
Supplementary Material for NAViGaTOR:
Network Visualization and Graphing At Toronto

S1 NAViGaTOR Image Gallery

NAViGaTOR has been designed not only to support interactive visualization and
analysis of protein networks, but to allow the end-user to mark up graphs with
diverse node and edge features (see Supplementary Figure 1.1). The graphs
can be modified automatically, such as using “Filters” to control the node size
(Supplementary Figure 1.1A), node color (Supplementary Figure 1.1B), or
opacity, or manually, such as manually choosing colors, highlights, or node
shapes. Additionally, edges can be annotated using color, thickness, or curved
or bent paths. While the current version supports approximate shape control of
curved edges, future enhancements to NAViGaTOR will provide the user with
precise control over the splines that implement edge curves, and allow users to
add arrowheads and line terminators to indicate activating or inhibitory reactions.

S2 Biological Example Using NAViGaTOR

Since 2006, NAViGaTOR has been freely available to the research community
on our web site (http://ophid.utoronto.ca/navigator/), and so far has been used to
produce visualization of biological networks in 22 publications (Agarwal, et al.,
2009; Barrios-Rodiles, et al., 2005; Brierley, et al., 2006; Brown and Jurisica,
2007; Cox, et al., 2007; Cox, et al., 2009; Dong, et al., 2009; Gortzak-Uzan, et
al., 2008; Jurisica and Wigle, 2006; Jurisica, et al., 2007; Kislinger and Jurisica,
2006; Lau, et al., 2007; McGuffin and Jurisica, 2009; Mills, et al., 2009;
Motamed-Khorasani, et al., 2007; Savas, et al., 2009; Seiden-Long, et al., 2006;
Sodek, et al., 2008; Tomasini, et al., 2008; Wigle and Jurisica, 2007; Wu, et al.,
2007; Zhu, et al., 2009), and continues to be actively used within the biological
community. In addition to these publications and the example networks provided
above, below we outline the basic steps taken to perform a typical analysis with
NAViGaTOR.

The scenario considers a biologist that has performed a protein-protein
interaction (PPI) screen to identify interactors to a small number of baits. They
then performed a second screen to confirm the original interactions using a
different PPI detection method. The latter method is capable of producing
quantitative information about the interactions in addition to qualitative
information. The biologist wanted to visualize the results of these two screens,
and integrate additional data about known interactions to proteins in their screen.

http://ophid.utoronto.ca/navigator�

Figure 1.1 - Sample Images Produced by NAViGaTOR.

NAViGaTOR provides many features to enable effective layout and annotation of
networks. A) Screen-capture showing nodes on a circular layout, with hub nodes
automatically scaled according to their degree (connectivity). B) The scalability of
NAViGaTOR is demonstrated by rendering an extremely large network (1.7 million
edges; see ‘MouseNet’, Table 3.1) in under 20 minutes. Automated filters were used to
color nodes by degree. C) Circular and linear layouts are shown for a model network,
along with both curved and bent edges. We are currently experimenting with curved
edges to identify an optimal interface for users to manipulate complex curves in the
networks. D) A combination of layouts and edge styles is used to illustrate the
presence of highly connected hubs in a 3-dimensional rendering of this model network.

A text-based, tab-delimited file was prepared with the screen results, as shown in
Table 2.1 (protein SwissProt IDs were randomly generated, as the original data
has not yet been published). Each line describes an interacting pair of proteins.
The SwissProt IDs (SPID) will be used to annotate each node, and the “Method”
column will be used as an edge feature. Additional data captured by the screens
is shown in the right-most columns, and will also be loaded as additional edge
features.
Table 2.1 - Example of the tab-delimited file used to load the network into
NAViGaTOR

Target Target
SPID Bait Bait

SPID Method AvgMinus AvgPlus AvgPlus-
AvgMinus

Protein1 P31946 Bait 1 P60709 Both 3.6 0.5 -3.1
Protein3 Q04917 Bait 1 P60709 Both 3 5.6 2.6
Protein4 P31947 Bait 2 Q562R1 Method1
Protein5 P27348 Bait 1 P60709 Average 3.5 3.7 0.2
Protein5 P27348 Bait 2 Q562R1 Method1
Protein6 P13746 Bait 2 Q562R1 Method1
Protein6 P13746 Bait 3 Q71U36 Method1
Protein7 P01889 Bait 1 P60709 Average 1.4 3.5 2.1
Protein7 P01889 Bait 2 Q562R1 Method1
Protein8 P30456 Bait 1 P60709 Method1
Protein9 P16188 Bait 3 Q71U36 Method1
Protein10 P05534 Bait 1 P60709 Both 6.5 19.7 13.2
Protein10 P05534 Bait 2 Q562R1 Average 3.3 5.9 2.6
Protein10 P05534 Bait 3 Q71U36 Average 3 3.1 0.1

In NAViGaTOR, the graph is loaded through the “File->Open” menu item, the file
type is selected as “.txt – Tab-delimited text”, and the file is selected in the File
Chooser. After hitting “Okay”, the file wizard will walk the user through opening
the file, and selecting columns as node or edge features. Once the user steps
through the wizard, their network will be rendered automatically in NAViGaTOR
(see Figure 3.1).

