
SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 1

Runtime Monitoring of Web Service Conversations
Jocelyn Simmonds, Yuan Gan, Marsha Chechik, Shiva Nejati, Bill O’Farrell, Elena Litani, and Julie Waterhouse

Abstract—For a system of distributed processes, correctness can
be ensured by (statically) checking whether their composition sat-
isfies properties of interest. However, web services are distributed
processes that dynamically discover properties of other web ser-
vices. Since the overall system may not be available statically and
since each business process is supposed to be relatively simple,
we propose to use runtime monitoring of conversations between
partners as a means of checking behavioural correctness of the
entire web service system. Specifically, we identify a subset of
UML 2.0 Sequence Diagrams as a property specification language
and show that it is sufficiently expressive for capturing safety and
liveness properties. By transforming these diagrams to automata,
we enable conformance checking of finite execution traces against
the specification. We show how our language can be used to
specify the Specification Property System (SPS) [1]. We describe
an implementation of our approach as part of an industrial system.
Finally, we discuss our experience of specifying and monitoring a
number of properties from three existing applications.

Index Terms—nondeterministic finite automata, runtime mon-
itoring, sequence diagrams, temporal logic patterns, web service
conversations

I. INTRODUCTION

Recent years have seen an emergence of the field of web

services, which use Service-Oriented Architectures (SOA) to

dynamically discover and bind to services in order to increase

the flexibility of business interactions. Each service consists

of components and can discover other components using pub-

lished interfaces. An SOA component can be written in a

traditional compiled language such as JavaTM, or in an XML-

centric language such as BPEL [2]. An SOA module is made

up of multiple SOA components which are commonly referred

to as web services.
Since each web service is a relatively simple process, analy-

sis can concentrate on the message exchange between partners

– their conversations. For a classical system of distributed pro-

cesses, correctness can be ensured by statically checking their

composition against properties of interest. The same approach

has been taken by several researchers in the context of web

services as well, e.g., [3]–[7]. While static analysis is very

appealing – errors are discovered ahead of time and without

the need to exercise the system, this approach has several major

limitations:

• Web services typically communicate via infinite-length

channels, so the problem is decidable only under certain

conditions [8].

J. Simmonds and M. Chechik are with the Department of Computer
Science, University of Toronto, Toronto, ON, M5S 3G4, Canada e-mail:
{jsimmond,chechik}@cs.toronto.edu.

S. Nejati is with the Simula Research Laboratory, P.O.Box 134, 1325
Lysaker, Norway email: shiva@simula.no.

Y. Gan, B. O’Farrell, E. Litani and J. Waterhouse are with the IBM
Toronto Lab, 8200 Warden Ave, Markham, ON, L6G 1C7, Canada email:
{ygan,billo,elitani,juliew}@ca.ibm.com.

c© Copyright 2008, International Business Machines. All Rights Reserved.

• Web applications usually interact with web services devel-

oped by partners. Partners are only required to make web

service interfaces public, not the code.

• Realistic web services exchange many types of messages:

some synchronous, some asynchronous, and some with

acknowledgements and priorities.

• Web services are typically heterogeneous, i.e., each com-

ponent can be implemented in a different programming

language.

Instead, we concentrate on the dynamic analysis via runtime

monitoring, which tries to ensure the quality of an application

through the analysis of runtime events. These events can be

analyzed online – during the execution of the application, or

offline – after execution has terminated. The latter can be used to

express free-form queries over all generated events. However,

since these queries are not necessarily known a priori, the

runtime data collected might not be sufficient to answer the

relevant questions, or, on the other extreme, the amount of data

collected may become excessive and hard to manage, leading to

intractable analysis. Online techniques, on the other hand, mon-

itor predefined properties, collecting just those events which

are related to these properties. While expressing properties

beforehand may be non-trivial, the collected data is guaranteed

to be both small and sufficient to check these properties; they

also serve as an additional, and very valuable, documentation of

the desired behaviour of the system. Monitoring as the system

runs also provides a chance of recovery once a problem has

been detected, e.g., by terminating execution or trying to return

to a stable state. For these reasons, we use online monitoring

techniques in this paper.

Our goal is thus to create an industrial-strength (in partner-

ship between the University of Toronto and the IBM Toronto

Lab) online monitoring framework that is non-intrusive, sup-

ports the dynamic discovery of web services, deals with syn-

chronous and asynchronous communication and partners im-

plemented in different languages, allows for specifying and

efficient monitoring of a variety of temporal behaviour, permits

recovery strategies (this is not part of the current paper), and is

usable by practitioners.

We also aim to create an industrial-strength language for

specifying temporal behaviour that captures the distributed,

interactive, and message-driven nature of business processes.

Our language should enable specifying a variety of properties

and be amenable to efficient runtime monitoring, allowing the

analysis of orchestrations involving multiple partners, from the

point of view of the orchestrating service. We believe that such

a language should have the following characteristics:

1) its notation should be visual;

2) it should allow the specification of desired temporal be-

havior, via sequences of events;

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 2

3) it should have an explicit emphasis on components and

enable dealing with different types of message exchange;

and

4) it should be able to specify positive and negative sce-

narios of interaction as well as global properties. These

characteristics are necessary for the resulting language to

be usable by practitioners.

Having considered a few behavioral graphical languages,

such as GIL [9], Time Line Editor [10], Message Sequence

Charts (MSCs) [11] and Live Sequence Charts (LSCs) [12],

we have chosen UML 2.0 Sequence Diagrams (SDs) [13] as

the basis for our specification language. SDs, used to capture

interactions in the form of message passing between objects,

have been widely adopted by industry as a suitable language

for describing and documenting scenario-based requirements

specifications, with additional constraints expressed using the

Object Constraint Language (OCL) [14]. The other UML 2.0

diagrams did not meet our requirements for a specification

language: no support for multiple parties (state machines);

only allow the specification of simple sequences of events

(communication and interaction overview diagrams); too low-

level (activity diagrams); cannot be used to specify behavior

(class diagrams).

SDs are a feature-rich language without a formal semantics.

In this paper, we identify a subset of SDs that is sufficiently

expressive for capturing safety and liveness properties. While

liveness properties are not monitorable in general, they can be

effectively checked for web services with finitely terminating

behaviours. Specifically, we aim to generate three types of

monitors: accepting individual (existential) negative behaviours

which correspond to a violation of safety properties; their dual,

accepting universal positive behavior which corresponds to

finite liveness (once an event occurs, the rest of the events

must occur before termination); as well as individual positive

behaviours which can be easily specified in SDs. For this latter

type, we do not look for violations (if a given trace does not

correspond to a desired behaviour, perhaps others will), but do

report when we were able to observe their satisfaction.

To enable monitoring, we formalize our subset of SDs us-

ing finite-state automata. Similar approaches to formalizing

sequence diagram variants have been previously proposed by

other researchers, e.g., [15]–[17]. Since automata and logic are

intimately related, an automata-based characterization allows

us to investigate connections between SDs and temporal logics,

and translate SDs to automata to enable conformance checking

of finite execution traces against their specifications expressed

in SDs. We then show that this language is sufficiently expres-

sive to capture a wide variety of frequently used properties,

captured and catalogued in the Specification Pattern System

(SPS) [1]. This approach also gives basis for tool support to

enable usable specification of runtime conversations.

A. A Motivating Example

Consider, for example, a web-based Loan Application sys-

tem (LA), distributed as a sample application with the IBM R©

WebSphere R© Integration Developer v6.0.2. Users enter loan

application information (name, taxpayer id, loan amount)

(a)

(b)

Fig. 1: The LA system: (a) workflow describing the high-level

steps of the LA system; (b) an assembly diagram describing

how the main process of the LA system interacts with its

partners.

through a web page, and are eventually informed of the status

of their applications. The LA workflow first checks if the user’s

credit score is valid, and will decline their loan request if the

user has a bad credit score, i.e., less than 750. A credit score

is considered valid if it is between 300 and 850. If the credit

score is good, the workflow then checks the loan amount: loans

for $50,000 or less are automatically approved; loans for larger

amounts are earmarked for manual approval.

The workflow diagram in Fig. 1(a), which is described as

a BPEL specification, shows high level steps that are ex-

ecuted in a loan application system, and Fig. 1(b) shows

an assembly diagram describing how the main process of

the LA system invokes its partners, such as CreditCheck

(implemented in Java), rule groups (LoanLimit), or hu-

man tasks (FollowUpDeclinedApp, CompleteTheLoan and

ProcessTheApplication). Specifically, the CheckCredit

activity in Fig. 1(a) invokes the CreditCheck partner in

Fig. 1(b), and the conditional activities ScoreEvaluation

and AutoApprovalTest invoke the LoanLimit partner. The

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 3

P1 The credit score should always be valid, i.e., between 300 and 850.
P2 The credit score should eventually be checked if the loan amount is greater than zero.
P3 A loan cannot be granted if the loan amount is less than or equal to zero.
P4 After checking that the applicant has a good credit score, a loan cannot be granted

if the loan amount is less than or equal to zero.
P5 No-one can get a loan without first going through a credit check.

TABLE I: Several properties of the LA system.

partners in Fig. 1(b) implement the following functions:

CreditCheck uses the taxpayer id to retrieve the corresponding

credit score; the LoanLimit rule group checks the credit score

and the loan amount. The human tasks CompleteTheLoan,

ProcessApplication and FollowUp follow the application

results Approved, ManualApproval and Declined, respec-

tively.

Since the LA system is a composition of several distributed

business processes, its correctness depends on the correctness

of its partners and their interactions. For example, the system

should guarantee that every request is eventually acknowledged

and none are lost or blocked indefinitely, or that loans are only

given to customers with a good credit score. However, in the

provided LA application, the CreditCheck module assigns a

credit score at random, without using the customer id, thus

preventing the overall system from satisfying this property.

Table I shows some properties of the LA system that can be

expressed using our SD subset. For example, P1 and P2 are

possible safety and liveness properties, respectively.

B. Organization of the Paper

The rest of this paper is organized as follows. We describe

syntax of the subset of UML 2.0 sequence diagrams used for ex-

pressing properties of web service conversations in Section II.

We describe the semantics of our chosen subset of SDs and

show how to translate it into automata for runtime monitoring

in Section III. We then show how our specification language can

be used to specify the complete set of temporal logic property

patterns in Section IV. We describe the implementation of the

runtime monitoring framework in Section V and report on

the experience using this framework for three existing web

service systems in Section VI. After comparing our approach

with related work in Section VII, we conclude the paper in

Section VIII with a summary and an outline of the future

research directions.

II. A LANGUAGE FOR SPECIFYING CONVERSATIONS

We choose a subset of UML 2.0 Sequence Diagrams as the

language for specifying web service conversations. This subset

satisfies the requirements set forth in the previous section. We

formalize this subset in Section III and discuss its expressive

power in Section IV.

Sequence Diagrams is a popular formalism for modeling

behavioural scenarios by describing sequences of messages

communicated between different objects over time. An example

Sequence Diagram describing a scenario of the LA system is

shown in Fig. 2(a). Sequence Diagrams have two dimensions:

vertical, representing time, and horizontal, representing objects.

Each object is illustrated by a rectangle with a vertical dashed

line, called a lifeline. Lifelines are connected by horizontal

arrows denoting messages that are sent from one object to

another, synchronously (solid arrowhead) or asynchronously

(open arrowhead). We refer to Sequence Diagrams with these

features as basic. Basic Sequence Diagrams can be augmented

by a number of operators to capture more sophisticated sce-

narios. We use the operators described below in our property

specification language, and refer to our language as SD.

• Compositional operators: Operators parallel (par) and

alternatives (alt) are used to compute intersection and

union of two SDs, respectively. The operator loop is used

for repeating the scenario described by an SD multiple

times, and opt – for denoting an optional scenario, equiv-

alent to alt with only one argument.

• Alphabet changing operators: Operators consider and

ignore are used for modifying the communicating alphabet

of SDs.

• Critical operator: The critical operator is used to ensure

atomicity of the enclosed sequence.

• Assertion and negation operators: Operators assert and

negate allow users to express mandatory and forbidden

system scenarios, respectively.

• Interaction use operator: SDs can be shared by ref-

erence, using the ref operator. This is a shorthand for

copying the contents of the referred SD where the ref

operator occurs, and is a new feature in UML 2.0.

To describe system scenarios, we often need to express

complementation of an individual message or a set of messages

appearing on the same arrow. The negate operator is unsuitable

for complementing sets because it captures negative sequences

of messages rather than set complementation. Instead, we use

the message complementation operator, originally introduced in

the Property Sequence Charts (PSC) language [18]. We denote

the complement of a message m by ¬m and define it as the set

of all messages that are potentially exchanged between objects

of the system except for m.

