
Maintaining Consistency between UML Models

with Description Logic Tools

Tom Mens1, Ragnhild Van Der Straeten2, and Jocelyn Simmonds1

1 Programming Technology Lab
Department of Computer Science, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
tom.mens@vub.ac.be, jsimmond@dcc.uchile.cl

2 Systems and Software Engineering Lab
Department of Computer Science, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
rvdstrae@vub.ac.be

Abstract. In current-day object-oriented software development, the soft-
ware design (typically modelled as a collection of UML diagrams) is an
essential aspect. As a result, future object-oriented legacy systems will
encounter the non-negligible problem of design inconsistencies in its var-
ious forms. Unfortunately, in its generality, detecting these design incon-
sistencies is an undecidable problem. Therefore, we suggest to restrict to
description logic, a decidable fragment of first-order predicate logic, to
specify and detect inconsistencies between UML models. With concrete
experiments in Loom and Racer, two tools that provide support for some
variant of description logic, we intend to show the feasibility of this ap-
proach, and to identify the potential limitations of description logics for
the purpose of maintaining design consistency in evolving legacy code.

1 Introduction

An object-oriented software design is typically specified as a collection of UML
models, typically a combination of many different class diagrams, sequence di-
agrams and state diagrams. In object-oriented legacy systems, this essentially
gives rise to two different kinds of inconsistency problems: (1) the design may be
internally inconsistent or incomplete; (2) the design may be “out of sync” with
the source code (c.f. design erosion).

Even if the legacy system by itself is in a consistent state, there is a significant
risk that re-engineering activities (such as refactoring and restructuring) give rise
to unexpected inconsistencies. Hence, it is essential to provide a means to check
and maintain consistency of object-oriented designs. Unfortunately, current-day
UML CASE tools provide poor support for maintaining semantic consistency
between evolving UML models.

To counter this problem, there is first of all a need to specify the consistency
between different UML models. A concrete motivating example of an inconsis-
tency between a UML statechart and a UML sequence diagram is illustrated in



2 Mens et al.

Figure 1. The sequence diagram does not respect the order of operations imposed
by the statechart.

Fig. 1. Example of an inconsistency between the statechart of the class ATM and a se-
quence diagram: the operations dispenseCash() and ejectCard() appear in a different
order in both diagrams.

Description logic (DL) seems to be a suitable formalism for the purpose of
maintaining consistency between UML models and diagrams, because it contains
5 reasoning tasks that can directly be used to achieve this: subsumption, instance
checking, relation checking, concept consistency and knowledge base consistency.
As such, we propose to use DL to partially automate this crucial activity in the
software re-engineering process, thus increasing the reliability of the process.

2 Description logic

2.1 Motivation

The main motivation for resorting to description logic is because it is a decidable
fragment of first-order logic that possesses sound and complete reasoning mech-
anisms [1]. In his PhD, Kim Mens [5] tried to maintain consistency between a
software architecture and its corresponding source code using a logic program-
ming language. Unfortunately, the algorithm to check consistency turned out to



Maintaining Consistency between UML Models with Description Logic Tools 3

be very inefficient. Moreover, due to the fact that a full-fledged programming
language was used, there was no guarantee whatsoever concerning the decid-
ability or completeness of the consistency algorithm. Description logic solves the
latter problem because it is a decidable and complete fragment of first-order
predicate logic. We also have good hope that the efficiency will be higher.

Many concepts in object-oriented programming languages originate from
frame-based systems. Description logic is based on the same ideas as these sys-
tems and provides them with precise semantics. DL has already proven its worth
in knowledge representation and reasoning. A DL consists of a description lan-
guage, a knowledge specification language and, most importantly, automatic rea-
soning procedures. The latter allows to reason about the consistency of knowl-
edge bases. By analogy, we hope to use them to reason about design model
consistency as well. Indeed, due to its semantics, DL is well-suited to express
the design of a software system. For example, [2] translated UML class diagrams
to the description logic DLR.

To validate the feasibility of DL for our purposes, we will evaluate two dif-
ferent tools: Loom and Racer. Loom [4] provides a complete environment for the
development of knowledge based systems. Although Loom has an incomplete
classification algorithm, we can restrict ourselves to a subset that is complete.
The Racer [3] system is a knowledge representation system that implements a
highly optimized tableau calculus for a very expressive description logic. It has
a complete classification algorithm but its query language is less expressive than
the one of Loom. Based on a number of experiments we will choose the tool that
is most suited for our needs.

2.2 Representing UML models and their evolution

In order to be able to reason about UML in DL, we need to have an explicit logic
representation of the UML metamodel. Secondly, each specific UML diagram for
which we want to check consistency needs to be represented in DL as an instance
of this metamodel.

Rather than doing everything manually, we envision an automated transla-
tion from UML models into DL. As a CASE tool we will use Poseidon to express
UML models. These can be exported into XMI format. Using an XSLT processor
tool, these XMI files can be translated into the appropriate DL format.

Note that we will also need to make some small changes to the UML meta-
model itself, because in its current version it is inadequate to check model con-
sistency and to support model evolution. For details about this, we refer to [6].

Finally, to be able to express model evolution and model consistency, we
need to distinguish two types of consistency between UML models. Horizontal

consistency indicates consistency between different models within the same ver-
sion. Evolution consistency indicates the consistency between different versions
of the same model. In the UML metamodel, both kinds of consistency can be ex-
pressed by defining two stereotypes for the Trace metaclass: �HorizontalTrace�
and �EvolutionTrace�.