At this point, nodes are labeled by their SwissProt IDs, and edges as SwissProt
ID pairs (i.e., P31946:P60709). Node names can be provided in the text file, or
they can be retrieved via an Internet connection. To use the Internet connection
(which will pull annotations from the Interologous Interaction Database (Brown
and Jurisica, 2005; Brown and Jurisica, 2007)), use the “Database” menu and
select “Get Ontology/Description for Nodes”. A dialogue will open and ask for the
ID type (in this case SWISSPROT_ID) and Organism (in this case HUMAN).
After hitting Okay, NAViGaTOR will retrieve both protein name and Gene
Ontology annotations for each node. To apply these annotations to all nodes,
right-click on white-space in the graph panel, select the ‘Node->Appearance (All)”
menu item, and then select “Filters…”. Add a new node filter based on the Gene
Ontology feature, then click “All”, and “Done”. At this point, all nodes are now

colour-coded according to the GO filter just created. Users can create filters for
any node features. For instance, one can create a node size filter based on the
degree of the nodes, making more highly-connected nodes larger, or on
gene/protein expression (e.g., mapping level of expression to node color, size or
shape). A similar filtering can be done on edges analogously, as described
further below.

The second step is often to use the search dialogue to identify the nodes
corresponding to the bait proteins. It will be important to spread these out in
order to appreciate the overall graph structure. Once the baits are selected, their
positions can be fixed, and they can be spread out manually or using automated
circular and linear layout tools, along with scaling and rotating the selected
nodes. From this point, the user can adjust the position of individual nodes or
subsets, using automated tools to spread sets of nodes out, and fixing them in
new locations. While the user interacts with the graph, NAViGaTOR continues to
apply the force-directed layout to non-fixed nodes. In this way, the user can
interactively assist in the untangling of some complicated networks.

In addition to laying out their own network, the user can automatically search the
I2D database for additional, known or predicted protein interactions. These
interactions can be merged into the original network, filtered, and selectively
removed (for example, removing all low-confidence interactions). The goal of
such manipulations is to enable the user to add to their network knowledge of
interactions that have already been published in the literature and curated in
online databases. Alternatively, the user could copy and paste from a second
NAViGaTOR network, which easily facilitates the combining of multiple screens.

Once the user has found satisfactory node locations, they can turn their attention
to adjusting the edges to convey useful information. Similar to the node filters,
edge filters can be created to automate colouring, type or thickness changes
according to any arbitrary feature. Examples of such filters are shown in Figure
3.2.

Finally, the user can: export their networks to several standard file formats, such
as GML or PSI-MI, that allow loading into other software; export their networks to
image formats, such as SVG, that allow the editing of all nodes and edges in
programs such as Adobe Illustrator; or they can save their results for later
processing in optimized NAViGaTOR XML format.

While this scenario only demonstrates a small example of examining the results
of multiple protein-protein interaction screens, NAViGaTOR will facilitate a range
of network analysis functions, such as finding hubs and articulation points,
network statistics, shortest paths and quasi-cliques, and supports a full range of

enrichment analyses by automatically generating and comparing a given network
to random networks, and identifying overlap with other sources, such as KEGG,
cancer gene lists, and GO. Users can colour code gene expression data in node
filters to show up- and down-regulation, or edge colours to show correlations in
expression. Powerful search and node feature tools (shapes and colours) allow
users to search for and mark proteins known to be mutated in cancer. The
current NAViGaTOR enables visual queries against the I2D
(http://ophid.utoronto.ca/i2d) and cPath (http://cbio.mskcc.org/cpath/) databases,
and the plug-in interface will allow users to extend the capabilities, to connect to
other PPI, pathway or protein databases, and to extend the analysis capabilities
of the software. See the legend for Figure 3.2 for more complete descriptions of
the manipulations done in the described scenario.

S3 Layout Comparisons

S3.1 Test Environment

These tests were performed on a machine with two Pentium(R) 4 CPUs (3.6GHz,
dual-core), 2GB of RAM, and running Microsoft Windows XP Professional
Version 2002, Service Pack 2. The tests were performed with the following
applications:

• NAViGaTOR version 2.0.8 (http://ophid.utoronto.ca/navigator)
• Cytoscape version 2.6.0 (http://www.cytoscape.org)
• VisANT version 3.29 (http://VisANT.bu.edu/)

The sample networks loaded into each application were sample files from the
databases in Table 3.1, and were loaded from tab-delimited text files. In cases
where the file could be interpreted with several different graph structures, such
as BioPax files, the default representation from Cytoscape was exported as a
tab-delimited file, which was subsequently loaded into NAViGaTOR and VisANT.
Only node and edge names were loaded into each application.

The networks were chosen as representative of large, biologically-based
networks that would typically be used by the average researcher.

These tests were used to illustrate the difference between the visual
appearances and run-times of the different graph layout algorithms. While
difficult to quantify, empirically, more effective layout algorithms will produce a
more manageable and intuitive layout in shorter time.

http://ophid.utoronto.ca/i2d�
http://cbio.mskcc.org/cpath/�
http://ophid.utoronto.ca/navigator�
http://www.cytoscape.org/�
http://visant.bu.edu/�

Table 3.1 - Properties of Networks Used in Testing.