An example sequence diagram describing a scenario of the

LA system is shown in Fig. 2(a). The diagram contains three

objects, MnPs, CtCk, and LnLt. Object MnPs corresponds to

the main workflow of the LA system, and CtCk and LnLt

correspond to components CheckCredit and LoanLimit, re-

spectively. The diagram in Fig. 2(a) shows two alternative

scenarios: In the first, MnPs sends a check credit score request,

i.e., ckCtSe, to CtCk, and then a check loan amount request,

i.e., ckLnAt, to LnLt. In the second, LnLt receives a check loan

amount request from MnPs. Since the credit score has not yet

been checked, LnLt sends a check credit score request to CtCk.

Basic Sequence Diagrams, denoted BasicSDs, are the build-

ing blocks of our language. The critical, alphabet changing,

interaction use, assert, and compositional operators, except for

par, can be intermixed and applied any number of times to

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 4

alt

consider
SD Basic

ckLnAt

ckCtSe

ckCtSe

CtCkMnPs

{ckLnAt,ckCtSe,ckTrID}

LnLt

ckLnAt

(a)

q0 q1

q2

q3 q4

q5

q6
!ckCtSe

?ckCtSe

!ckLnAt

!ckLnAt

?ckCtSe

?ckLnAt

?ckLnAt ?ckCtSe

(b)

q0

q1

q2

q3 q4

q5

q6

!ckCtSe

?ckCtSe

!ckLnAt

!ckLnAt

?ckCtSe

?ckLnAt

?ckLnAt ?ckCtSe

Σ

q12

ǫ

q8 q9 q10 q11

!ckLnAt

?ckLnAt

!ckCtSe

?ckCtSe
ǫ Σ

(c)

q0

q1

q2

q3

q4

q5

q6

!ckCtSe

?ckCtSe

!ckLnAt

!ckLnAt

?ckCtSe

?ckLnAt

?ckLnAt

?ckCtSe

Σsys

q12

ǫ

q8 q9 q10 q11

!ckLnAt

?ckLnAt

!ckCtSe

?ckCtSe

ǫ
Σsys

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ Σsys \ Σ Σsys \ Σ Σsys \ Σ

(d)

Fig. 2: (a) An SD describing a scenario of the LA example; (b) the NFA corresponding to the first argument of the alt operator in

Fig. 2(a); (c) the NFA corresponding to the complete scenario in Fig. 2(a); and (d) the resulting runtime monitor.

BasicSDs. The use of negate and par operators, however, is

restricted to sequence diagrams which do not use an assert

operator. We discuss this assumption and the rationale behind

it in Section III-F2 and show in Section IV that even with this

restriction, the resulting language remains very expressive.
The grammar for our language, SD, is given in Fig. 3

where BasicSD , par , alt , loop, critical , opt , negate , assert ,

consider , ignore and ref are terminal symbols, andE is a set of

SD messages. Since operators consider and ignore change the

communicating alphabet of SDs, they take a set E of messages

as an input argument.
In what follows, we denote by SD the set of Sequence

Diagrams generated by the grammar in Fig. 3.

III. FORMALIZING SEQUENCE DIAGRAMS

In this section, we provide a formal description of semantics

of Basic SDs as well as the operators described in Section II

by adopting the automata-theoretic approach of Alur and Yan-

nakakis [15].

A. Nondeterministic Finite Automata

LetΣ be an alphabet. We define a trace σ overΣ to be a finite

sequence σ0σ1 . . . σn, where ∀i ·0 ≤ i ≤ n, σi ∈ Σ. We denote

by Σ∗ the set of all finite traces over Σ.
Definition 1 (Projection “↓”): Let Σ′ ⊆ Σ be an alphabet,

and σ = σ0 . . . σn be a trace over Σ. The projection of σ to Σ′,

denoted σ ↓Σ′ , is obtained by replacing every σi (0 ≤ i ≤ n)
by the silent symbol ǫ iff σi /∈ Σ′.

Definition 2 (NFA [19]): A Non-deterministic Finite Au-

tomaton (NFA) A is a tuple (Σ, Q, δ,Q0, F), where Σ is a set

of input alphabet, Q is a finite set of states, δ ⊆ Q×Σ×Q is a

transition relation, Q0 ⊆ Q is a set of initial states, and F ⊆ Q
is a set of accepting states.

A trace σ = σ0σ1...σn is accepted by A iff there is a

sequence q0q1...qn+1 of states s.t. q0 ∈ Q0, qn+1 ∈ F , and

for every 0 ≤ i ≤ n, (qi, σi, qi+1) ∈ δ. The language of A,

L(A), is the set of all traces accepted by A.

An example NFA over the alphabet

{!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt} is shown in Fig. 2(b).
In cases where states do not have outgoing transitions for some

symbols in Σ, e.g., state q1 on ?ckLnAt in Fig. 2(b), it

is assumed that this symbol causes a transition to a (non-

accepting) dead-end state, which is usually not shown.

Let (q, a, q′) be a transition in an NFA A. We often refer

to a as the label of the transition from q to q′. For an NFA A
with ǫ transitions, let L(A) to be the set of traces of A with the

occurrences of ǫ removed.

States in NFAs may have several outgoing transitions on the

same input symbol, or may have transitions labeled ǫ, indicating
a silent move. Deterministic finite automata (DFAs) are NFAs

where each state has at most one outgoing transition on each

non-silent symbol. Every NFA can be converted into a DFA

using the subset construction algorithm [19].

B. Basic SDs

We define Basic SDs as follows.

Definition 3 (Basic SDs [15]): A Basic SD S is a tuple (I,
E, f , O), where

• I is a finite set of objects.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 5

SD ::= BasicSD | unaryOp SD | SD alt SD | NotAssertedSD par NotAssertedSD |
assert SD | negate NotAssertedSD

NotAssertedSD ::= BasicSD | unaryOp NotAssertedSD | NotAssertedSD alt NotAssertedSD |
negate NotAssertedSD | NotAssertedSD par NotAssertedSD

unaryOp ::= considerE | ignoreE | loop | critical | opt | ref

Fig. 3: Grammar of the SD language.

• E is a finite set of event occurrences that is partitioned into

send events, denoted by !E, and receive events, denoted by

?E. The set of events sent and received by an object i ∈ I
is denoted by Ei.

• f : !E → ?E is a bijective mapping that associates each

send event e with a unique receive event f(e), and each

receive event e′ with a unique send event f−1(e′).
• O is a set of total order relations<i defined over the events

Ei for every object i. It corresponds to the order in which

the events are physically displayed along the lifeline of an

object i.

Definition 4 (Partial Order [15]): Let S = (I, E, f,O) be

a Basic SD. We define a partial order relation < over E as

follows:

< = [(∪i∈I <i) ∪ ({(s, f(s)) | s ∈ !E})]∗

The scenario in the first argument of the alt operator shown

in Fig. 2(a) is a Basic SD. Here, the set of objects is

I = {MnPs, CtCk, LnLt},

the set of events is

E = {!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt},

the total order <MnPs for the object MnPs is

!ckCtSe <MnPs!ckLnAt,

and the partial order < associated with the entire diagram is

!ckCtSe < !ckLnAt,
!ckCtSe < ?ckCtSe,
!ckLnAt < ?ckLnAt.

This partial order assumes that messages are communicated

asynchronously. Partial order for synchronous communication

is a subset of the above because of synchronization. In the

rest of this article, we assume that messages are passed asyn-

chronously. Also, without loss of generality, we assume that all

event labels are unique.

We define the semantics of Basic SDs by translating them

into their equivalent NFAs. Intuitively, an NFAAS is equivalent

to a Basic SD S iff AS accepts exactly the set of traces that

can be generated by S, i.e., those traces that respect the partial
order of S. Therefore, translation of S to AS reduces to the

translation of the underlying partial order of S to AS . The

algorithm for translating partial orders to NFAs, proposed by

[15], is as follows. Given a partial order < over E, let cut c be
a subset E that is closed with respect to <, i.e., if e ∈ c and

e′ < e, then e′ ∈ c. Since all the events of a single process

are linearly ordered, a cut can be specified by a tuple that gives

the maximal event of each process. The set of all possible cuts

associated with the partial order of a Basic SD generates the

state space of its corresponding NFA. The empty cut is the

initial state, and cuts with all the events is the final state. There

is a transition labeled e from cut c to cut d, if the cut d equals

the cut c plus the single event e.

Theorem 1: A Basic SD S = (I, E, M , O) is semantically

equivalent to an NFA AS = (Σ, Q, δ, Q0, F), where Σ is equal

to E, Q is the set of all cuts, Q0 is the empty cut, F is the

maximal cut including all of the events, and δ allows a transition
from a cut d to a cut c on an event e ∈ E iff d = c ∪ {e}.

The above theorem follows from [15].

Since both the empty and the maximal cuts are unique, Q0

and F consist of only one state each. The set of cuts obtained

by unwinding the underlying partial order in the Basic SD in

Fig. 2(a) is

{〈〉, 〈!ckCtSe〉, 〈!ckCtSe, ?ckCtSe〉,
〈!ckCtSe, !ckLnAt〉, 〈!ckCtSe, ?ckCtSe, !ckLnAt〉,

〈!ckCtSe, !ckLnAt, ?ckLnAt〉, 〈!ckCtSe, !ckLnAt, ?ckCtSe〉,
〈!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt〉}.

Note that the number of states of the corresponding automaton

in Fig. 2(b) is less than the number of the above cuts, because

we reduced the states with the identical outgoing transitions to

a single state.

C. Compositional operators

The semantics of the compositional operators can be given

in terms of the standard operations defined on NFAs (e.g., see

[19]). In particular,

• par corresponds to the parallel composition operator or the

intersection operator over NFA;

• alt corresponds to the union operator;

• loop corresponds to the Kleene star operator.

The theorem below, which follows from Theorem 1 and [19],

shows that the set of NFAs associated with SDs is closed under

the compositional operators.

Theorem 2: Let S, S1 and S2 be SDs, and let S = S1opS2,

where op is a compositional operator. Then, AS = AS1
opAS2

.

For example, the automaton in Fig. 2(c) corresponds to the

sequence diagram in Fig. 2(a). As shown in the figure, this

automaton is obtained by computing the union of the two Basic

SDs corresponding to the two alternative scenarios of the SD in

Fig. 2(a). We have also added a self-loop to the initial state of

the automaton in Fig. 2(c) labelled with the underlying alphabet

of the SD in Fig. 2(a). This self-loop allows the automaton to

guess when the scenario specified by the SD begins.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 6

D. Alphabet changing operators

Operators consider and ignore are used to change the set of

communicating alphabet of an SD. Both of them receive an SD

S and a set of events E as input, but consider adds the elements

in E to the set of events of S, whereas ignore removes the

elements inE from the set of events of S. Formally, let S and S′

be SDs, E be a set of events, and let AS = (Σ, Q, δ, {q0}, F)
be the automaton associated with S. For S′ = considerES,
AS′ = (Σ ∪ E,Q, δ, {q0}, F), and for S′ = ignoreES,
AS′ = (Σ \ E,Q, δ′, {q0}, F) where

δ′ =
(

δ ∩ (Q × (Σ \ E) × Q)
)

∪
{(q, ǫ, q′) | ∃σ ∈ E · (q, σ, q′) ∈ δ}

It is easy to see that the set of NFAs associated with SDs is

closed under the operators consider and ignore as well.

Recall that any missing transition at a state leads to an error

state. Increasing the input alphabet Σ of AS without changing

the transition relation δ means that more execution traces end

up in the error state, while shrinking the input alphabet without

changing the transition relation means that more execution

traces are accepted. For example, the consider operator in

Fig. 2(a) extends the underlying alphabet, Σ, of the automaton

in Fig. 2(c) from {!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt} to

{!ckCtSe, ?ckCtSe, !ckLnAt, ?ckLnAt, !ckTrID, ?ckTrID}.

E. Critical operator

A critical region in a sequence diagram can be specified using

the critical operator. A critical region means that the scenarios

of the region cannot be interleaved by other messages and thus

should be treated atomically. We formalize the semantics of this

operator as follows: if the first message of the critical region is

observed, then the rest of the behavior must be observed as well,

without seeing any intermediate messages.

Let S be an SD enclosed within a critical operator, and letAS

be the automaton for S. The automaton for critical S is obtained

by adding a self-loop to every initial state of AS labelled by

Σ \ {e | ∃q0 ∈ Q0 · q0 has an outgoing transition on e}. This
self-loop transition at the initial state allows the automaton to

wait for a satisfying run to begin. The initial state also becomes

final.

