistency in UML models has
been proposed in the literature. Engels et al. [7] motivate a general methodology
to deal with consistency problems based on the problem of protocol statechart
inheritance. Communicating Sequential Processes (CSP) are used as a mathe-
matical model for describing the consistency requirements. This technique only
deals with statechart inheritance problems, and users must be familiar with CSP.
Statechart inheritance problem detection will be offered by MCC in a future ver-
sion, as it has already been proved in [26] that DL can be used to detect this
kind of problem. Ehrig and Tsiolakis [6] investigated the consistency between
UML class and sequence diagrams. UML class diagrams are represented by at-
tributed type graphs with graphical constraints, and UML sequence diagrams
by attributed graph grammars. Again, the user must be familiar with another
formalism which is used to deal with only one family of consistency problems.

12



MCC offers a uniform manner in which to deal with a seamlessly scalable set of
consistency problems.

The problem of verifying whether the interactions expressed by a collab-
oration diagram can indeed be realized by a set of state machines, has been
treated by Schfer et al. [25]. They have developed HUGO, a prototype tool that
checks if state machines (compiled into PROMELA [13] models), and collabora-
tions (translated into sets of Buchic automata) match up, using the SPIN model
checker to verify the model against the automata. This problem has also been
analyzed by Litvak et al. [19], using an algorithmic approach, instead of using
external model checkers. They have put their ideas into practice, by implement-
ing the BVUML tool, that receives the state and sequence diagrams as XMI files
produced by ArgoUML. Using HUGO requires that the user translate his UML
model into two different formalisms. This can be cumbersome and error-prone
if the state machine that needs to be checked is complex and the user is not en-
tirely familiar with the formalism. The BVUML tool skips the user translation
problem. MCC also hides any translations from the user, and it also uses UML
2.0 metamodel definitions in order to determine consistency problems.

Rational Rose [17], another popular UML CASE tool, also incorporates ad-
hoc model consistency checking. This checks the whole model, applying all the
checks available. The user cannot specify which consistency checks are to be
applied. If the model is more or less complex, the process can be quite lengthy.
The output that is presented to the user is cryptic and is dumped into the
error log. The Rose Model Checker [21] is a script that takes the output from
the model checks and gives it a more user-friendly interface, but it basically
reports broken links between model elements (for example, missing class, broken
association, etc.) and model statistics and does not provide more complex checks
like incompatible behavior or service not available.

One of the most common problems regarding framework evolution includes
how to evolve its architecture without impacting the previously created appli-
cations. Due to the variety of methodologies used for modeling system archi-
tectures, there is very little tool support for framework evolution. For example,
in [5], a profile for UML (UML-F) is introduced and used to assist framework
maintenance and evolution, but no tool support is provided yet. On the other
hand, using UML 2.0 a user can model system architectures using mainly class
and component diagrams. MCC can then be used to check in an automated man-
ner for framework and component inconsistencies, like the availability of services
that are offered by a component.

Using architecture description languages (ADL) to formally describe system
architectures is usually reserved for critical systems, as applying ADLs is a long
and complex process, requiring profound knowledge of ADL specifications. Also,
most ADL work is academic. There are various ADLs, so there is also the problem
of communicating and comparing specifications written in different ADLs. UML
2.0 provides specialized constructs for architecture specification and, although
it is still not necessarily the most expressive ADL, it is powerful if we consider
that architectural specifications in UML are naturally integrated with detailed

13



design, regardless of the user-friendliness of graphical specifications ant the vast
application experience not only in academia, but also in industry.

6 Conclusion

Due to the size and complexity of modern systems, component-based design has
become popular. ADLs exist as a form of specifying architectures and compo-
nents, but this approach is rarely used in real industrial applications, as these
languages are highly formal, difficult to apply and hard to understand. Box-
and-line diagrams are popular, but lack formality. UML is the de facto standard
language for software modeling. Its newest version -UML 2.0- introduced new
features for documenting software architectures as part of the standard. This
standard specifies what can be modeled using UML and how, but it does not
enforce consistency, as temporal inconsistencies are sometimes desired. It is pos-
sible to cross-check these diagrams by hand, but it is an error-prone process
because of the model’s size and complexity. Thus, there is a need for automated
model consistency checks.

We offer MCC, a framework that provides UML 2.0 model checking using
automated reasoning provided by a DL implementation. It already includes six
different consistency checks. MCC is an extensible tool that can incorporate new
checks, implemented as a plug-in integrated into an existing UML 2.0 CASE
tool, Poseidon for UML, as a way of offering user-friendly consistency checking
through a known user interface. We take advantage of the rich user interface
provided by Poseidon, while using the power of the DL engine Racer 1.7 [11]
behind the scenes. Both the UML CASE tool and the DL engine are robust
systems. The whole configuration is portable, as it is all implemented in Java
(including Poseidon and Racer). It is a user-friendly tool that has solid theoretical
foundations.

This demonstrates that DL can provide a means for translating the UML
metamodel, the user-defined models and the consistency checks as the Tbox,
Abox and queries over the previous knowledge, respectively. DL tools are also
sufficiently mature and efficient, providing APIs for easy integration with other
tools. This allows the use of logics in areas outside traditional logic domains like
machine learning and AI, adding formality to areas that were in need of it, like
automated UML model consistency checking.