Database Nodes Edges Undirected
Edges

BioPax C. elegans
(http://www.reactome.org/)

7,819 9,111 9,073

BioGRID D. melanogaster
(http://www.thebiogrid.org/)

7,545 28,323 25,464

BIND Human 19,906 31,708 31,345

MouseNet
(http://www.functionalnet.org/mousenet/)

15,447 1,722,708 1,722,708

S3.2 Method

Each network from Table 3.1 was loaded into each of NAViGaTOR, Cytoscape
and VisANT, and a single layout algorithm was executed with the intent to run
until completion. The value recorded in the evaluation indicates the time from
initialization of the layout algorithm, to the point at which a stable layout was
produced. In the case of dynamic layouts, which continue to optimize indefinitely
(such as VisANT's), screen captures of the graph were taken at intervals during
the iteration process. Supplementary Figures 3.3 – 3.5 show representative
graphs recorded at approximately the same time at which NAViGaTOR's output
was produced, as well as at a cutoff of 20 minutes. If no output was produced
after 20 minutes, or the algorithm failed to run, this was noted in the results. For
VisANT, the program was run in scripting mode, allowing it run with less
overhead, and therefore execute faster.

Originally NAViGaTOR was to be evaluated alongside three other graph
visualization packages: VisANT, Cytoscape and Osprey. Osprey failed to load
any of the networks in Table 3.1 in under 20 minutes, and thus was dropped from
the evaluation. Cytoscape also failed to render the MouseNet network in under
20 minutes. Though VisANT did not produce any output for MouseNet in our
comparison, it is reportedly able to render this network in over five hours; its
output can be examined at http://VisANT.bu.edu/vmanual/cmd.htm#to perform
time-consuming tasks.

http://visant.bu.edu/vmanual/cmd.htm#to perform time-consuming tasks�
http://visant.bu.edu/vmanual/cmd.htm#to perform time-consuming tasks�

Figure 3.1 - Screen-captures outlining the development of a biological
graph. A) After importing the data into NAViGaTOR, a simple graph is
produced. B) The proteins used as baits in the assay are then found through
‘Search’ dialogue by entering in their SwissProt IDs. They are then fixed in
position, and spread apart using the scaling tool. C) Subsets of nodes are
manually selected, fixed in position, aligned using linear and circular shape tools,
and dragged into position. At this point, the protein and GO annotations have
been imported from I2D (http://ophid.utoronto.ca/i2d) through the ’Database’
menu, and a node filter has been applied (lower-right panel) to automate
colouring. D) The ‘Bezier’ tool was then used to curve some edges for aesthetic
effect (which can sometimes provide easier visual interpretation), and an edge
filter was applied (lower-right NAViGaTOR panel) to automatically colour the
edges and vary the edge thickness in proportion to an imported edge feature, in
this case an interaction binding strength.

http://ophid.utoronto.ca/i2d�

Figure 3.2 – Biological networks showing orthogonal protein interaction screens.
The same graphs from Figure 3.1 were altered using NAViGaTOR filters and database
searching against I2D. Some edges were curved for easier viewing, and nodes were
coloured by the GO node filter. A) Edges were coloured using an edge filter to indicate
whether they were detected in one screen (red), both screens (green), or using an
alternative scoring for both screens (blue). B) Edge filters can also be used to indicate
binding strength, a feature that was imported from the text file. This edge filter included
both colour and edge thickness. The colour-bar legend was also generated by
NAViGaTOR. C) I2D was searched to overlay what is already known about this set of
proteins. This operation involved selecting all nodes, creating a subset in NAViGaTOR (to
make it easier to find the nodes later), searching I2D through the “Database” menu,
inverting the selection (to select new nodes that were brought in), and deleting the
current node selection. As a result known interactions from the I2D database are added
to the network without adding additional nodes. (Screen edges (blue), I2D (green), and
both (red).

S3.3 Results

NAViGaTOR's GRIP algorithm generates useable layouts faster than Cytoscape
and VisANT in most situations (see Supplementary Figure 3.3). In cases where
NAViGaTOR is outperformed in speed, it offers a more intuitive layout than
Cytoscape or VisANT (see Supplementary Figure 3.3C versus Supplementary
Figure 3.4C for comparison).

NAViGa-
TOR GRIP

Cytoscape
yFiles Or-
ganic

Cytoscape
Force Di-
rected

VisANT
Spring-
Embedded

VisANT
Elegant
Relaxing

00:00:00
00:01:26
00:02:53
00:04:19
00:05:46
00:07:12
00:08:38
00:10:05
00:11:31
00:12:58
00:14:24
00:15:50
00:17:17
00:18:43
00:20:10

C. elegans
D. melanogaster
BIND Human
MouseNet

Algorithm

Ti
m

e
to

 C
om

pl
et

io
n

Figure 3.3 - Measured Performance in Rendering Protein-Protein
Interaction Networks. NAViGaTOR, Cytoscape and VisANT were all used to
render worm, fly, human and mouse PPI networks, and the time to generate a
rendered network was recorded. Trials were terminated if a network was not
produced after 20 minutes. The network sizes were as follows: Worm – 7,819
proteins, 9,073 interactions; Fly – 7,545 proteins, 25,464 interactions; Human –
19,906 proteins, 31,345 interactions; and Mouse – 15,447 proteins and 1,722,708
interactions.