Definition 5: Let AS = (Σ, Q, δ, {q0}, F) be an NFA asso-

ciated with an SD S, and let Scrit be an SD obtained by enclos-

ing S with a critical operator. The automaton corresponding to

Scrit is Acrit
S = (Σ, Q, δ′, {q0}, F ∪ {q0}), where

δ′ = δ ∪ {(q0, e, q0) | e ∈ Σ ∧ 6 ∃q ∈ Q · q 6= q0

∧ (q0, e, q) ∈ δ}

For a sequence enclosed by a critical operator, once the first

symbol of the sequence has been seen, the entire sequence

should be seen as well. For this reason, the self-loop at the

initial state of an automaton corresponding to a critical region

is labelled by Σ minus the initial symbols of the expected se-

quences. For example, Fig. 4(a) shows a sequence diagram with

a critical operator, and Fig. 4(c) – its corresponding automaton.

Similar to the automaton in Fig. 2(c), we have added a self-

loop to the initial state of the automaton in Fig. 4(c) to allow

this automaton to guess when the scenario of interest begins.

F. Assertion and negation operators

The negate operator provides a mechanism for specifying

undesirable (negative) scenarios, and the assert operator allows

us to specify desirable (positive) scenarios. The former operator

can be used to express safety properties, e.g., P1 in Table I, and

the latter – finitary liveness properties, e.g., P2.
Various formal treatments of the semantics of the assert and

negate operators are given in the literature, e.g., [16], [17], [20].

These operators have a rich expressive power, and yet their

arbitrary combinations are not well understood. In particular,

it is unclear whether negating an asserted scenario should mean

that this scenario is not required to occur or that its negation

has to occur. In this section, we define the semantics of assert

and negate operators in terms of NFAs. Our formalization

allows us to arbitrarily combine these operators as long as we

never attempt to apply a negate operator to a sequence diagram

containing an asserted fragment.
1) The negate operator: As mentioned above, negate al-

lows us to express safety properties. By applying negate to

an SD S, we indicate that the scenario represented by S is

forbidden, and therefore, a safe system should never produce

it [17]. For example, consider Fig. 5(a) which shows an SD

corresponding to the safety property P1 in Table I. MnPs

sends a check credit score request, i.e., ckCtSe, to CtCk.

In response, CtCk sends the actual credit score (ctSe) to

MnPs. A creditScoreNotValid (ctSeNV) message is sent

if the value is not in the correct range. This property is ex-

pressed in SD by applying a negate operator to the sequence

!ckCtSe.?ckCtSe.!ctSe.?ctSe.!ctSeNV.?ctSeNV.
The negate operator over SDs is equivalent to the comple-

mentation operator of NFA. Given an SD S and its correspond-

ing automaton AS , we first add a self-loop transition labeled Σ,

i.e., the underlying alphabet of S, to the initial state of AS in

order to enable AS to guess when a satisfying run begins. Note

that after adding this self-loop, AS becomes non-deterministic.

To obtain the automaton for the negated SD, we need to first

determinize AS , and then complement the result.
For example, an automaton corresponding to the SD in

Fig. 5(a), after adding the self-loop and before complementa-

tion, is shown in Fig. 5(b). Fig. 5(c) shows the final, comple-

mented, automaton.
Note that since the sequence S is nonempty, the initial state

of the complement of AS is always accepting, and hence, the

empty string is always in the language of the complement of

AS . This is expected because the negate operator holds (1)

when the negative scenario S does not completely occur, and

(2) when no messages at all are exchanged.
2) The assert operator: The meaning of the assert operator

is given by the UML standard as follows [13], “the sequences

of the operand are the only valid continuations. All other

continuations result in invalid behaviour”. This interpretation

has been formalized in different ways [16], [17]. The one that

we have adopted is that of [16] which is described as follows:

given an asserted behaviour σ = σ0 . . . σn and a system

behaviour σ′, every occurrence of σ0 in σ′ should be followed

by the rest of σ. Thus, an SD with an assert is interpreted

universally: “for every run, once it satisfies the start of the

sequence, it must complete the sequence before termination”.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 7

critical

s

t

ba

(a)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?t

(b)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?tΣ\ {!s} Σ

(c)

Fig. 4: (a) A basic SD enclosed by a critical operator and its corresponding NFAs: (b) before applying critical; (c) after applying

critical.

CtCk

neg

SD Safe

MnPs

ctSeNV

ckCtSe

ctSe

(a)

q0

q1

q2

q3

q4

q5

q6

!ckCtSe ?ckCtSe

!ctSe

?ctSe

!ctSeNV

?ctSeNV

Σ Σ(b)

q0

q1

q2

q3

q4 q5

q6

Σ\{!ckCtSe}

!ckCtSe

!ckCtSe
?c
kC
tS
e

Σ\{!ckCtSe, ?ckCtSe}

!ctSe

!ckCtSe

Σ\{!ckCtSe, !ctSe}

?ctSe
!ckCtSe

Σ\{!ckCtSe, ?ctSe}

!ctSeNV

!ckCtSe

Σ\{!ckCtSe, !ctSeNV}

?ctSeNV

!ckCtSe

Σ\{!ckCtSe,?ctSeNV}

Σ

(c)

q0

q1

q2

q3

q4 q5

q6

Σsys\{!ckCtSe}
Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

!ckCtSe

Σsys \ Σ∪{!ckCtSe}

?c
kC
tS
e

Σ\{!ckCtSe, ?ckCtSe}

!ctSe

!ckCtSe

Σ\{!ckCtSe, !ctSe}

?ctSe
!ckCtSe

Σ\{!ckCtSe, ?ctSe}

!ctSeNV
!ckCtSe

Σ\{!ckCtSe, !ctSeNV}

?ctSeNV

!ckCtSe

Σ\{!ckCtSe,?ctSeNV}

Σsys

(d)

Fig. 5: (a) An SD describing P1 in Table I and its corresponding NFAs: (b) before applying negate; (c) automaton after

determinization and complementation; (d) the resulting monitor.

Note that the difference between assert and critical is that the

former checks all possible suffixes of the input run to probe the

sequence, whereas the latter only checks the first occurrence of

its sequence.

In [16], alternating automata with universal initial states are

used to capture this meaning of assert. Such automata accept

a trace if all of the runs emanating from their initial states

are accepting. NFA, however, accept a trace when there exists

an accepting run emanating from the initial state. Rather than

moving outside NFA (and thus complicating the monitoring

framework), we chose to reinterpret the acceptance for the

assert operator instead: an NFA for an asserted trace σ checks

all suffixes of the system traces, and if one is not accepted, a

failure is reported. This “universal” treatment is given to the en-

tire sequence diagram, not just the part containing assert. This

works correctly as long as such NFAs are not complemented or

composed (in parallel) – the negation and parallel composition

operators over automata with universally interpreted acceptance

are different from those operators of NFA. While negation and

parallel composition operators for NFA are computed via subset

construction and cross-product, respectively, these operators for

the alternating automata simply convert universal states into ex-

istential or add an additional universal state, respectively [21].

Thus, we restrict the application of negate and par to SDs that

contain an assert described in Section II.

Since alternating automata can be converted into NFA with a

possibly exponential blow-up in size, we could have translated

the assert operator directly into NFA. However, we chose not

to do it to preserve the succinctness and relatively small size of

our monitoring automata.

Given the above discussion, the translation of assert operator

is straightforward: After deriving the NFA AS for SD S and

adding a self-loop labelled Σ at its initial state, the automaton

for assert S is obtained by interpreting the initial state as

universal (we follow the notation of [16], denoting this state

with a “∧”) and making it accepting. For example, the SD in

Fig. 6(a) describes the liveness property P2 in Table I – the

desirable scenario is enclosed in the scope of an assert operator.

Fig. 6(b) shows the automaton corresponding to this SD.

G. Interaction use operator

The ref operator is used for referring to an SD fragment from

within another SD. Our treatment of ref is to inline the SD being

referenced, as illustrated in Fig. 7.

H. Message complementation

The message complement operator has been adopted

from [18]. If Σ is the set of messages exchanged in an SD, and

m ∈ Σ, then ¬m is Σ \ {m}. For a set {m,n} of messages,

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 8

MnPs LnLt

assert

SD Live

CtCk

lnAtOk

ckCtSe

(a)

q0

q1

q2

q3

q4∧

!lnAtOk ?lnAtOk

!ckCtSe

?ckCtSe

Σ Σ(b)

q0

q1

q2

q3

q4∧

!lnAtOk ?lnAtOk

!ckCtSe

?ckCtSe

Σsys Σsys

Σsys \ Σ

Σsys \ Σ

Σsys \ Σ

(c)

Fig. 6: (a) An SD describing P2 in Table I and its corresponding NFAs: (b) after applying assert; (c) the resulting monitor.

ref
C

SD ex

t

a b

(a)

SD C

s

a b

(b)

SD ex

s

t

a b

(c)

q0 q1

q2

q3

q4

q5

q6
!s

!t

?s

?s

?t

!t

?t

(d)

Fig. 7: (a) An SD with references SD C; (b) SD C; (c) SD ex after copying the content of SD C; and (d) its corresponding NFA.

 {p,q}

a b

(a)

alt
s

t

a b

(b)

q0

q1

q2

q3

q4

!t

!s

?t

?s

(c)

Fig. 8: (a) An SD with message complementation; (b) the same SD after eliminating the complement operator if its underlying

alphabet Σ is {p, q, s, t}; and (c) its corresponding NFA.

¬{m,n} = Σ \ {m,n}. For example, let Σ = {p, q, s, t}.
Then, ¬p = {q, s, t} and ¬{p, q} = {s, t}.

This operator, although not being part of UML 2.0, can be

expressed in terms of UML operators as follows: Let S ⊆ Σ be

a set of messages. We replace ¬S by an SD fragment in which

the operator alt is applied to individual messages in Σ \ S. For
example, consider the SD in Fig. 8(a) with a message ¬{p, q},
and let Σ = {s, t, p, q}. This SD is equivalent to the one

in Fig. 8(b) where ¬{p, q} is replaced by an alt fragment in

which s and t are two alternative messages. The NFA for the

sequence diagram without message complement operators can

be generated in a straightforward way following the translation

for the alt operator (see Fig. 8(c)).

I. Generating monitors from NFA

To be able to use an automaton AS obtained from an SD S
for runtime monitoring, we need to extend the language of AS

to handle system behaviours over alphabets larger than S. We

do so by adding stuttering self-loops to the automaton’s states.

Semantically, this means thatAS does not change its state when

the input symbol is outside the alphabet of S.
Definition 6 (Stuttering): Let Σsys be the set of system

events, and let A = (Σ, Q, δ, Q0, F) be an NFA s.t. Σ ⊆ Σsys .

The automaton A′ = (Σsys , Q, δ′, Q0, F) is the stutter-closed

form of A w.r.t. Σsys if δ′ = δ ∪ {(q,Σsys\Σ, q) | ∀ q ∈ Q}.

The transformation of Definition 6 is language-preserving:

Theorem 3: Let A = (Σ, Q, δ, Q0, F) be an NFA, and let

Σsys s.t.Σ ⊆ Σsys be given. LetA
′ be the stutter-closed form of

A w.r.t. Σsys (see Definition 6). Then for every trace σ ∈ Σsys ,

σ ∈ L(A′) iff σ ↓Σ ∈ L(A) (see Definition 1).

Proof: The proof follows from the fact that the construc-

tion of Definition 6 does not change the state-space of A:

σ ∈ L(A′)
⇔ (By definition of language acceptance in A′)

∃q0, . . . , qn+1 ∈ Q · q0 ∈ Q0 ∧ qn+1 ∈ F∧
∀σi ∈ σ · δ′(qi, σi, qi+1)

⇔ (By definition of δ′)
∃q0, , qn+1 ∈ Q · q0 ∈ Q0 ∧ qn+1 ∈ F∧
∀σi ∈ σ ↓Σ ·δ(qi, σi, qi+1)

⇔ (By definition of language acceptance in A)

σ ↓Σ∈ L(A)

For example, the monitor corresponding to the SD in

Fig. 5(a) is shown in Fig. 5(d). The language accepted by this

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 9

monitor is

Σ∗
sys

\
(

Σ∗
sys

·!ckCtSe · (Σ∗
sys

\ Σ)∗·?ckCtSe·
(Σ∗

sys
\ Σ)∗·!ctSe · (Σ∗

sys
\ Σ)∗·?ctSe·

(Σ∗
sys

\ Σ)∗·!ctSeNV · (Σ∗
sys

\ Σ)∗·?ctSeNV · Σ∗
sys

)

That is, this monitor rejects a trace that begins with a check

credit score request (ckCtSe) which gets received (perhaps

with some events not in the vocabulary of this SD in the

middle), followed by receiving the credit score (ctSe) and

sending a message indicating it is invalid (ctSeNV), followed

by arbitrary events in the system. Thus, the behaviors during

which the check credit score requests are made and result in an

invalid credit score are rejected; these correspond to violations

of property P1.