6.1 Ongoing Work

The currently available version of MCC is an academic prototype, providing a
reduced list of implemented consistency checks. The remaining checks mentioned
in [26] must also be added to the tool. New checks concerning other diagrams can
also be included, as well as translating new diagrams. The UML 2.0 relationship
between interfaces and protocol state machines is ideal as the next candidate for
study and inclusion into the MCC framework. Currently, only academic examples

14



have been used to test the tool. Testing with larger examples must be carried
out, for example, building a benchmark using known industrial examples.

Finally, taking advantage of the fact that the user models are already trans-
lated into a formalism and reasoning activities can be carried out, we can also
implement refactorings [8]. Refactorings are behavior-preserving transformations
that may be applied to design and implementation artifacts, in order to restruc-
ture and clean designs. Currently, there is tool support for code-level refactorings
[16, 24] but this is language-dependent. The experiments carried out in [26] show
that this idea is feasible applying the same strategy.

References

1. Carlos Areces. Logic Engineering. The Case of Description and Hybrid Logics.
PhD thesis, ILLC, University of Amsterdam, 2000.

2. F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2003.

3. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
A formal framework for reasoning on uml class diagrams. In Proc. of the 13th
Int. Sym. on Methodologies for Intelligent Systems (ISMIS 2002), volume 2366 of
Lecture Notes in Computer Science, pages 503–513. Springer, 2002.

4. Paul Clements, Felix Bachman, Ian Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stofferd. Documenting Software Architectures. Views and
Beyond. Addison-Wesley, 2002.

5. Mariela Cortés, Marcus Fontoura, and Carlos de Lucena. Using Refactoring and
Unification Rules to Assist Framework Evolution. UPGRADE, 5(2):49–55, April
2004.

6. H. Ehrig and A. Tsiolakis. Consistency analysis of UML class and sequence di-
agrams using attributed graph grammars. In H. Ehrig and G. Taentzer, editors,
ETAPS 2000 workshop on graph transformation systems, pages 77–86, March 2000.

7. Gregor Engels, Reiko Heckel, and Jochen Malte Küster. Rule-based specification
of behavioral consistency based on the UML meta-model. In Martin Gogolla and
Cris Kobryn, editors, Proc. Int’l Conf. UML 2001 - The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools, number 2185 in Lecture Notes
in Computer Science, pages 272–286. Springer-Verlag, October 2001. Toronto,
Canada.

8. Martin Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.

9. David Garlan, Shan-Wen Chen, and Andrew J. Kompanek. Reconciling the Needs
of Architectural Description with Object-Modeling Notations. Science of Computer
Programming Journal, Special issue on UML, 44(1):23–49, July 2002.

10. John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Inconsistency man-
agement for multiple-view software development environments. IEEE Transactions
on Software Engineering, 24(11):960–981, 1998.

11. Volker Haarslev and Ralf Möller. RACER, April 8 2003.
http://www.fh-wedel.de/~mo/racer/.

12. Volker Haarslev, Ralf Möller, Ragnhild Van Der Straeten, and Michael Wessel.
Extended Query Facilities for Racer and an Application to Software-Engineering

15



Problems. In Proceedings of the International Workshop in Description Logics
2004 (DL2004), 2004.

13. G.J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

14. Ian Horrocks. FaCT, September 2004.
http://www.cs.man.ac.uk/~horrocks/FaCT/.

15. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHIQ. In David McAllester, editor, Proceedings of the 17th
International Conference on Automated Deduction (CADE-17). Springer-Verlag,
2000.

16. IBM. Eclipse, October 2004.
http://www.eclipse.org.

17. IBM. Rational Software, October 2004.
http://www-306.ibm.com/software/rational/.

18. ISI. Loom, April 2003.
http://www.isi.edu/isd/LOOM/LOOM-HOME.html.

19. Boris Litvak, Shmuel Tyszberowicz, and Amiram Yehudai. Consistency Validation
of UML Diagrams. In Correctness of Model-based Software Composition (CMC)
Workshop, ECOOP, 2003.

20. Nenad Medvidovic and Richard Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26(1):73–90, January 2000.

21. Michael Moors. Rose Model Checker, October 2004.
http://www.rationalrose.com/modelchecker/index.htm.

22. Object Management Group. UML 2.0 Infrastructure Specification. 03-09-15.pdf,
September 2003.
http://www.omg.org/docs/ptc/.

23. Object Management Group. UML 2.0 Superstructure Specification. 04-05-02.pdf,
May 2004.
http://www.omg.org/docs/ptc/.

24. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.
Theory and Practice of Object Systems, 3(4):253–263, 1997.

25. T. Schfer, A. Knapp, , and S. Merz. Model Checking UML State Machines and
Collaborations. In Electronic Notes in Theoretical Computer Science, 47:1–13,
2001.

26. Jocelyn Simmonds. Consistency Maintenance of UML Models with Description
Logics. Master’s thesis, Department of Computer Science, Vrije Universiteit Brus-
sel, Belgium and Ecole des Mines de Nantes, France, 2003.

16