Figure 3.2 (con’t). In this case, the legend was added after importing the network
into Adobe Illustrator. D) Finally, an edge filter was created to demonstrate the
differences in binding between two network states, for example, in the presence or
absence of a ligand. The colour-bar shows that purple, thick edges show a higher
difference in binding between the two states, while the red, thin edges show now
difference.

A B

C D

Figure 3.4 - Networks Rendered Using NAViGaTOR

The networks from Table 3.1 were rendered in NAViGaTOR using the default
GRIP force-directed layout. A) The C. elegans network, consisting of 7,819
nodes and 9,073 edges, was rendered in seven seconds. This graph includes
one large connected component (middle, 5991 nodes, 7204 edges) and 47
disconnected subgraphs. B) The D. melanogaster network, comprising 7,545
nodes and 25,464 edges in 68 disconnected subgraphs, was rendered in eight
seconds. C) The BIND Human network was rendered in 52 seconds. The
network comprises 19,906 nodes and 31,345 edges in 785 disconnected
subgraphs. D) The MouseNet network was rendered in NAViGaTOR in 19
minutes and 7 seconds. The network comprises 15,447 nodes and 1,722,708
edges.

A B

C D

Figure 3.5 - Networks Rendered Using Cytoscape

The networks from Table 3.1 were loaded into Cytoscape and rendered, if possible.
A) The C. elegans network was rendered using the yFiles Organic algorithm in 30
seconds. The network is identical to that in Supplementary Figure 3A, comprising
7,819 nodes and 9,073 edges. B) The D. melanogaster network was rendered
using the yFiles Organic algorithm in 35 seconds. The network is identical to that in
Supplementary Figure 3B, comprising 7,545 nodes and 25,464 edges. C) The
BIND Human network was rendered using the yFiles Organic algorithm in 39
seconds. The network is identical to that in Supplementary Figure 3C, comprising
19,906 nodes and 31,345 edges. D) The C. elegans network from A) was rendered
again in Cytoscape, this time using the default force-directed algorithm. While
more similar to the output from NAViGaTOR’s GRIP algorithm (Supplementary
Figure 3A), Cytoscape required 3 minutes and 33 seconds to generate its output.

Figure 3.6 - Networks Rendered Using VisANT. The networks from
Supplementary Table 3.1 were loaded into VisANT and rendered, if possible. A)
The C. elegans network (7,819 nodes and 9,073 edges) was loaded, and a
screenshot was captured following 20 minutes of optimization using the Relaxing
algorithm. The comparable network rendered by NAViGaTOR is shown in
Supplementary Figure 3A. B) The D. melanogaster network (7,545 nodes,
25,464 edges) was optimized using the Relaxing algorithm, and a screenshot was
taken after 20 minutes of rendering. C) The Relaxing algorithm performed poorly
on the BIND Human network (19,906 nodes, 31,345 edges), showing little
improvement after 20 minutes of rendering. D) Similarly, the Spring Embedded
layout algorithm failed to optimize the C. elegans network from Supplementary
Figure 3A after 20 minutes of rendering.

D C

B A

S4 Performance and Function Testing

S4.1 File Loading Test Environment

To demonstrate NAViGaTOR’s robust file handling capability, network files of
various types (i.e., PSI-MI XML1.0, PSI-MI XML 2.5, and PSI MI-TAB), various
sizes (from 1kB to 378MB), and from diverse databases (i.e., BioGrid (Stark, et
al., 2006), DIP (Xenarios, et al., 2000), IntAct (Hermjakob, et al., 2004), MINT
(Zanzoni, et al., 2002), NCI Pathways, and Reactome (Joshi-Tope, et al.,
2005)) were obtained and tested. The computers used for testing are
described in Table 4.1. All Java Virtual Machines (JVMs) were allocated
1,024MB of heap space (memory) to perform the operations, although the
‘Tiger’ machine and RedHat x86 only had 512MB of physical memory.

Table 4.1 - Specifications of the computers used in our test suite.

Computer CPU Memory OS

Leopard
Intel Core 2 duo 2.54Ghz
(2 cores)

4GB
Leopard OS X 10.5.8 MacBook Pro
5.5

Tiger
Power PC G4 (1.2)
1.25Ghz (1 core)

512 MB
Mac Mini Power Mac 10.1, Tiger
10.4.11

RedHat32 Intel Celeron 1.80GHz 512 MB RedHat Linux i686 2.6.9-11.EL

RedHat64
Dual-Core AMD Opteron
3.0GHz (x2)

4GB x86_64 GNU/Linux 2.6.18-53.el5

Vista64
Intel Xeon 2 CPUs x4
2.66GHz cores

16GB Vista Business x64 6.0.6001 SP1

XP32 4 CPU Pentium 3.6 Ghz 2GB
Windows XP Professional v.2002
SP2

XP64 Intel Xeon 3Ghz 4 cores 4GB
Windows XP x64 Professional
5.2.3790 SP2

The test files were categorized by file size as ‘small’, ‘medium’, and ‘large’.
‘Small’ files were the smallest obtainable from an individual database, ‘large’
files were the largest obtainable, and ‘medium’ was the file that was closest to
the mean file size provided by a database. In some cases, only a single
download file was available, and thus it was assigned to a group that appeared
representative of the overall file size. Complete file details are presented in
Table 4.2 and Table 4.3. The time required to load each file and file type was
recorded, and the results are summarized in Table 4.4.