The monitor for the SD in Fig. 6(a) is shown in Fig. 6(c). Its

language is

(

(Σsys\!lnAtOk)
∗ ·(!lnAtOk · (Σsys \ Σ)∗

·?lnAtOk · (Σsys \ Σ)∗

·!ckCtSe · (Σsys \ Σ)∗

·?ckCtSe)∗
)∗

This monitor accepts traces that either do not exhibit !lnAtOk

at all, or, if !lnAtOk has been seen, exhibit the entire sequence

?lnAtOk·!ckCtSe·?ckCtSe. Traces not accepted by this moni-

tor violate property P2 of the LA system.

Note that we do not add stuttering self-loops to the critical

regions because behaviour specified in critical regions cannot

be interleaved by other messages.

J. Complexity of the translation

The size of an automaton AS corresponding to a basic SD

S, i.e., the number of states in AS , is O(nk), where n is the

number of events and k is the number of objects [15]. Applying

the SD operators does not cause a significant increase in the size

of the resulting automata except for the cases where we need to

to determinize these automata which can exponentially increase

their state-spaces. However, in our experience, the generated

automata have been very small (see Section VI). Obviously, it

remains to be seen whether the approach scales to larger web

service systems and more complex properties.

K. Discussion

On Using Our Language in MDA Tools. In this paper, we

formalized the syntax of the SD language using a context-

free grammar (see Fig. 3). As discussed in Section V-A, we

used the Rational Software Architect (RSA) [22] plug-in for

WebSphere to generate an editor for SD diagrams. To do so,

we have identified a fragment of the UML metamodel that

captures the SD operators described in Fig. 3 and specified

logical properties constraining the nesting and the ordering of

these operators. We have implemented a separate Java module

to check these constraints over the generated SD diagrams in

our tool. In the future, we plan to encode these constraints

as part of the metamodel by expressing them in the Object

Constraint Language (OCL) [14]. This would make our editor

reusable in other UML environments.

On the Expressive Power of Our Language. In this section,

we provided a transformation from our language, SD, to NFA,

showing that SD can capture safety and finitary liveness prop-

erties. Our transformation further shows that SD is not more

expressive than regular expressions, i.e., the language that NFA

recognize.

The main restriction in SD is that we do not allow the

nesting of asserts within the scope of negates. For example,

sequence diagrams such as the one shown in Fig. 20(a) are not

included in SD (we discuss these diagrams in more detail in

Section VI-B). However, this restriction is mainly syntactic,

because we can always push the negate operator down to

the atomic level, and reformulate the sequence diagram into

a semantically equivalent one in which negate is not applied

within the scope of assert. For example, Fig. 20(b) shows a

sequence diagram which is semantically equivalent to the one

in Fig. 20(a) and is within the SD language.

Note that after removing the negate operator, the

resulting sequence diagram may have brand new

scenarios: to do the removal, we need to elicit the set

of all possible scenarios complementary to the scenario

enclosed by the negate. For example, the scenario

negate(reserveHotel, hotelReserved) in Fig. 20(a) is

replaced by two new scenarios: reserveHotel, timeout
and reserveHotel, hotelNotReserved, in Fig. 20(b). The

process of enumeration and analysis of all possible alternative

scenarios obviously requires domain knowledge and thus

cannot be automated in general. However, the online nature of

our monitoring framework allows us to register for and collect

the alternative scenarios with ease.

IV. SD TEMPLATES FOR TEMPORAL LOGIC PROPERTY

PATTERNS

In this section, we study the expressive power of our SD

language by using it to express temporal logic property pat-

terns [1]. Property patterns have been shown to capture a wide

variety of commonly used properties, and being able to express

property patterns is a good indication of an expressive power of

a new language.

We first provide an overview of property patterns in Sec-

tion IV-A and then introduce several SD templates and show

how they can encode the property patterns in Section IV-B.

A. Temporal Logic Property Patterns

The Specification Pattern System (SPS), proposed by Dwyer

et al. [23], is a pattern-based approach to the presentation,

codification, and reuse of property specifications. The system

allows patterns like “event P is absent between events Q
and S” or “S precedes P between Q and R” to be easily

expressed in and translated between linear-time temporal logic

(LTL), computational tree logic (CTL) [24] and other state-

based and event-based formalisms. SPS has been advocated

as a standard tool for measuring the practical usefulness and

expressive power of specification languages, e.g., [18] and [25].

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 10

Absence An event does not occur within a given scope;
Existence An event must occur within a given scope;
Bounded Existence An event can occur at most a certain number of times within a given scope;
Universality An event must occur throughout a given scope;
Response An event must always be followed by another within a scope;
Response Chain A chain of events must always be followed by another chain of events within a scope;
Precedence An event must always be preceded by another within a scope;
Precedence Chain A chain of events must always be preceded by another chain of events within a scope.

TABLE II: SPS patterns.

Global The entire program execution;
Before R The execution up to event R;
After Q The execution after event Q;
Between Q and R All parts of the execution between events Q and R;
After Q until R Similar to Between, except that the designated part of the execution continues

even if the second event does not occur.

TABLE III: SPS scopes.

(a) (b)

Fig. 9: Specification property system: (a) a pattern hierarchy and (b) pattern scopes.

ref

ref

Property

R

a b

(a)

ref

ref
Property

Q

a b

(b)

ref

ref

ref

Q

Property

R

a b

(c)

ref

ref

Q

Property

R
opt ref

a b

(d)

Fig. 10: Scope mapping for sequence diagrams: (a) Before R; (b) After Q; (c) Between Q and R; and (d) After Q until R.

The property patterns are organized into a hierarchy based

on the kinds of system behaviors they describe (see Fig. 9(a)):

Occurrence patterns talk about the occurrence of a given

event/state during system execution, and Order patterns spec-

ify relative order in which multiple events/states occur during

system execution. The patterns are described in Table II.

Each pattern is associated with scopes – the regions of

interest over which the pattern must hold. There are five basic

kinds of scopes: Global, Before, After, Between and After-

Until. Definitions of these are given in Table III and pictorially

described in Fig. 9(b).

For example, consider a property of a queue that says that

there should be a dequeue event between every enqueue and

empty. This is the Existence pattern, with the Between scope.

Looking up the LTL formalization of this pattern/scope combi-

nation from the catalogue and substituting our event names, we

obtain the formula

�((enqueue ∧ ¬empty)
⇒ (¬empty W (dequeue ∧ ¬empty))).

B. Mapping Property Patterns to SDs

In this section, we provide several SD templates for the SPS

patterns (see Fig. 11), and show how these templates are used

to express patterns in the SPS hierarchy. Selected mappings are

described below; the remainder can be found in the Appendix.

Note that the actual direction of the arrows is determined when

a template is instantiated.

Absence: message p cannot occur in a given scope. This can be

expressed as shown in Fig. 11(a).

Existence: a message p must occur in a given scope. This can

be expressed as shown in Fig. 11(b).

Until: This pattern is not part of the SPS; however, it is used

to specify the Precedence patterns. A sequence p∗ of messages

occurs until the first occurrence of message q, in a given scope

(see Fig. 11(h)). This pattern, formalized using a single “until”

temporal operator [24], can be refuted in one of two ways:

either p never occurs, or after seeing a finite number of p

messages (expressed using loop 1, n), neither a p nor a q

message occurs (expressed as ¬{p, q}).

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 11

SD absence

neg

p

a b

(a) Absence

SD existence

assert

p

a b

(b) Existence

SD bounded existence

assert

loop 0,2

neg

p

p

a b

(c) Bounded Existence

SD universality

neg

p

a b

(d) Universality

loop *

assert

SD response

p

s

a b

(e) Response

loop *

critical

SD response 2s − 1r

assert

s

t

p

a b

(f) Response Chain
2 stimulus - 1 response

loop *

SD response 1s − 2r

assert

p

s

t

a b

(g) Response Chain
1 stimulus - 2 response

loop 1,n

alt

neg

SD until (p U q)

neg

p

p

{p,q}

a b

(h) Until

SD precedence

alt

ref

ref

absence p

until (p U s)

a b

(i) Precedence

SD

alt

ref

ref

absence

precedence 2c − 1e

p

until (p U (s,t))

a b

(j) Precedence Chain
2 cause - 1 effect

Fig. 11: Property pattern mappings for SDs: (s, t) means message s followed by message t

neg

alt

SD P3

MnPs LnLt CtCk CeLn PsAn

ckLnAt

lnAtNO

ceLn

psAn

(a)

q0

q1

q2

q3 q4

q5

q6

q7

!ckL
nAt

Σ\{!
ckL

nAt
, ?ck

LnA
t}

?ckLnAtΣ\{!ckLnAt, !lnAtNO}

!c
kL
nA
t

!lnAtNOΣ\{!ckLnAt, ?lnAtNO}

!c
k
L
n
A
t

?lnAtNO

!c
e
L
n

!psAn

Σ
\{!c

e
L
n,!p

s
A
n,?c

e
L
n}

?p
s
A
n

?ceLn

Σ\{!ceLn, !psAn, ?psAn}

?c
e
L
n

?p
s
A
n

Σ\{!ckLnAt}

!ckLnAt

Σ\{!ceLn, !psAn}

!csLn

!psAn

Σ

(b)

Fig. 12: P3: Absence pattern. (a) SD describing the LA property P3 and (b) the resulting monitor.

Precedence: a message s (cause) precedes a message p (effect),

as shown in Fig. 11(i). This pattern allows the cause part to

occur without the effect. We describe this pattern in SD by

expressing the two possible cases that this pattern specifies:

a) p never occurs, or b) p never occurs before s. The first case

corresponds to checking absence of p; the second – to checking

¬p U s (the “until” template), since we want to be sure that no

p messages are sent before the first s message.

In the SDs in Fig. 11, symbols p, q, s, and t can denote

complex SDs rather than just the individual messages. In this

case, we treat these symbols as placeholders and use a ref

operator for the SDs that should be inserted in their place, and

replace message complementation by negation.

C. Mapping Property Scopes

We now show how to express property patterns involving

scopes which are used to define the traces over which a property

will be monitored. Scopes can be simple messages or more

complex scenarios in our specification language. The ref oper-

ator is used to introduce scope delimiters in the corresponding

locations. For example, to apply the Before R scope to a

property, the scope delimiter R is inserted after the property we

wish to verify (see Fig. 10(a)). In the case of the After Q scope,

the delimiter is inserted before the property (see Fig. 10(b)).

Finally, both the Between (see Fig. 10(c)) and the After-until

(see Fig. 10(d)) scopes add before/after delimiters. In the After-

until scope, the property is valid even if the “until” part does not

occur. Therefore, the second delimiter in this scope is optional.

Thus, there is an implicit opt operator in each scope delimiter.

D. Specifying Properties of the Loan Application

We now show how property patterns can be used to express

properties of the LA system given in Table I. Properties P1 and

P2 are described in Figs. 5 and 6, respectively. The rest are

discussed below.

Property P3: “A loan cannot be granted if the loan amount is

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 12

ref
P3

SD P4

MnPs LnLt CtCk CeLn PsAn

ckCtSe

ctSeOk

(a)

q4

q5

q6

q7 q8

q9

q10

q11

q0q1q2q3
!ckCtSe?ckCtSe!ctSeOk

?c
t
S
e
O
k

!ckL
nAt

Σ\{!
ckL

nAt
, ?ck

LnA
t}

?ckLnAtΣ\{!ckLnAt, !lnAtNO}

!c
kL
nA
t

!lnAtNOΣ\{!ckLnAt, ?lnAtNO}

!c
k
L
n
A
t

?lnAtNO

!c
e
L
n

!psAn

Σ
\{!c

e
L
n,!p

s
A
n,?c

e
L
n}

?p
s
A
n

?ceLn

Σ\{!ceLn, !psAn, ?psAn}

?c
e
L
n

?p
s
A
n

Σ\{!ckLnAt}

!ckLnAt

Σ\{!ceLn, !psAn}

!csLn

!psAn

Σ

(b)

Fig. 13: P4: Absence pattern, Scope After. (a) SD describing the LA property P4 and (b) the resulting monitor, obtained by

concatenating the NFAs for the scope and P3.

SD checkCredit

MnPs LnLt CtCk

ckCtSe

ctSeOk

(a)

SD loanGranted

alt

MnPs CeLn PsAn

ceLn

psAn

(b)

until (loanGranted U creditCheck)

alt

ref
absence

SD P5

MnPs LnLt CtCk CeLn PsAn

loanGranted

ref

(c)

Fig. 14: P5: The Precedence pattern. (a) SD for checkCredit; (b) SD for loanGranted; (c) SD showing application of the

Precedence pattern.

less than or equal to zero.”
We express this property using the Absence pattern (see

Fig. 11(a)): our property holds if there are no scenarios where

a loan is granted after the system has been warned that the loan

amount is less than or equal to zero. In the LA system, the

LnLt component checks the predicate “loan amount is > 0”,
sending a loanAmountOkay (lnAtOK) message if the con-

dition holds, and a loanAmountNotOkay (lnAtNO) message

otherwise. A loan is considered granted if it is manually or

automatically approved, which can be monitored by checking

if the main workflow MnPs sends a completeTheLoan (ceLn)

or processTheApplication (psAn) message. See Fig. 12(a)

for the corresponding SD; the resulting monitor is shown in

Fig. 12(b).