4 Mens et al.

3 Example in Loom

3.1 Specifying models and their evolution

The UML metamodel can be specified in Loom in terms of atomic concepts and
roles as well as more complex descriptions that can be built from them with
concept constructors. As an example we give the specification of the metaclasses
Association and AssociationEnd below:

(LOOM:defrelation Is-participant-of

:domain Class

:range AssociationEnd)

(LOOM:defrelation Has-participant

:is (:inverse Is-participant-of))

;Concept ASSOCIATION

(LOOM:defconcept Association

:is (:and ModelElement

(:all Association-associationEnd AssociationEnd)

(:at-least 2 Association-associationEnd)

(:all Association-link Link)))

;Concept ASSOCIATIONEND

(LOOM:defconcept AssociationEnd

:is (:and ModelElement

(:at-most 1 Has-participant)

(:at-least 1 Has-participant)

(:at-most 1 AssociationEnd-association)

(:at-least 1 AssociationEnd-association)

(:exactly 1 Has-multiplicity)

(:all AssociationEnd-linkEnd LinkEnd))

:roles (aggregation ordering isNavigable visibility))

As can be seen from this example, each UML metaclass is translated into
a Loom concept, while the different meta association ends and attributes of a
metaclass are translated into Loom roles.

To specify concrete UML diagrams in Loom, we can specify individuals and
assertions about these individuals. The following Loom code specifies how we
can create the class Document, two objects anASCII and aPrinter as well as an
association (Document-Printer) between the Document and Printer class and
one of its association ends (Document-end2) on the side of Document:

(create ’Document ’Class)

(create ’anASCII ’Object)

(create ’aPrinter ’Object)

(tellm (:about Document-Printer

(name Document-Printer)

(In-namespace Class-Diagram)

(Association-associationEnd Document-end2)

(Association-associationEnd Printer-end1)))



Maintaining Consistency between UML Models with Description Logic Tools 5

(tellm (:about Document-end2

(name Document-end2)

(Has-multiplicity m3)

(Has-participant Document)

(In-namespace Class-Diagram)

(AssociationEnd-association Document-Printer)))

To be able to check horizontal consistency between different diagrams within
the same version, and evolution consistency between different versions of the
same diagram, we needed to add trace relationships explicitly. Below we show
an example of how to specify an evolution trace between two subsequent versions
of a sequence diagram in Loom:

(create ’SD_ASCII_1-SD_ASCII_2 ’EvolutionTrace)

(tellm (:about SD_ASCII_1-SD_ASCII_2

(name SD_ASCII_1-SD_ASCII_2)

(Supplier SequenceDiagram_ASCII_1)

(Client SequenceDiagram_ASCII_2)))

3.2 Detecting inconsistencies

To detect inconsistencies between evolving UML diagrams we can use Loom’s
query processor. For example, to detect that a new class has been added in the
evolved class diagram, we can specify the following evolution consistency rule:

(retrieve ?x

(:and (Class ?x) (the-prev-ver ?x NIL)

(In-namespace ?x Class-Diagram)))

Whenever inconsistencies are detected we can also provide rules to resolve
them. For example, the rules below can be used when an evolved sequence dia-
gram uses an operation (in a message call) that is not yet present in the corre-
sponding class defined in a class diagram. If this is the case, the operation needs
to be added to this class in the class diagram, and the operation needs to be
linked to the specific message call in the sequence diagram to ensure that both
remain consistent.

(do-retrieve (?x)

(:and

(ModelElement ?x)

(In-namespace ?x NIL))

(tellm (In-namespace ?x Class-Diagram-2)))

(do-retrieve (?x ?y ?z ?a ?b)

(:and

(Stimulus ?x)

(Received-by ?x ?y)

(Instance-of-class ?y ?z)

(Initiates ?x ?a)



6 Mens et al.

(CallAction-operation ?a ?b)

(Is-owned-by ?b NIL))

(tellm (Is-owned-by ?b ?z)))

4 Conclusion

Based on a number of already performed small-scale experiments we are con-
vinced that DL tools can be very helpful in detecting design inconsistencies and
resolving these inconsistencies semi-automatically. However, we still need to ex-
plore the limitations of the various DL tools that are available, as well as the
inherent limitations of the DL formalism itself.

We conclude with a list of open questions that remain to be answered:

– Which kinds of inconsistencies can we detect?
– For which kinds of UML diagrams can we provide consistency support?
– Which kind of automated support for conflict resolution can we provide?
– Can we use DL to provide formal proofs about the consistency?
– Can we apply refactorings directly in the DL representation, and can we

use DL to reason about these refactorings, e.g., to provide better conflict
resolution?

– Is the approach scalable to large legacy systems?
– Can the approach be used to deal with consistency between UML models and

source code as well? If yes, how does it fit in the Model Driven Architecture
(MDA) approach?

– How is the proposed approach and formalism related to other approaches
for maintaining consistency?

References

1. F. Baader, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press,
2003.

2. A. Caĺı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class
diagrams in description logics. In Proc. of IJCAR Workshop on Precise Modelling
and Deduction for Object-oriented Software Development (PMD 2001), 2001.

3. V. Haarslev and R. Möller. High performance reasoning with very large knowledge
bases: A practical case study. In B. Nebel, editor, Proceedings of Seventeenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-01, 4-10 August, 2001,
Seattle, Washington, USA, pages 161–166. Morgan Kaufmann, 2001.

4. R. MacGregor. Inside the loom description classifier. SIGART Bull., 2(3):88–92,
1991.

5. K. Mens. Automating Architectural Conformance Checking by Means of Logic Meta
Programming. PhD thesis, Department of Computer Science, Vrije Universiteit
Brussel, Belgium, September 2000.

6. J. Simmonds. Consistency maintenance of uml models with description logic. Mas-
ter’s thesis, Vrije Universiteit Brussel, September 2003. In progress.