Table 4.2 - Details of files used in testing NAViGaTOR file loading.

 Small Medium Large

Database
File

Type Nodes Edges
Size
(MB) Nodes Edges

Size
(MB) Nodes Edges

Size
(MB)

BioGrid PSI 1.0 2 1 0.005 7,294 25,133 39.6 27,929 167,418 282.4

BioGrid PSI 2.5 2 1 0.006 1,562 11,570 22.6 5,608 95,315 218.4

BioGrid TAB 2 1 0.003 8,632 26,969 5.3 27,929 167,418 26.9

DIP MI-TAB 2 1 0.001 3,077 6,990 2.0 11,643 22,864 5.3

DIP PSI 2.5 2 1 0.004 2,423 4,916 12.7 7,505 22,884 39.9

IntACT PSI 1.0 2 3 0.007 2 1 0.0 2,551 77,953 10.2

IntACT PSI 2.5 2 1 0.015 284 556 2.9 2,551 77,953 41.6

IntACT MI-TAB NA NA NA NA NA NA 43,420 157,548 378.1

MINT PSI 2.5 25 13 0.3 515 477 17.6 3,088 13,711 27.4

NCI PW BioPAX 8,424 15,292 5.6 12,464 34,628 8.6 - - - - - -

Reactome MI-TAB NA NA NA NA NA NA 3,471 68,560 29.3

Reactome TAB NA NA NA NA NA NA 3,394 61,541 97.4

Note: ‘NA’ indicates that a file was not available from a given source
corresponding to the required file size. NCI PW Large failed to load, and thus a
node and edge count could not be determined.

Table 4.3 - Organism and dataset description of files used for load testing.

 Small Medium Large

Database
File

Type Org/Dataset Org/Dataset Org/Dataset

BioGrid PSI 1.0
Bacillus_subtilis_168-
2.0.55

Drosophila_melanogaster-
2.0.55

ALL-SINGLEFILE-
2.0.55

BioGrid PSI 2.5
Bacillus_subtilis_168-
2.0.55

Schizosaccharomyces_pom
be-2.0.55

Saccharomyces_cerevi
siae-2.0.55

BioGrid TAB
Bacillus_subtilis_168-
2.0.55 Homo_sapiens-2.0.55

ALL-SINGLEFILE-
2.0.55

DIP MI-TAB Hpylo20081014CR Ecoli20081014 Dmela20081014

DIP PSI 2.5 Hpylo20081014CR Scere20081014CR Dmela20081014

IntACT PSI 1.0 pyrho_small human_small-32_negative yeast_small-02

IntACT PSI 2.5 kunvi_small arath_small-03 yeast_small-02

IntACT
PSIMI
Tab IntAct

MINT PSI 2.5
Saccharomyces
cerevisiae-45

Saccharomyces cerevisiae-
11 full-44

NCI PW BioPAX BioCarta Reactome

Reactome MI-TAB homo_sapiens

Reactome TAB homo_sapiens

For small to medium files, ranging from .001MB to 40MB in size, loading took
an average of 1.5 to 47.5 seconds. BioPax, with a more detailed and nested
XML structure, generally took longer than simpler file types. Overall, these files
represent the typical size that an average user would tend to load. However, to
demonstrate NAViGaTOR’s scalability, much larger files were also tested. On
large files, NAViGaTOR took between 23.5 ± 23.1 and 559 ± 529 seconds to
load. For the large BioGrid PSI1.0 file (282MB), only the Vista64 machine was
able to load the file, while the large NCI PW BioPax file (10.65MB) could not be
loaded on any machine due to a deeply nested XML structure.

Trends were also observed for different file types. After removing test sets with
missing data for the medium file size, and ranking the tests based on the
medium file size loading time, 32-bit machines always performed the slowest,
with the exception of 32-bit OSX ‘Leopard’. In most tests, OSX ‘Tiger’ and
RedHat x86 had the longest load times.

In order to assess whether different file types load in different amounts of time,
the loading time had to be normalized against the file size (see Figure 4.1). On
a per megabyte basis, BioPax files load the slowest, while the newer PSI 2.5
files load the fastest.

Similarly, we wanted to measure the relationship between machine
architectures and load times for different files (see Figure 4.2). At first glance, it
would appear that OSX ‘Tiger’ and Redhat x86 had significantly slower
performance. However, these test machines only had 512MB of physical
memory, as compared to 4GB or more for each of the other test machines.
The 32-bit OSX ‘Leopard’ and XP32 performed similarly to each of the 64-bit
test machines.

0

1

2

3

4

5

6

7

8

BioPAX MI-TAB PSI 1.0 PSI 2.5 PSI 2.5 PSI 2.5 PSI 2.5 TAB

File Type

N
or

m
al

iz
ed

 L
oa

d
Ti

m
e

(s
 /

M
b)

Figure 4.1 - Load time for various file types. In order to compare the loading time
across files of varying size, the time was normalized by the size of the file. This shows
that, on a per megabyte basis, the PSI2.5 files are actually more efficient to load.
However, there is a significant memory overhead to loading these larger files, as noted
below.