Property P4: (an example of a scoped property) “After check-

ing that the applicant has a good credit score, a loan cannot be

granted if the loan amount is less than or equal to zero.”
This property is equivalent to the property P3 with the

After Q scope, where Q is “checking for a good credit score”.

To express it, we introduce the scope delimiter Q before the

property P3, as seen in Fig. 10(b). The SD corresponding to P4

is shown in Fig. 13(a) and consists of two parts: (1) scopeQ and

(2) property P3, i.e., the fragment specified by a ref operator

which should be replaced by the SD for P3. The resulting

monitor is shown in Fig. 13(b).

Property P5: “No-one can get a loan without first going

through a credit check.”
At this point, we have identified common scenarios that

occur in the LA system: SDs creditCheck (Fig. 14(a)) and

loanGranted (Fig. 14(b)). We can now express property P5

using the Precedence pattern: SD creditCheck must precede

SD loanGranted. Note that the SD creditCheck is not optional

and must occur for the property to hold. The SD for P5 is shown

in Fig. 14(c).

V. ARCHITECTURE AND IMPLEMENTATION

We have implemented our runtime framework within the

IBM WebSphere business integration products [26]. In what

follows, we describe the architecture of our solution and discuss

some of the more challenging parts of the implementation.

A. Architecture

Our solution uses the WebSphere Process Server [27] and the

WebSphere Integration Developer [28]. The former provides a

BPEL-compliant process engine for executing BPEL processes

and a built-in Service Component Architecture (SCA), which

is a particular instantiation of SOA. The latter provides a

development environment for building web service applications

and a graphical package for creating UML Sequence Diagrams.
The architecture of our framework is shown in Fig. 15. With

the help of the PropertyManager (PM), users create UML SD

specifications for their web service applications. This com-

ponent also checks if the user-specified properties belong to

our SD subset, and generates the corresponding NFA as a by-

product of this check. If monitoring is enabled, the Monitoring-

Manager (MonM) translates these NFAs into monitor automata

using the techniques in Section III. During the execution of

the web service, MessageManager (MM) obtains interaction

events from the SCAMessageHandler (MH) and directs the

relevant events to MonM, which, in turn, updates the state

of every active monitor automaton, until an error has been

found or all partners terminate. The intercepted events are never

stored, neither by the MH nor by the MM. We describe these

components below.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 13

Fig. 15: Architecture of the framework.

CreateSD
Action

Monitoring.UI Plugin

SD
Creation

PropertyManager Plugin

Event
Forwarder

MessageManager Plugin

EventAnalysis

MonitorUtilities

MonitorCore

Monitoring.Core Plugin

EnableMonitor
Action

EventHistory
View

ActiveMonitors
View

SD
Analysis

Event
Adaptor

Fig. 16: The overview of the framework plugins.

PropertyManager consists of a graphical tool for specifying

interaction properties as UML SDs. Once users create an SD

and enable monitoring, the PM loads the XMLmodel of the SD,

checks that it uses the language subset described in Section III,

unwinds the partial order of the diagram into an NFA using

the algorithm introduced in Section III, and passes the NFA

to MonM. In the case of a property failure, the PM is also

responsible for displaying errors to the user.

SCAMessageHandler is deployed on the process server and

establishes a bridge through which our runtime monitoring

framework communicates with the server to obtain information

about web service execution. On the process server, the SCA

is responsible for the invocation of native SCA service compo-

nents and for the binding and interaction with external services.

SCAMessageHandler monitors interactions within the SCA

application server runtime environment and is responsible for

observing and routing these invocation requests and responses

to the correct components.

MessageManager is responsible for obtaining service re-

quest/response messages exchanged between business com-

ponents from the SCA layer. MM, registered as a listener

to SCAMessageHandler, intercepts events for operation invo-

cation and filters out irrelevant messages such as locating a

service. For the “interesting” events, MM extracts key infor-

mation related to the operation invocation: what are the sender

and receiver of the given message, whether the invocation is

synchronous or asynchronous, what type of message is being

exchanged, whether priorities are being used, etc. MM then

packs all this information together with the timestamp of when

the events were intercepted, and sends them to the message

queue associated with MonM via a TCP/IP communication

channel.

MonitoringManager is the main component of our frame-

work, as it constructs monitoring automata, processes events

and keeps track of the acceptance status of all monitors. Upon

receiving a monitoring request together with the NFA repre-

sentation of an SD from PM, MonM converts the NFA to a

DFA and further to a monitor using the algorithms described

in Section III. To facilitate checking multiple properties for a

single web service system, MonM can manage a number of

monitors simultaneously. Upon receiving an event from its mes-

sage queue, MonM identifies those monitors that include this

event as part of their communicating alphabets, and changes

their states according to their transition functions. All other

monitors do not receive this event at all, which means that they

stay in the same state. Note that this filtering mechanism used

in our implementation differs from the one described in Sec-

tion III-I (the stuttering step). The two are equivalent, and we

used the stuttering construction in order to study the expressive

power of our language. When updating the state of a monitor,

MonM checks whether it is in a valid state; otherwise, it marks

the corresponding property as being violated and records the

erroneous event so that the PM is able to replay the error to the

user.

B. Implementation

Since the WebSphere business integration tools are based

on Eclipse, the functional components of our framework have

been implemented as Eclipse plug-ins as well. Based on the

architecture described in Section V-A, we implemented four

plugins. Fig. 16 depicts the interactions and dependencies be-

tween these, using double-arrowed lines.

Monitoring.Core Plugin is the component corresponding to

the MonitoringManager in the architecture. It consists of four

packages: the MonitorCore package, which acts as an entry

point to MonitorCore plugin; the Monitor package, responsible

for receiving expanded SDs and translating them into monitor

automata; the EventAnalysis package, which handles events

received from MessageManager Plugin and forwards relevant

events to monitors; and the Utilities package, which provides

automata-related manipulation functions.

MessageManager Plugin implements the MessageManager

functionality in the architecture. It contains two packages:

EventAdaptor and EventForwarder. The EventAdaptor package

registers itself as a listener to the SCAMessageHandler built

into the WebSphere Process Server infrastructure, observing

all invocation events flowing in the server SCA layer. To be

effective, the EventAdaptor needs to be deployed into the

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 14

Fig. 17: Screenshot of the framework’s user interface.

server. Thus, when the server runs, the change made by the

package is picked up by the WebSphere Process Server. The

EventForwarder package simply acts as a bridge between the

EventAdaptor package and the MonitorCore package to transfer

events from the former to the latter. Since the EventAdaptor

and the EventForwarder run in the different address spaces, the

communication between them is established through a TCP/IP

socket. Specifically, the EventForwarder acts as the server role

in a socket while the EventAdaptor takes the client side. When-

ever it observes an event in the SCA layer, the EventAdaptor

sends it to the socket port.

PropertyManager Plugin corresponds to PropertyManager

functionality in the architecture. It contains all Sequence

Diagram-related functionality, which is grouped into two pack-

ages. The SDCreation package adopts an existing graphical

UML package provided by WebSphere as the Sequence Dia-

gram editor. This existing graphical UML package, which acts

as the front-end of the SDCreation, stores SDs in XML format

and further provides the data structure along with APIs to ma-

nipulate SDs in memory. The back-end of the SDCreation is re-

sponsible for checking whether specified objects and messages

are valid in a web service composition when users use them

to create a property for monitoring. The SDAnalysis package is

where user-specified SD properties get translated into NFAs. It

recursively traverses the data structure passed in from the front-

end to extract all SD constructs and unfold the partial order.

The current implementation supports all operations introduced

in Section II. In our framework, we adopted the implementation

of compositional operations over automata from the Charmy

project [29].

Monitoring.UI Plugin serves as an extension point to the

framework and provides various graphical interfaces that users

need to interact with the runtime monitoring tool. For example,

CreateSDAction and EnableMonitorAction provide action icons

in Eclipse for users to create an SD and then enable it for

monitoring. The satisfaction of monitored properties and the

system execution history can be seen in the ActiveMonitors and

EventHistory windows, respectively.
Fig. 17 shows the screenshot of the user interface of our

runtime monitoring framework. The BusinessIntegration view

(panel in the top-left corner), shows the individual files of the

LA system implementation. The panel in the middle of the

window is the editor for creating SDs and viewing the mon-

itoring results. The bottom two panels belong to the runtime

monitoring framework. The tab on the left is the ActiveMonitors

view, which lists all monitor-enabled properties. The view also

shows the acceptance status of the monitored properties. The

tab on the right is the MonitorHistory view, from which users

can trace the execution of web services.

C. Other Implementation Issues

As mentioned in Section III, in order to apply the negate

operator, NFAs should be determinized. However, the deter-

minization algorithm may result in an exponential blow-up of

the number of states. To keep the size of the automata small,

we have used several optimization techniques such as reduction

and minimization [19], adopting the implementation of these

techniques from the BRICS package [30].
Although all generated automata are stored in memory and

users do not need to use them directly, it is helpful to have an

interface to allow viewing and debugging these automata. In

our framework, we can store the generated automata in XML,

and thus enable displaying them in graphical automata-editing

tools such as JFLAP [31].
While web services are terminating processes, they are meant

to be repeatedly executed by different customers. In order to

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 15

reuse the monitor for checking subsequent executions of the

same web service, we have implemented a resetting mecha-

nism: as one execution terminates, an additional transition la-

beled terminate, added to all accepting states of the monitor,

brings it back to the initial state.

BPEL supports the notion of process instance, so all mes-

sages include a process identifier as part of message header.

Messages labeled with an existing process identifier are routed

to the corresponding process; otherwise, a new process instance

is started. By associating these process identifiers to our mon-

itors, we can easily monitor multiple instances of the same

process.

Because web services are distributed and allow asynchronous

message communication, messages may get delivered and re-

ceived out of order. To handle out-of-order events, we annotate

each event with two timestamps: one at invocation and one at

reception. When events arrive at the message queue of MonM,

these timestamps are used to check if the invocation ordering is

consistent with the reception ordering. If the orderings are not

consistent, detected errors may be caused by network delays

rather than incorrect conversations. Currently, all timestamps

are generated by the same WebSphere Process Server.

We report monitoring results by displaying the status of each

monitor in the ActiveMonitors view, tagging each property as

satisfied, violated or not yet conclusive. Clicking on satisfied

or violated results displays a reason for the decision, in the

Sequence Diagram editor. Table IV gives a summary of the

feedback provided by our framework.

• For monitors for individual positive scenarios, if a given

trace is accepted, the Sequence Diagram Editor shows

the appropriate SD, with the observed trace highlighted.

If the given trace is not satisfied by such a monitor, the

answer to whether the system can exhibit such behaviour

is inconclusive.

• Acceptance by a monitor for negative scenarios indicates

that the appropriate safety property is violated, which

is depicted by highlighting the appropriate trace (see

Fig. 18(a)). Certainly, a failure to observe the violation on

a given trace does not mean that every trace will satisfy

the property; thus, in this case the property is marked

inconclusive.

• A monitor for a universal positive property, representing

finitary liveness, is violated if the desired sequence has

started but has not finished before the process terminated.

This is indicated by the red line labelled “TERMINATE”.

If the sequence has been observed to completion, or if

the process failed to terminate, no information about the

satisfaction of this monitor can be given, deeming it in-

conclusive.

We also display the termination point in the case of individual

positive scenarios, showing that the given trace is a prefix of an

acceptable scenario.

VI. EXPERIENCE

We have applied our framework to several web services and

report on results of monitoring them by running our tool on

the WebSphere Process Server V6.0 (WPS) and WebSphere

Property Existential Universal
Type Positive Negative Positive

Violation Violated/
highlight
trace

Violated/
highlight
termination
location

Satisfaction Satisfied/
highlight
trace

TABLE IV: Summary (answer/feedback) of the results from

the monitoring framework. Empty cells indicate inconclusive

results.

(a) (b)

Fig. 18: Reporting errors: (a) A complete (negative) trace; (b)

An incomplete sequence: violation of a liveness property.

