
RuMoR: Monitoring and Recovery for BPEL Applications

Jocelyn Simmonds, Marsha Chechik
Department of Computer Science

University of Toronto, Toronto, Canada
{jsimmond, chechik}@cs.toronto.edu

ABSTRACT
We describe a RUntime MOnitoring and Recovery frame-
work (RuMoR) for BPEL applications. Our tool checks
for behavioral conformance with respect to a set of user-
specified properties. When runtime violations are discov-
ered, RuMoR automatically proposes and ranks recovery
plans which users can then select for execution. These plans
are generated using an adaptation of a SAT-based planning
technique.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Design, Verification

1. INTRODUCTION
A BPEL application is an orchestration of (possibly third-

party) web services. These services, which can be written in
a variety of languages, communicate through published in-
terfaces. Services can be dynamically discovered, and part-
ners can modify services while they are being used. BPEL
includes mechanisms for dealing with termination and for
specifying compensation actions (these are defined on a “per
action” basis, i.e., a compensation for booking a flight is to
cancel the booking), they are of limited use since it is hard
to determine the state of the application after executing a
set of compensations.

In [5], we proposed a framework for runtime monitoring
and recovery that uses user-specified properties to automat-
ically compute recovery plans. In this paper, we present Ru-
MoR, an implementation of this technique built on top of
IBM WebSphere. RuMoR takes as input the target BPEL
application, enriched with the compensation mechanism al-
lowing us to undo some of the actions of the program, and a
set of properties (specified as desired/forbidden behaviours)
that need to be maintained by the application as it runs. For
example, consider a simple web-based Trip Advisor System
(TAS). In a typical scenario, a customer either chooses to
arrive at her destination via a rental car (and thus books it),
or via an air/ground transportation combination, combining
the flight with either a rental car from the airport or a limo.

Copyright is held by the author/owner(s).
ASE’10, September 20–24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

The requirement of the system is to make sure the customer
has the transportation needed to get to her destination (de-
sired behavior) while keeping the costs down, i.e., she is not
allowed by her company to reserve an expensive flight and
a limo (forbidden behavior).

When one of the property violations is detected at run-
time, RuMoR outputs a set of ranked recovery plans and
enables applying the chosen plan to continue the execution.
If the application exhibits a forbidden behaviour, RuMoR
suggests plans that use compensation actions to allow the
application to “go back” to an earlier state at which an
alternative path that potentially avoids the fault is avail-
able. We call such states “change states”; these include user
choices and non-idempotent partner calls (i.e., those where
a repeated execution with the same arguments may yield
a different outcome) [5]. For example, if TAS produces an
itinerary that is too expensive, a potential recovery plan
might be to undo the limo reservation (so that a car can
now be booked) or to undo the flight reservation and see if
a cheaper one can be found.

The system fails to produce a desired behaviour when calls
to some partners terminate, leaving it in an unstable state.
In such cases, RuMoR computes plans that redirect the ap-
plication towards executing new activities, those that lead
to completion of the desired behaviour. For example, if the
flight reservation partner fails (and thus the air/ground com-
bination is not available), the recovery plans would be to
provide transportation to the user’s destination (her “goal
state”) either by calling the flight reservation again or by
undoing the reserved ground transportation from the air-
port, if any, and trying to reserve the rental car from home
instead. In what follows, we give a brief description of the
architecture of the tool (Sec. 2) and some experience apply-
ing it on several examples (Sec. 3).

2. IMPLEMENTATION
We have implemented RuMoR using a series of publicly

available tools and several short (200-300 lines) new Python
or Java scripts. The architecture of our tool is shown in
top of Fig. 1. In the Preprocessing phase, the properties are
turned into finite-state automata (monitors). We use the
WS-Engineer extension for LTSA [2] to translate the BPEL
application into a labelled transition system (model). We
also compute change and goal states during this phase.

The Monitoring phase is implemented on top of the IBM
WebSphere Process Server1, a BPEL-compliant process en-
gine for executing BPEL processes. Monitoring is done in

1http://www-306.ibm.com/software/integration/wps/



Figure 1: Architecture of the tool (top) and recov-
ery plan generation for violating a desired behavior
(bottom).

a non-intrusive manner – the Event Interceptor component
intercepts runtime events and sends them to the Monitor
Manager, which updates the state of the monitors. The use
of high-level properties allows us to detect the violation, and
our event interception mechanism allows us to stop the ap-
plication right before the violation occurs. RuMoR does not
require any code instrumentation, does not significantly af-
fect the performance of the monitored system, and enables
reasoning about partners expressed in different languages.