0
1
2
3
4
5
6
7
8

Le
op

ard Tig
er

Red
Hat3

2
XP32

Red
Hat6

4

Vist
a6

4
XP64

A
ve

ra
g

e
N

o
rm

 L
o

ad
 T

im
e

(s
 /

M
b

)

Average

0

2

4

6

8

10

12

Leopard Tiger RedHat32 XP32 RedHat64 Vista64 XP64

N
or

m
al

iz
ed

 L
oa

d
Ti

m
e

(s
 /

M
b)

BioPAX
MI-TAB
PSI 1.0
PSI 2.5
PSI 2.5
PSI 2.5
PSI 2.5
TAB

Figure 4.2 - Loading time by system architecture.

File loading performance was assessed for each system architecture in our test
environment and for each medium sized file type. This is plotted as the mean
normalized loading time (A), and as the individual normalized loading time for
each file type (B). While OSX ‘Tiger’ and RedHat x86 appear to perform the
worst, this is likely due to the fact that these test machines only had 512MB of
physical memory, and thus memory swapping overhead was a significant factor.

A

B

Table 4.4 - File loading times for small, medium and large files.

Database File Type Small Medium Large

BioGrid PSI 1.0 1.5 (0.7) 47.5 (52.4) 379 ()

BioGrid PSI 2.5 2.4 (1.8) 15.2 (13.0) 559 (529)

BioGrid TAB 3.4 (3.4) 9.7 (8.0) 106 (207)

DIP MI-TAB 2.2 (1.7) 3.8 (2.6) 62.1 (145)

DIP PSI 2.5 2.1 (1.4) 8.5 (6.3) 29.4 (29.3)

IntACT PSI 1.0 2.2 (1.3) 1.8 (1.5) 23.5 (23.1)

IntACT PSI 2.5 2.1 (1.3) 3.4 (2.9) 32.4 (34.9)

IntACT PSIMI Tab 201 (309)

MINT PSI 2.5 2.8 (1.5) 7.8 (6.5) 73.4 (172)

NCI PW BioPAX 20.4 (17.0) 34.2 (30.8) StkOFlow

Reactome MI-TAB 39.5 (48.8)

Reactome TAB 150 (234)

Notes: All times shown are (mean ± s.d.). BioGrid PSI1.0 only completed on
Vista64; BioGrid PSI2.5 only loaded on Leopard, Vista64, and XP32. NCI PW
BioPax Large failed to load on any test machine due to stack overflow errors
caused by deeply nested XML.

S5 Memory Analysis

S5.1 Scalability Test Environment

These tests were performed on a desktop PC with an AMD Athlon 64
Processor 3400+ (2400 MHz, 1 core) with 2,046 MB of available physical
memory and running the Windows Vista 64 operating system (version 6.0.6000
build 6000). The tests were performed in conjunction with YourKit Java Profiler
version 7.0.11 (http://www.yourkit.com/). Although run on a 64-bit machine, all
tests were conducted using the 32-bit Java Runtime Environment (JRE) version
1.6.0_04. The tests were performed with the following applications:

• NAViGaTOR version 2.0.8 (http://ophid.utoronto.ca/navigator)
• Cytoscape version 2.6.0 (http://www.cytoscape.org)
• VisANT version 3.29 (http://VisANT.bu.edu/)

http://www.yourkit.com/�
http://ophid.utoronto.ca/navigator�
http://www.cytoscape.org/�
http://visant.bu.edu/�

The sample networks loaded into each application were fully connected
synthetic graphs (i.e., each node was connected to every other node in the
graph) with 100, 200, 300, 400, 500 and 600 nodes. The graphs were labeled
k100 to k600 respectively. These networks are unlikely to model any real-life
biological system. Instead they serve as benchmarks for scalability testing
purposes.

Table 5.1 - Graph Characteristics for the Memory Footprint Comparison

Graph nodes edges

k100 100 4950

k200 200 19900

k300 300 44850

k400 400 79800

k500 500 124750

k600 600 179700

S5.2 Critical Memory

These tests were designed to measure the minimum memory required to load a
network file. This is the critical amount of memory, without which the application
fails to load a given network. An application with lower memory consumption
can load larger networks than one with higher memory requirements.

S5.2.1 Procedure

For each test, the minimum and maximum memory allocated to the JRE was
initially set to the same starting values. Each application was given an excess
amount of memory, and an attempt was then made to load a network. If the
network loaded successfully, the application was restarted with a lower memory
allocation and tested again. If the network failed to load (resulting in error
messages, or an application crash), the application was restarted with a higher
memory allocation and tested again. These operations were performed
iteratively until a memory allocation was obtained such that using any value
below that resulted in failure to load the network. This procedure was carried
out for each graph for each graph visualization program.

S5.2.2 Results

VisANT consistently had the lowest minimal memory requirements, followed by
NAViGaTOR (see Table 5.2 and Supplementary Figure 5.1). Both of these
applications had considerable savings in memory consumption compared to
Cytoscape, especially for larger networks. Cytoscape required about twice as
much memory as NAViGaTOR for larger networks.