Integration Developer V6.0.1 (WID). Table V shows the details

of the properties we specified and checked. In this table, column

“Id” contains a unique identifier for each property; “Property”

is the actual property to be checked; “# Part.” corresponds

to the number of partners involved in the corresponding SD;

“# Events” is the number of events sent between partners in the

SD; “# States” corresponds to the number of states in the corre-

sponding automaton; and “# Trans.” is the number of transitions

in the automaton. Note that all of the constructed automata have

fever than 100 transitions. While the system generates a large

number of messages, our monitors receive just those within the

scope of the automata; the rest are filtered. Furthermore, the

intercepted events are never stored. Thus, enabling monitoring

does not produce a significant performance overhead.

A. Monitoring the LA system

The LA system, introduced in Section I-A, consists of six

partners and six invocation-type activities, with the workflow

shown in Fig. 1(a). This application comes as part of the

WebSphere Integration Developer v6.0.2. As it is a sample

application, the original developers of the application have

simplified some of the business logic, e.g., the CreditCheck

component generates random credit scores rather than access

the credit bureau.

We began by testing the system to see if the application was

correctly deployed. To do this, we ran it on two different tax-

payer ids and three different loan amounts, with the following

specific input configurations:

c1 = <taxpayer id = 1234, loan amount = $10,000>,

c2 = <taxpayer id = 1234, loan amount = $60,000>,

c3 = <taxpayer id = 1888, loan amount = -$1,000>.

As the system is supposed to generate random valid credit

scores, we ran the system 10 times with each configuration. For

configuration c1, we expected to see some automatic approvals

of the loan, and some declines, based on whether the good or

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 16

Id Property Pattern # Part. # Events # States # Trans.

THE LOAN APPLICATION SYSTEM

P1 The credit score should always be valid, i.e., between 300 and 850 Absence 2 6 7 18
P2 The credit score should eventually be checked if the loan amount is

greater than zero
Existence 2 4 5 9

P3 A loan cannot be granted if the loan amount is less than or equal to zero Absence 5 8 8 23
P4 After checking that the applicant has a good credit score, a loan cannot

be granted if the loan amount is less than or equal to zero
Absence; Scope After 5 10 12 27

P5 No-one can get a loan without first going through a credit check Precedence 5 8 28 95

THE TRAVEL BOOKING SYSTEM

P6 The TB system should not reserve hotel room without checking the
customer’s credit first

Absence 3 6 5 14

P7 A customer should be eventually notified about the status of his/her
travel booking request, whether the reservation succeeds or not

Existence 2 4 5 9

P8 A customer cannot make a reservation until his/her credit is checked Precedence Chain 3 4 7 16
P9 After the TB system receives a booking request, the customer will

eventually receive a feedback message
Response Chain 2 6 6 15

P10 If the customer’s credit card is good, the TB system should attempt to
make hotel, flight and car reservations

Response 5 10 31 89

P11 The TB system should receive confirmation messages for all reservation
attempts before generating a confirmation message

Precedence 5 8 21 48

P12 No matter what happens after the customer submits a travel booking
request, the customer will receive a feedback message

Existence 2 4 5 9

P13 If the customer’s credit is not good, the TB system should not make any
charges to the customer’s credit card

Absence; Scope After 5 8 8 22

P14 If any reservations are made, the customer must be informed Response 5 8 7 25
P15 If a reservation cannot be made, inform the customer – – – – –

THE ONLINE SHOPPING SYSTEM

P16 A premium customer always gets a discount on his/her purchase Absence 3 8 7 30
P17 An order cannot be billed before being marked complete by the cus-

tomer
Absence 3 6 6 23

P18 A completed order will be eventually billed Existence 3 4 5 15

TABLE V: Properties and sizes of their automata representations.

the bad score is generated. For c2, we expected some manual

approvals of the loan (the loan amount is above the automatic

approval limit), and some declines. Finally, since the loan

amount in c3 is invalid, we expected to see only loan rejections.

For configurations c1 and c2, the behavior we observed was

as expected: P1, P2, P5 always held and P3, P4 held when the

loan was granted. However, for all executions of c3, the system

automatically approved the loan, meaning that properties P3

and P4 were violated. For all executions of c3, the system

produced the following faulty execution trace:

FT = (MnPs, ckCtSe, LnLt), (LnLt, ctSeOK, CtCk),
(MnPs, ckLnAt, LnLt), (LnLt, lnAtNO, CtCk),
(MnPs, ceLn, CeLn).

where each triple (Sender ,m,Receiver) denotes partner

Sender sending a message m to partner Receiver . The

(LnLt, lnAtNO, CtCk) triple in this trace indicates that the loan
amount is less than or equal to zero. In other words, the LnLt

component checked the predicate “loan amount is > 0”, and
sent a loanAmountNotOkay (lnAtNO) message because the

predicate did not hold. Therefore, this trace depicts a failure

of P3 because it includes an invalid behaviour, the acceptance

of the invalid loan, indicated by the subtrace

(MnPs, ckLnAt, LnLt), (LnLt, lnAtNO, CtCk), (MnPs, ceLn, CeLn).

As P4 is a scoped version of P3, it also fails on this trace.

To identify the cause of the violations, we examined the

BPEL diagram in Fig. 1(a) to see that the trace FT is produced

if the LA system obtains the taxpayer’s credit score, checks

if the credit score is greater than 750 (ScoreEvaluation),

checks if the loan amount is greater than zero (input vali-

dation), and checks if the loan amount is less than $50,001

(AutoApprovalTest). The ScoreEvaluation should only

occasionally be true, as the CreditCheck component generates

random credit scores. However, we obtained trace FT every

time the system was run with the taxpayer id 1888, i.e., the

system always approved a negative loan.

We traced this behaviour to two problems. The first, identi-

fied after looking at the BPEL code of the LA system, was that

the application did not use the results of the input validation,

allowing requests for negative loans to go through. The second

problem was only identified after examining the source code

for the CreditCheck partner. Instead of ignoring the taxpayer

id and generating a random credit score, this component always

returns a good credit score when the taxpayer id that ends with

“888”. Combined, these two problems yielded the approval of

the loan for configuration c3 every single time.

Overall, our experience showed that the system can handle

simultaneous failure of several monitors and allowed us to

specify interesting properties which led to the discovery of two

real faults in the LA system.

B. Monitoring other applications

Additionally, we modeled and checked two other applica-

tions: the travel booking system (TB) and the Online Shopping

System (OS).

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 17

get travel data

check credit

flight

reservation

hotel

reservation

car

reservation

generate

confirmation

inform

customer

handle

invalid credit

[valid credit]

[invalid credit]

Fig. 19: The activity diagram of the TB system.

The Travel Booking System. TB acts as a broker offering its

customers the ability to book all aspects of a trip. The work-

flow of TB system includes credit validation, flight/hotel/car

reservation, and communication with the client. Customers can

submit data about their desired travel plans and receive either

a confirmation number or a failure message depending on

whether the travel arrangements have been made successfully.

The activity diagram in Fig. 19 shows high-level steps that are

executed during the travel booking process.

To fulfill its business goal, the TB system needs to interact

with several partners: CreditCardChecking service, which

validates the customer’s credit card data, FlightReservation

service, which books a flight, HotelReservation service,

which reserves a hotel room, and CarReservation service,

which makes a car reservation. In a typical scenario, an Internet

customer begins an interaction with the TB system by entering

data for his/her travel arrangements. The system then invokes

the CreditCardChecking service, and if the credit card is

valid, it tries to make hotel, flight and car reservations. If all

of the reservations are completed successfully, a confirmation

number is generated and returned to the customer.

Table V lists properties we checked on this system (P6 –

P15). For example, P6 includes 6 events between 3 partners and

is represented by an automaton with 6 states and 23 transitions.

Five properties, P6, P7, P12, P13, P14, are monitorable using

patterns in the Occurrence hierarchy (see Fig. 9(b)). Four

properties, P8, P9, P10, P11, are monitorable using patterns in

the Order hierarchy.

Property P15 can be expressed in UML 2.0 Sequence Dia-

gram language but not in our specification language SD. The

reason for this limitation is the chosen set of events of the

TB system: hotel reservations are handled only by two events:

reserveHotel (the request) and hotelReserved (confirma-

tion of the success). Thus, failure to reserve the hotel means

that we were unable to receive the confirmation message. Since

it is not clear how long the service should wait before declaring

a failure, we have to express the property using an assert inside

neg

SD hotelNotReserved

Agt

hotelReserved

reserveHotel

Htl

assert

(a)

SD hotelNotReserved

Agt

alt

assert

timeout

hotelNotReserved

Htl

reserveHotel

(b)

Fig. 20: Expressing property P15: (a) using the existing alpha-

bet of the TB system; (b) with additional events.

a negate, as shown in Fig. 20(a), which is not allowed in our lan-

guage (see Section III-F2). The problem can be fixed by adding

two additional events to the TB system that give a reason why

the hotel reservation fails: timeout (produced if a confirmation

is not received by a certain time) and hotelNotReserved

(produced if the reservation could not be obtained). With these,

property P15 can be expressed as shown in Fig. 20(b), which is

within the SD language.

We checked properties P6 − P14 on two versions of the TB

system: the complete system shown in Fig. 19, and a version

where we removed the error handler for invalid credit cards

(dashed links in Fig. 19). We did not detect any errors when

running the complete system against these properties. When

running the modified version of the system, the monitoring

framework was able to detect a violation of the property

P7 when the user submits a travel request with an invalid

card, and reported this violation by showing that the event

displayResult is missing. We believe that this feedback

would have been useful for debugging of the Travel Booking

System.

The Online Shopping System. This system implements a typ-

ical online shopping service and consists of four partners and

20 invocation-type activities. These activities are invoked via

asynchronous or synchronous message passing. For a complete

description of the system, see [32].

The first two properties, P16 and P17 in Table V, are ex-

pressed using the Absence pattern. The remaining property,

P18, is expressed using the Existence pattern. We did not

detect errors in the OS system when running it against these

properties.

Summary. Overall, our experience showed that SD is a lan-

guage expressive enough to capture a variety of properties

of existing web service applications, and all of the proper-

ties except one could be expressed using the pattern system.

Expressing the remaining property required enriching the set

of events in the corresponding system. Despite a potential

exponential increase in the size of monitoring automata, we did

not encounter it in examples we have tried, and thus monitoring

always yielded negligible overhead. Finally, the experience of

encountering an error in an existing application, which resulted

in a simultaneous failure of several monitors, allowed us to

conclude that the our framework can be used to facilitate

effective debugging.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 18

VII. RELATED WORK

The main contributions of our work are the definition of a

runtime monitoring language, and the creation of a dynamic

runtime monitoring framework based on this language. Thus,

we first summarize some work studying UML 2.0 Sequence

Diagrams as a specification language. Afterwards, we survey

the research on runtime monitoring in the context of web

services.

A. Sequence Diagrams as a specification language

Like other partial-order scenario-based formalisms such as

MSCs [11] and LSCs [12], UML Sequence Diagrams are

enjoying an increasing usage as a specification language.

Lettrari and Klose [33] show how UML 1.3 Sequence Di-

agrams can be used to check properties of UML models.

UML 1.3 SDs allow only simple event sequences, so the lan-

guage formalized in [33] is a small subset of our specification

language.

Ameedeen and Bordbar [34] show how a subset of UML 2.0

SDs can be transformed into Free Choice Petri nets, enabling

the use of the corresponding analysis techniques. This SD

subset is only used to specify possible system behaviors, and

thus does not include the negate and assert operators. This work

also assumes that sending and receiving an event happen simul-

taneously. While this assumption works well for synchronous

systems, it does not hold for most web applications which rely

on message queues for communication.

Autili et al. [18] propose a Property Sequence Chart (PSC)

language, which is an extended notation of a subset of UML

2.0 SDs. PSC enables expressing safety and liveness properties

by assigning attributes fail and required to messages. This is

equivalent to applying operators negate and assert to individual

SD message, respectively. The semantics of PSC is given using

Büchi Automata, designed to operate on infinite execution

traces. Since we consider only finite executions of web services,

automata over finite words are sufficient and significantly easier

to implement.

STAIRS [35] is a trace-based requirement specification

methodology that also uses extended UML 2.0 SDs. Trace

scenarios are classified into positive (mandatory and potential),

negative, and inconclusive. Negative traces are captured using

the negate operator. STAIRS does not use assert and instead

defines a new mandatory choice operator, xalt, to express the

requirement that both alternatives be present in a choice. In

our work, we enable expression of mandatory and forbidden

behaviours without extending the language.

Grosu and Smolka [17] interpret positive and negative UML

2.0 Sequence Diagrams as safety and liveness properties and

give formal semantics for such diagrams using Safety and

Liveness automata, respectively. Their approach does not use

the assert operator and defines automata over infinite traces.