During the recovery phase, the Plan Generator component
generates recovery plans (see [5] for a description of the vari-
ous techniques used). For example, in the case of desired be-
havior violations, RuMoR tries to solve the following plan-
ning problem: “From the current state in the system, find a
plan to achieve the goal that goes through a change state”.
The actions that a plan can execute are defined by the appli-
cation itself, thus the domain of the planning problem is the
LTS model of the application (with compensation). The ini-
tial and goal states of the planning problem are the current
error state and the precomputed goal states, respectively.
The process for computing plans is shown in the bottom of
Fig. 1. RuMoR uses Blackbox [4], a SAT-based planner,
to convert the planning problem into a SAT instance. The
maximum plan length is used to limit how much of the ap-
plication model is unrolled in the SAT instance, effectively
limiting the size of the plans that can be produced. Mul-
tiple plans are generated by modifying the initial SAT in-
stance: new plans are obtained by ruling out those computed
previously. Plans are extracted from the satisfying assign-
ments produced by the SAT solver SAT4J and converted
into BPEL for displaying and execution. SAT4J is an in-
cremental SAT solver, i.e., it saves results from one search
and uses them for the next. We take advantage of this for
generating multiple plans, leading to efficient analysis (see
Sec. 3).

All computed plans are presented to the application user
through the Violation Reporter component. It generates a
web page snippet with violation information as well as a
web page for selecting a recovery plan. The application de-

App. k vars clauses # plans time (s)
TAS 6 135 254 1 0.01

25 states 8 798 10,355 5 0.13
31 trans. 13 1,398 25,023 13 0.27

TBS 5 108 464 0 0.01
52 states 10 883 30,524 2 0.14
67 trans. 15 1,456 74,932 8 1.37

20 2,141 135,047 18 4.72
25 3,298 246,210 60 29.16
30 5,288 464,654 68 61.34

FV 15 797 16,198 2 0.04
28 states 22 1,436 33,954 4 0.74
37 trans. 26 1,804 44,262 8 1.14

42 3,276 85,494 40 3.12
FC 4 42 159 1 0.01

18 states 6 95 592 2 0.02
22 trans. 12 321 3,248 4 0.15

16 554 7,393 5 0.27
20 856 14,427 13 1.38

Table 1: Plan generation data for desired behaviors.

veloper must include this snippet on the default error page,
so that the computed recovery plans are displayed as part of
the application when an error is detected. The Plan Execu-
tor executes the selected plan using dynamic workflows [6].
RuMoR takes advantage of their implementation as part of
IBM WebSphere.

3. EVALUATION AND SUMMARY
We have tested RuMoR on four BPEL applications: TAS,

Flickr visibility and comments (FV and FC, respectively,
both adapted from [1]), and the Travel Booking System
(TBS, adapted from [3]). For each application, we speci-
fied a set of simple properties and a test case that would
violate a desired behavior. RuMoR was used to generate a
set of (ranked) recovery plans for each test case and max-
imum plan length (k) (see Table 1). “vars” and “clauses”
indicate the size of the SAT instance generated; “# plans”
is the total number of plans of up to length k; and “time
(s)” indicates the total time (in seconds) needed to generate
these plans. For all four systems, the number of variables
and the number of clauses grows linearly with the length of
the plan, and the running time of the SAT solver remained
in seconds (see [5] for details).

To summarize, RuMoR is a recovery tool based on mon-
itoring and planning to detect and fix runtime violations of
behavioural properties of BPEL applications, using its com-
pensation mechanism. Our experience has shown that this
approach computes a small number of highly relevant plans,
doing so quickly and effectively.

4. REFERENCES
[1] A. Carzaniga, A. Gorla, and M. Pezze. Healing Web

Applications through Automatic Workarounds. STTT,
10(6):493–502, 2008.

[2] H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a
Tool for Model-Based Verification of Web Service
Compositions and Choreography. In Proc. of ICSE’06, pages
771–774, 2006.

[3] Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell, and
J. Waterhouse. Runtime Monitoring of Web Service
Conversations. In Proc. of CASCON’07, pages 42–57, 2007.

[4] H. A. Kautz and B. Selman. Unifying SAT-based and
Graph-based Planning. In IJCAI’99, pages 318–325, 1999.

[5] J. Simmonds, S. Ben-David, and M. Chechik. Guided
Recovery for Web Service Applications. In Proc. of FSE’10,
2010. To appear.

[6] W. M. P. van der Aalst and M. Weske. Case Handling: a
New Paradigm for Business Process Support. Data
Knowledge Engineering, 53(2):129–162, 2005.