S5.3 Memory Consumption Following Network Loading

These tests measured the memory consumed by each application after a
network had been loaded. Lower memory consumption will allow smoother
work flow and interactive operation when working with network objects. If
available memory is limited, then more CPU time is spent swapping memory
locations and clearing unused memory slots. This results in lag when working
with the application.

S5.3.1 Procedure

For these tests, the minimum and maximum memory heap sizes available to
each application were set to 500 MB. To run the tests, each application was
started with modified arguments so that they could be profiled using YourKit.
Once started, a network was loaded into each application. After each application

Table 5.2 - Minimal memory required for loading a network.

Graph NAViGaTOR (MB) Cytoscape (MB) VisANT (MB)

k100 13 21 11

k200 21 39 17

k300 35 67 25

k400 57 109 37

k500 81 163 53

k600 115 225 73

 Figure 5.1 - Minimal memory required for loading a network.

had fully loaded and displayed the network, the 'Force Garbage Collection'
command was used in YourKit to force the Java garbage collection routine to
run. This ensured that any excess unused memory allocations were removed.
The memory usage at this point was recorded, and is shown in Table 5.3. Each
application was restarted before loading in a new network.

S5.3.2 Results

NAViGaTOR and VisANT's run-time memory requirements were similar to each
other (Supplementary Table 5.3 and Supplementary Figure 5.2), with VisANT
performing better, especially on larger networks. Cytoscape, on average,
required about twice as much memory as NAViGaTOR.

Table 5.3 – Run-time memory requirement.

Graph NAViGaTOR (MB) Cytoscape (MB) VisANT (MB)

k100 11 20 11

k200 19 37 17

k300 31 65 27

k400 49 106 40

k500 78 159 57

k600 110 218 79

 Figure 5.2 – Run-time memory requirement.

S6 User Interface Features

As the number of options and functions in a graphical user interface grows, the
user is often confronted with increasingly packed panels, long and deep menus,
as well as a growing number of hotkeys. Panels consume screen space,
panels and pull-down menus both require the user to frequently travel between
controls and the data they want to view, and hotkeys need to be memorized
before they can be used. To help alleviate these problems, NAViGaTOR's user
interface incorporates novel semi-transparent popup widgets that appear over
the data, in context. These widgets consume screen space only when needed,
reduce occlusion of data by virtue of their transparency, eliminate the need to
travel between data and controls, and encourage a faster, more gestural type of
interaction. These widgets are described briefly below; more details are given
in (McGuffin and Jurisica, 2009).

The user may select nodes by dragging out a rectangle or lasso. To avoid
having separate modes for these two functions, we reused a previous
technique (Saund, et al., 2003) where the ink stroke dragged out by the cursor
is dynamically interpreted to either mean a rectangle or a lasso, depending on
its shape. As the user starts to drag, initially the ink trail is interpreted as a
rectangle. However, if the user starts to drag back toward their starting
position, it is interpreted as a lasso (Figure 6.1).

Figure 6.1 - NAViGaTOR selection tool.

Once a subgraph has been selected, the user may invoke operations on the
subgraph by popping up a semi-transparent 2D menu of interactive controls
called the "hotbox" (Figure 6.2). The hotbox contains pushbuttons, checkbox
items, and specialized regions analogous to 1D or 2D sliders. Clicking down on
these sliders and then dragging allows the user to fluidly specify arguments at
the same time that they invoke a command. For example, clicking down on the
"Move" 2D slider (in the center of the hotbox), and then dragging, causes the
selected subgraph to be moved by the distance dragged out. During such
dragging, the hotbox is faded out so the user can see the network responding
to the drag (Figure 6.3). Once the user has completed the drag, the hotbox
fades back in, and the user may invoke additional subsequent hotbox
commands before dismissing the hotbox. There are 1D and 2D sliders in the
hotbox for performing rotations, scaling, changes of opacity, and changes to
node-weights used in force-directed layout.

Figure 6.2 - 'Hotbox' popup menu in NAViGaTOR.

The user may also change the layout of nodes with commands in the hotbox
that "Linearize" or "Circularize" the positions of selected nodes, projecting them
onto straight lines or circles that can then be moved, rotated or scaled. Finally,
various pushbuttons and checkbox items in the hotbox allow the user to change
the shapes of nodes, reveal or hide labels, collapse or expand meta-nodes, and
activate or deactivate force-directed layout of nodes. Future versions of this
interface could even nest popup menus within the hotbox, enabling it to scale
up to hundreds of functions accessible via a single unifying interaction
technique.

Figure 6.4 shows a sample layout created with NAViGaTOR's interface. The
user has identified 6 hub nodes and arranged them in a hexagon, and made
them appear as large diamonds. Nodes interacting with the same pairs or
triples of hubs are collected into linear arrangements on the right, allowing their
labels and edges to be read easily. The set of currently selected nodes
(highlighted in red, on the left) is all nodes at least 6 edges away from any of
the 6 hubs (this set was found with the interface simply by selecting all nodes in
the graph and then deselecting the neighborhoods of radius 5 centered on each

Figure 6.3 - Sample translation using the 'hotbox' tool.

hub). Concentric circles of nodes were arranged around the selected set with a
single drag.

Figure 6.4 - Network layouts accelerated using the 'hotbox' tool.

S7 References

Agarwal, R., et al. (2009) The Emerging Role of the RAB25 Small GTPase in Cancer,
Traffic, In press.