Harel and Maoz [16] define Modal Sequence Diagrams

(MSD), an extension of UML 2.0 Sequence Diagrams. The

semantics of negate and assert operators in MSD is given via

the universal/existential distinction made by the Live Sequence

Charts (LSCs) [12]. In this formalism, diagrams, messages and

constraints can be defined as either hot (universal) or cold

(existential), and the semantics of MSDs is given via alternating

weak word automata (AFA). This formalism includes not only

non-deterministic choices of NFA (the language into which

we translated SDs) but universal choices as well [16]. Given

that any AFA can be translated to an (exponentially larger)

NFA [21], we believe that SDs and LSCs have the same

expressive power. These languages, however, differ in their

syntactic and usability properties. Specifically, LSCs are more

succinct because they can freely combine non-deterministic and

universal choices. However, SDs are easier to implement and

use in a monitoring framework because of the existence of

several efficient packages for manipulating NFAs. Moreover,

unlike LSCs, the syntax of SDs conforms to UML 2.0 and hence

many existing UML tools can be used to capture and display

these diagrams.
The same authors discuss how LSC specifications can be

used to monitor the execution of the program using aspects [36]

(a method used by several runtime monitoring frameworks in

the described in the literature, e.g. [37], but the exact translation

from alternating automata into AspectJ and the resulting com-

plexity of the approach is unclear. Finally, an existential, con-

stant, subset of LSCs has been expressed in terms of NFA [38].

It is a strict subset of SDs, not allowing universal traces.
While we concentrated on specifying behavioural properties

of interactions between partners, Bultan [39] identified Collab-

oration Diagrams (CSs) and Conversation Protocols (CPs) as

more appropriate formalisms for specifying such properties as

realizability and synchronizability, which he then checks using

model-checking. These formalisms are simpler than UML 2.0

Sequence Diagrams and are appropriate for expressing such

special-purpose properties.

B. Runtime monitoring of web services

In this section, we compare our approach to existing runtime

monitoring techniques. Online (offline) techniques analyze sys-

tem events during (after) execution and the properties to check

are determined a priori (a posteriori). [40]–[45] are examples of

online techniques; [46]–[48] are offline techniques.
These techniques differ in the types of properties they can

handle. Global properties allow the analysis of orchestrated

obligations. These obligations are expressed from the point of

view of the orchestrating service, but also include events from

the other services involved in the conversation being monitored.

Local properties are restricted to monitoring the events of

a single service. Furthermore, some techniques concentrate

on state properties, whereas others allow the user to express

sequences of events. Like ours, the approach introduced by

Pistore et al. [43] can be used to check global properties. In [43],

properties are specified in LTL, which is more expressive

than our specification language. However, specifying properties

correctly in LTL can be challenging, especially when trying

to specify sequences of events [1], whereas these are quite

intuitive in our framework.
The frameworks described in [40]–[42], [44], [45] are re-

stricted to local properties. Li et al. [45] specify properties using

Interaction Constraints (IC) [49] – a language based on Dwyer’s

Specification Pattern System [1]. Unlike our specification lan-

guage, IC does not allow pattern nesting. Thus, new events must

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 19

be introduced in order to reason about sequences of events.

The rest of the local property frameworks check state formulas,

specified using simple predicate logic. Specifically. Baresi et

al. [41], [42] and Lohmann et al. [44] check service pre- and

postconditions associated to external service invocations, while

Lazovik et al. [40] check local assertions.
Offline techniques can handle both global and local prop-

erties. In Mahbub et al. [46], [47], properties are expressed

using event calculus [50]. van der Aalst et al. [48] introduce

DerSecFlow, a graphical language that can be used to express

properties similar to our patterns, but without pattern nesting.
Various techniques are used for checking properties. [40] and

[43] rely on planning techniques to create service compositions.

[43] analyzes the application once the composition has been

obtained, by instrumenting the system to include Java code that

checks LTL monitors during runtime. [40] iteratively replaces

the violated service with another one, with weaker assertions,

continuing the process until there are no more violations, or the

composition is not possible.
In the case of service pre- and postconditions, [41], [42]

modify the original BPEL diagram, introducing new BPEL

activities that check the contract during external service calls.

[44] proposes a similar, but more intrusive framework, as JML

contracts are integrated at the source code level. [46], [47] use

temporal deductive databases to store and reason about events

generated during runtime, while [48] analyzes low-level event

logs using an LTL checker.
Techniques used in the work of Li et al. [45] are the closest to

ours. Like us, they take an automata-based approach for mon-

itoring communications between partners and enable graphical

display of violations.
As discussed before, the advantage of online techniques is

that it is possible for the system to react once a problem

has been detected. In [41], [42], BPEL exception handlers

can be attached to the properties being checked. If such a

exception handler is not provided, execution terminates when

a violation occurs. As [43], [44] are Java-based, they can use

Java’s exception handling handling mechanism for recovery

actions; however, this approach is highly intrusive. [49] does

not discuss recovery. Offline techniques like [46]–[48] instead

suggest corrective actions which can be tested during future

executions.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described our framework for runtime mon-

itoring of web service conversations developed as part of an

industrial-strength system. The framework is an aggregation

of existing runtime verification techniques. It is non-intrusive,

running in parallel with the monitored system and intercepting

interaction events during run time. Thus, it does not require

any code instrumentation, does not significantly affect the

performance of the monitored system, and enables reasoning

about partners expressed in different languages. Furthermore,

the use of a subset of UML 2.0 SDs as a specification language

ensures that the framework is usable by practitioners to specify

safety and liveness properties. Liveness becomes finitary, where

user-specified time limits or the process termination act as the

stopping event.

We have successfully mapped all the Specification Property

System patterns into our SD subset. The availability of cus-

tomizable patterns should improve the usability of our specifi-

cation language. More complex conversations can be checked,

as it is easy to build properties through SD composition. Using

SD references, our properties are also easier to read, since

details can be hidden. We have also created a library of such

sequence diagram patterns and showed how patterns can be

used to specify monitors for a number of interesting properties

of several web service applications. Finally, we reported on the

implementation of our framework which allowed us to find bugs

in real web service applications.

Future Work. While the initial experience using the framework

has been positive, we need to address a number of issues

before it becomes fully usable. The first set of issues deals

with increasing the range of properties that can be specified

and monitored. In the examples presented here, all objects

were unique, whereas in practice, users may be interested in

verifying interactions between multiple processes of the same

type. For example, in the LA system, a user with a good credit

score may concurrently apply for two loans, each for less than

$50,001, to bypass the manual approval required for a loan for

the total amount. In this case, two bank branches may want to

communicate to avoid this kind of situation. BPEL supports

the notion of process instances, and encodes a process ID in

all message headers so as to identify which process instance

is the intended recipient of the message. We believe that our

framework accommodates this approach readily, by encoding

these process IDs into the specification, the automata transition

relation, and interaction events.

Currently, our framework permits the definition of properties

that depend only on the order and occurrence of system events.

By monitoring the actual data exchanged by conversation par-

ticipants, we could check richer properties that depend on such

data. We cannot use the existing automata translations for data-

exchange properties directly, because the resulting automata

would be too large to be useful for monitoring. Instead, we

are currently investigating the use of Parameterized NFA [51]

(PNFA) to create more succinct monitors, as single PNFA

transitions represent sets of NFA transitions.

Current BPEL recovery mechanisms are not suitable for

developing self-healing web services, as error handling and

compensation mechanisms must be defined before deployment.

As discussed in Section I, online runtime monitoring tech-

niques allow dynamic recovery, since recovery strategies can

be applied as soon as errors are detected. Existing work [52],

[53] focuses on the definition of recovery strategies for local

properties, assuming that process definition is correct and errors

are introduced only via interactions with external services. The

recovery strategies are suggested “per message”. Specifically,

Baresi et al. [52] check external service pre- and postconditions

to determine when a partner link should be modified, while

Moser et al. [53] use QoS parameters. Our approach allows

us to define recovery strategies suitable for global properties,

i.e., define them “per conversation”. We also want to study

recovery strategies that dynamically modify the BPEL process

definition [54].

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 20

We also plan to investigate techniques to help locate causes

of errors (as opposed to places where a violation was detected)

from observing results of successful and unsuccessful runs of

the system.We will experiment with the techniques in [55], [56]

for this task.

Finally, our work so far has assumed that all partners operate

within the same process server and thus a centralized monitor is

a viable option. In practice, most web services are distributed,

requiring a distributed monitoring framework. We plan to in-

vestigate techniques used in the DESERT project [57] to turn

a centralized monitor into a set of distributed ones, running in

different process servers.

ACKNOWLEDGMENTS

We thank Jonathan Amir for implementing several parts of

the monitoring framework, and SimonMoser and Axel Martens

for generating many useful discussions. This work is financially

supported by the IBM Toronto Centre for Advanced Studies,

Ontario Graduate Scholarship, MITACS Accelerate program

and NSERC.

IBM andWebSphere are trademarks or registered trademarks

of International Business Machines Corporation in the United

States, other countries, or both. Java and all Java-based trade-

marks are trademarks of Sun Microsystems, Inc. in the United

States, other countries, or both. Other company, product, and

service names may be trademarks or service marks of others.

REFERENCES

[1] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in Property Specifica-
tions for Finite-State Verification,” in Proceedings of 21st International

Conference on Software Engineering (ICSE’99), May 1999, pp. 411–420.
[2] OASIS, “Web Services Business Process Execution Language Version

2.0,” http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, Accessed
January 2009.

[3] X. Fu, T. Bultan, and J. Su, “Conversation Protocols: A Formalism
for Specification and Verification of Reactive Electronic Services,” in
Proceedings of the Eighth International Conference on Implementation

and Application of Automata (CIAA’03), July 2003, pp. 188–200.
[4] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPELWeb Services,”

in Proceedings of the Thirteenth International World Wide Web Confer-

ence (WWW’04), May 2004, pp. 621–630.
[5] R. Kazhamiakin and M. Pistore, “A Parametric Communication Model

for the Verification of BPEL4WS Compositions,” in Proceedings of In-

ternational Workshop on Web Services and Formal Methods (WS-FM’05),
ser. LNCS, vol. 3670, 2005, pp. 318–332.

[6] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella, “Veri-
fying the Conformance of Web Services to Global Interaction Protocols:
A First Step,” in Proceedings of International Workshop on Web Services

and Formal Methods (WS-FM’05), ser. LNCS, vol. 3670, 2005, pp. 257–
271.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based Verification
of Web Service Compositions,” in Proceedings of 18th IEEE Interna-

tional Conference on Automated Software Engineering (ASE’03). IEEE
Computer Society, 2003, pp. 152–163.

[8] N. Ghafari, A. Gurfinkel, N. Klarlund, and R. Trefler, “Algorithmic
Analysis of Piecewise FIFO Systems,” in Proceedings of 7th International

Conference on Formal Methods in Computer-Aided Design (FMCAD’07),
November 2007, pp. 45–52.

[9] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith, and Y. S.
Ramakrishna, “A Graphical Interval Logic for Specifying Concurrent
Systems,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 3, no. 2, pp. 131–165, 1994.
[10] M. Smith, G. Holzmann, and K. Etessami, “Events and Constraints:

A Graphical Editor for Capturing Logic Requirements of Programs,”
in Proceedings of 5th IEEE International Symposium on Requirements

Engineering (RE’01), August 2001, pp. 14–22.

[11] ITU-TS, “ITU-TS Recommendation Z.120: Message Sequence Chart
1996 (MSC96),” ITU-TS, Geneva, Tech. Rep., 1996.

[12] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” Journal of Formal Methods in System Design (FMSD), vol. 19,
no. 1, pp. 45–80, 2001.

[13] Object Management Group (OMG), “Unified Modeling Language (UML
2.0),” http://www.omg.org/spec/UML/2.0/, Accessed January 2009.

[14] Object Management Group (OMG), “Object Constraint Language (OCL
2.0),” http://www.omg.org/spec/OCL/2.0/, Accessed January 2009.

[15] R. Alur and M. Yannakakis, “Model Checking of Message Sequence
Charts,” in Proceedings of 10th International Conference on Concurrency

Theory (CONCUR’99), ser. LNCS, vol. 1664. Springer, 1999, pp. 114–
129.

[16] D. Harel and S. Maoz, “Assert and Negate Revisited: Modal Semantics
for UML Sequence Diagrams,” in Proceedings of ICSE’06 Workshop on

Scenarios and State Machines (SCESM’06), 2006, pp. 13–20.
[17] R. Grosu and S. A. Smolka, “Safety-Liveness Semantics for UML 2.0

Sequence Diagrams,” in Proceedings of the 5th International Conference

on Application of Concurrency to System Design (ACSD’05), 2005, pp.
6–14.