Barrios-Rodiles, M., et al. (2005) High-throughput mapping of a dynamic signaling
network in mammalian cells, Science, 307, 1621-1625.

Brierley, M.M., et al. (2006) Identification of GAS-dependent interferon-sensitive
target genes whose transcription is STAT2-dependent but ISGF3-independent, Febs
J, 273, 1569-1581.

Brown, K.R. and Jurisica, I. (2005) Online predicted human interaction database,
Bioinformatics, 21, 2076-2082.

Brown, K.R. and Jurisica, I. (2007) Unequal evolutionary conservation of human
protein interactions in interologous networks, Genome Biol, 8, R95.

Cox, B., et al. (2007) Integrated proteomic and transcriptomic profiling of mouse
lung development and Nmyc target genes, Mol Syst Biol, 3, 109.

Cox, B., et al. (2009) Comparative systems biology of human and mouse as a tool
to guide the modeling of human placental pathology, Mol Syst Biol, 5, 279.

Dong, J., et al. (2009) Lung cancer: developmental networks gone awry?, Cancer
Biol Ther, 8, 312-318.

Gortzak-Uzan, L., et al. (2008) A proteome resource of ovarian cancer ascites:
integrated proteomic and bioinformatic analyses to identify putative biomarkers, J
Proteome Res, 7, 339-351.

Hermjakob, H., et al. (2004) IntAct: an open source molecular interaction database,
Nucleic Acids Res, 32, D452-455.

Joshi-Tope, G., et al. (2005) Reactome: a knowledgebase of biological pathways,
Nucleic Acids Res, 33, D428-432.

Jurisica, I. and Wigle, D.A. (2006) Knowledge Discovery in Proteomics.
Mathematical Biology and Medicine Series, 8. Chapman and Hall/CRC Press.

Jurisica, I., et al. (2007) Cancer informatics in the post genomic era. Toward
information-based medicine. Cancer Treat Res, 137. Springer Verlag.

Kislinger, T. and Jurisica, I. (2006) Proteomics and Bioinformatics in Biomedical
Research, Cancer Genomics-Proteomics, 3, 11.

Lau, S.K., et al. (2007) Three-gene prognostic classifier for early-stage non small-
cell lung cancer, J Clin Oncol, 25, 5562-5569.

McGuffin, M. and Jurisica, I. (2009) Interaction techniques for selecting and
manipulating subgraphs in network visualizations, IEEE Trans. Visual Comput.
Graphics, In Press.

Mills, G.B., et al. (2009) Genomic amplicons target vesicle recycling in breast
cancer, J Clin Invest, 119, 2123-2127.

Motamed-Khorasani, A., et al. (2007) Differentially androgen-modulated genes in
ovarian epithelial cells from BRCA mutation carriers and control patients predict
ovarian cancer survival and disease progression, Oncogene, 26, 198-214.

Saund, E., et al. (2003) Perceptually-supported image editing of text and graphics.
ACM New York, NY, USA, 183-192.

Savas, S., et al. (2009) A comprehensive catalogue of functional genetic variations
in the EGFR pathway: protein-protein interaction analysis reveals novel genes and
polymorphisms important for cancer research, Int J Cancer, 125, 1257-1265.

Seiden-Long, I.M., et al. (2006) Transcriptional targets of hepatocyte growth factor
signaling and Ki-ras oncogene activation in colorectal cancer, Oncogene, 25, 91-
102.

Sodek, K.L., et al. (2008) Identification of pathways associated with invasive
behavior by ovarian cancer cells using multidimensional protein identification
technology (MudPIT), Mol Biosyst, 4, 762-773.

Stark, C., et al. (2006) BioGRID: a general repository for interaction datasets,
Nucleic Acids Res, 34, D535-539.

Tomasini, R., et al. (2008) TAp73 knockout shows genomic instability with infertility
and tumor suppressor functions, Genes Dev, 22, 2677-2691.

Wigle, D. and Jurisica, I. (2007) Cancer as a system failure, Cancer Inform, 5, 10-
18.

Wu, C., et al. (2007) Systematic identification of SH3 domain-mediated human
protein-protein interactions by peptide array target screening, Proteomics, 7, 1775-
1785.

Xenarios, I., et al. (2000) DIP: the database of interacting proteins, Nucleic Acids
Res, 28, 289-291.

Zanzoni, A., et al. (2002) MINT: a Molecular INTeraction database, FEBS Lett, 513,
135-140.

Zhu, C.Q., et al. (2009) Understanding Prognostic Gene Expression Signatures in
Lung Cancer, Clin Lung Cancer, 10, In press.

	S1 NAViGaTOR Image Gallery
	S2 Biological Example Using NAViGaTOR
	S3 Layout Comparisons
	S3.1 Test Environment
	S3.2 Method
	S3.3 Results

	S4 Performance and Function Testing
	S4.1 File Loading Test Environment

	S5 Memory Analysis
	S5.1 Scalability Test Environment
	S5.2 Critical Memory
	S5.2.1 Procedure
	S5.2.2 Results

	S5.3 Memory Consumption Following Network Loading
	S5.3.1 Procedure
	S5.3.2 Results

	S6 User Interface Features
	S7 References