[18] M. Autili, P. Inverardi, and P. Pelliccione, “A Scenario Based Notation for
Specifying Temporal Properties,” in Proceedings of ICSE’06 Workshop

on Scenarios and State Machines (SCESM’06), 2006.
[19] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages and Computation. Addison Wesley, 1979.
[20] H. Störrle, “Assert, Negate and Refinement in UML 2 Interactions,” in

Proceedings of UML’03 Workshop on Critical Systems Development with

UML, 2003, pp. 79–94.
[21] M. Vardi, “An Automata-Theoretic Approach to Linear Temporal Logic,”

in Proceedings of 8th Banff Higher Order Workshop, ser. LNCS, vol.
1043. Banff, Canada: Springer, August 1996, pp. 238–266.

[22] IBM, “IBM Rational Software Architect,” http://www.ibm.com/software/

awdtools/architect/swarchitect/, Accessed January 2008.
[23] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property Specification

Patterns for Finite-state Verification,” in Proceedings of 2nd Workshop on

Formal Methods in Software Practice (FMSP’98), March 1998.
[24] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,

1999.
[25] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, “Pattern Based

Property Specification and Verification for Service Composition,” in
Proceedings of 7th International Conference on Web Information Systems

Engineering (WISE’06), 2006, pp. 156–168.
[26] IBM, “WebSphere Business Integration Software,” http://www-306.

ibm.com/software/info1/websphere/index.jsp?tab=products/businessint, Accessed
January 2009.

[27] IBM, “WebSphere Process Server,” http://www-306.ibm.com/software/

integration/wps/, Accessed January 2009.
[28] IBM, “WebSphere Integration Developer,” http://www-306.ibm.com/

software/integration/wid/, Accessed January 2009.
[29] P. Inverardi, H. Muccini, and P. Pelliccione, “CHARMY: An Extensible

Tool for Architectural Analysis,” in Proceedings of the 13th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering

(FSE’05). ACM Press, September 2005, pp. 111–114.
[30] A. Møller, “dk.brics.automaton,” http://www.brics.dk/automaton/, Accessed

January 2009.
[31] Duke University, “JFLAP,” http://www.jflap.org/, Accessed January 2009.
[32] Y. Gan, “Runtime Monitoring of Web Service Conversations,” Master’s

thesis, University of Toronto, Department of Computer Science, March
2007.

[33] M. Lettrari and J. Klose, “Scenario-Based Monitoring and Testing of
Real-Time UML Models,” in Proceedings of the 4th International Con-

ference on The Unified Modeling Language, Modeling Languages, Con-

cepts, and Tools (UML’01). London, UK: Springer-Verlag, 2001, pp.
317–328.

[34] M. A. Ameedeen and B. Bordbar, “A Model Driven Approach to Repre-
sent Sequence Diagrams as Free Choice Petri Nets,” in Proceedings of the

2008 12th International IEEE Enterprise Distributed Object Computing

Conference (EDOC’08). IEEE Computer Society, 2008, pp. 213–221.
[35] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen, “STAIRS: Towards

Formal Design with Sequence Diagrams,” Journal of Software and System

Modeling, vol. 4, pp. 355–357, 2005.
[36] S. Maoz and D. Harel, “FromMulti-Modal Scenarios to Code: Compiling

LSCs into AspectJ,” in Proceedings of SIGSOFT Conference on Founda-

tions of Software Engineering (FSE’06). ACM, 2006, pp. 219–230.
[37] F. Chen and G. Rosu, “MOP: An Efficient and Generic Runtime Ver-

ification Framework,” in Proceedings of International Conference on

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 21

Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA’07). ACM Press, 2007, pp. 569–588.
[38] D. Harel and R.Marelly, Come, Let’s Play: Scenario-Based Programming

using LSCs and the Play-Engine. Springer, 2003.
[39] T. Bultan, “Modeling Interactions of Web Software,” in Proceedings of

2nd International Workshop on Automated Specification and Verification

of Web Systems (WWV’06), 2006, pp. 45–52.
[40] A. Lazovik, M. Aiello, and M. P. Papazoglou, “Associating Assertions

with Business Processes and Monitoring Their Execution,” in Proceed-

ings of 2nd International Conference on Service Oriented Computing

(ICSOC’04), November 2004, pp. 94–104.
[41] L. Baresi, C. Ghezzi, and S. Guinea, “Smart Monitors for Composed

Services,” in Proceedings of 2nd International Conference on Service

Oriented Computing (ICSOC’04), November 2004, pp. 193–202.
[42] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL

Processes,” in Proceedings of 3rd International Conference on Service

Oriented Computing (ICSOC’05), 2005, pp. 269–282.
[43] M. Pistore and P. Traverso, “Assumption-Based Composition and Moni-

toring of Web Services,” in Test and Analysis of Web Services, 2007, pp.
307–335.

[44] M. Lohmann, L. Mariani, and R. Heckel, “A Model-Driven Approach to
Discovery, Testing and Monitoring of Web Services,” in Test and Analysis

of Web Services, 2007, pp. 173–204.
[45] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Validation Frame-

work for Web Service Interactions,” in Proceedings of the 17th Australian

Software Engineering Conference (ASWEC’06). IEEE Computer Soci-
ety, 2006, pp. 70–79.

[46] K. Mahbub and G. Spanoudakis, “A Framework for Requirements Moni-
toring of Service Based Systems,” in Proceedings of the 2nd International

Conference on Service Oriented Computing (ICSOC’04). NewYork, NY,
USA: ACM, 2004, pp. 84–93.

[47] K. Mahbub and G. Spanoudakis, “Run-time Monitoring of Requirements
for Systems Composed of Web-Services: Initial Implementation and
Evaluation Experience,” in Proceedings of International Conference on

Web Services (ICWS’05), July 2005, pp. 257–265.
[48] W. M. P. van der Aalst and M. Pesic, “Specifying and Monitoring Service

Flows: MakingWeb Services Process-Aware,” in Test and Analysis of Web

Services, 2007, pp. 11–55.
[49] Z. Li, J. Han, and Y. Jin, “Pattern-Based Specification and Validation of

Web Services Interaction Properties,” in Proceedings of 3rd International

Conference on Service Oriented Computing (ICSOC’05), 2005, pp. 73–
86.

[50] M. Shanahan, “The Event Calculus Explained,” in Artificial Intelligence

Today, 1999, pp. 409–430.
[51] J. A. Baier and S. A. McIlraith, “Planning with First-Order Temporally

Extended Goals using Heuristic Search,” in Proceedings of 21st National

Conference on Artificial Intelligence (AAAI’06) and the 18th Innovative

Applications of Artificial Intelligence Conference (IAAI’06). AAAI
Press, July 2006.

[52] L. Baresi, S. Guinea, and L. Pasquale, “Self-Healing BPEL Processes
with Dynamo and the JBoss Rule Engine,” in Proceedings of Inter-

national Workshop on Engineering of Software Services for Pervasive

Environments (ESSPE’07). ACM, 2007, pp. 11–20.
[53] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive Monitoring and

Service Adaptation for WS-BPEL,” in Proceeding of the 17th Interna-

tional Conference on World Wide Web (WWW’08). ACM, 2008, pp.
815–824.

[54] M. Reichert and P. Dadam, “ADEPTflex: Supporting Dynamic Changes
ofWorkflowsWithout Losing Control,” Journal of Intelligent Information

Systems, vol. 10, no. 2, pp. 93–129, 1998.
[55] A. Zeller, “Isolating Cause-Effect Chains from Computer Programs,”

SIGSOFT Software Engineerings Notes, vol. 27, no. 6, pp. 1–10, 2002.
[56] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error Explanation

with Distance Metrics,” International Journal of Software Tools for

Technoly Transfer (STTT), vol. 8, no. 3, pp. 229–247, 2006.
[57] P. Inverardi, L. Mostarda, M. Tivoli, and M. Autili, “Synthesis of Correct

and Distributed Adaptors for Component-Based Systems: an Automatic
Approach,” in Proceedings of the 20th International Conference on

Automated Software Engineering (ASE’05), 2005, pp. 405–409.

APPENDIX

Below, we continue the discussion of expressing property

patterns in SD, started in Section IV.

k−Bounded Existence: message p can occur at most k times

in a given scope. We can check the existence of at most k
messages using the loop operator. After the loop, we need to

check that p does not occur, which corresponds to the Absence

pattern (see Fig. 11(c)).

Universality: only a sequence p∗ of messages can occur in a

given scope. This is equivalent to checking for the absence of

complement messages (see Fig. 11(d)).

Response: message p (stimulus) must be followed by message

s (response), in a given scope. A response can occur without

stimuli, so the stimulus is represented using a regular message,

whereas the response is mandatory. The existence of stimu-

lus/response pairs are checked in an infinite loop, as there can

be many stimulus/response pairs in one execution trace (see

Fig. 11(e)).

Response Chain: a sequence p1, . . . , pn of messages must be

followed by the sequence q1, . . . , qm of messages, in a given

scope. We show two examples of this pattern: p responds to

s, t (see Fig. 11(f)), and s, t responds to p (see Fig. 11(g)).

This pattern has the same basic form as Response.

• p responds to s, t: 2 stimulus – 1 response. The critical

operator is used to enclose the message sequence s, t, to
ensure atomicity of this sequence. An assert cannot be

used since the stimulus sequence is optional.

• s, t responds to p: 1 stimulus – 2 response. The message

sequence now occurs within the assert operator, so an

additional critical operator would be superfluous.

Precedence Chain: a sequence p1, . . . , pn of messages must

precede the sequence q1, . . . , qm of messages, in a given scope.

We show an example of this pattern, 2 cause – 1 effect, p is

preceded by s, t (see Fig. 11(j)). This pattern is implemented

using the Absence and Until patterns, just like in the Prece-

dence pattern. The implicit negate operators in the Absence

and Until patterns handle the message sequences, so there is no

need to add critical operators.

Jocelyn Simmonds received her B.Sc. from the Uni-
versity of Chile in 2003 and her M.Sc. from the
Free University of Brussels in 2003. She also has a
degree in Computer Engineering from the University
of Chile (2005). She is currently working toward
her Ph.D., under the supervision of Marsha Chechik.
Her research interests are in software testing and
automated verification.

Yuan Gan Yuan Gan received anM.Sc. from the Uni-
versity of Toronto, Department of Computer Science
in April 2007. She is currently a software developer
at the IBM Toronto Lab, where she works on devel-
opment of WebSphere BPM tools.

SUBMITTED TO IEEE TRANSACTIONS ON SERVICE COMPUTING 22

Marsha Chechik is a Professor in the Department of
Computer Science at the University of Toronto. She
received her Ph.D. from the University of Maryland
in 1996. Prof. Chechik’s research interests are in the
application of formal methods to improve the quality
of software. She has authored over 60 papers in for-
mal methods, software specification and verification,
computer security and requirements engineering. In
2002-2003, Prof. Chechik was a visiting scientist
at Lucent Technologies in Murray Hill, NY and at
Imperial College, London UK, and in 2003-2007, she

was an associate editor of IEEE Transactions on Software Engineering. She is
a member of IFIP WG 2.9 on Requirements Engineering, and regularly serves
on program committees of international conferences in the areas of software
engineering and automated verification. Marsha Chechik was a Co-Chair of
the 2008 International Conference on Concurrency Theory (CONCUR), Pro-
gram Committee Co-Chair of the 2008 International Conference on Computer
Science and Software Engineering (CASCON), and Program Committee Co-
Chair of the 2009 International Conference on Formal Aspects of Software
Engineering (FASE).

Shiva Nejati is a research scientist at the Simula
Research Laboratory in Norway. She received her
B.Sc. from Sharif University of Technology (Iran)
in 2000, and her M.Sc. and Ph.D. from the Uni-
versity of Toronto in 2003 and 2008, respectively.
Her main research area is software engineering, with
specific interests in model-based development, be-
haviour analysis, requirements engineering, specifi-
cation and design methods, and web-services.

Bill O’Farrell Bill O’Farrell is a senior Technical
Advisor in the area of business process management.
Bill has been at IBM for 18 years, and has worked
in a number of areas, including two positions within
the Centre for Advanced Studies (research associate
and manager). Besides BPM, his interests include
debuggers, concurrency and object-oriented design.
Bill has a Ph.D. in parallel computing from Syracuse
University.

Elena Litani is an Advisory Software Developer in
IBM Toronto Lab. Elena has been at IBM for 7
years, working as a software developer and develop-
ment manager on different projects, including Eclipse
Modeling Framework (EMF) and Apache Xerces2
open source projects. She is currently a member of
the Center for Advanced Studies at IBM. Elena holds
a Bachelor’s Degree in Computer Science from York
University (Toronto, Canada).

Julie Waterhouse is an Advisory Software De-
veloper with 16 years of combined experience in
software development and consulting with the IBM
Toronto Lab. She is currently a member of the Web-
Sphere Integration Developer SWAT team, where she
works with customers to help them be successful
in building SOA-based integration solutions across
WebSphere Process Server, WebSphere Enterprise
Service Bus, and WebSphere Adapters.

