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1 Introduction

A clusteringof a network is a partitioning of the network’s
nodes into sets calledclusters. In a good clustering, we
want the clusters of nodes to be highly intra-connected, or
dense. We also want few connections between nodes in
separate clusters, i.e. the clusters are to be sparsely inter-
connected. In the case of protein-protein interaction net-
works, the nodes are proteins and two nodes are connected
if there is an interaction between them.

The Restricted Neighbourhood Search Clustering Al-
gorithm (RNSC) is alocal search algorithmfor network
clustering (King, 2004). This means that it searches the
solution spaceof all possible clusterings of a network for
a clustering with low cost; every possible clustering has
an associated cost that reflects the goodness of the clus-
tering. RNSC uses two separate cost functions.

2 The Cost Functions

RNSC uses two cost functions to judge the goodness of
clusterings. One is thenaive cost function, which is sim-
ple to compute and has integer values. The other is the
scaled cost function, which is more complicated and can
have non-integer values, but considers more information
about the clustering being assessed. The naive cost func-
tion is computationally undemanding, and is therefore

∗To whom correspondence regarding RNSC should be addressed

used as a fast preprocessing tool, whereas we really want
to minimize the scaled cost function.

Consider a nodev in a networkG, and a clusteringC
of the network. Letαv be the number ofbad connections
incident withv. A bad connection incident withv is one
that exists betweenv and a node in a different cluster from
v, or one that does not exist betweenv and a nodeu in the
same cluster asv. The naive cost function ofC is then
defined as

Cn(G, C) =
1
2

∑
v∈V

αv, (1)

whereV is the set of nodes inG.
For a vertexv in G with a clusteringC, let βv be the

size of the following set:v itself, any node connected to
v, and any node in the same cluster ofv. This measure
reflects the size of the area thatv effects in the clustering.
We define the scaled cost function ofC as

Cs(G, C) =
|V | − 1

3

∑
v∈V

αv
βv
. (2)

We can see that in both cost functions, what we want, ide-
ally, is a clustering in which the nodes in a cluster are all
connected to one another and there are no other connec-
tions.
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Figure 1: The RNSC algorithm
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Figure 2: The RNSC naive cost scheme
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Figure 3: The RNSC scaled cost scheme
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3 The RNSC Algorithm

We want to find a good clustering of a networkG. Since
RNSC is a randomized algorithm, we do this by running
the algorithm a certain number of times. Each run gen-
erates a clusteringCs. We take theCs with lowest scaled
cost as our final output clusteringCF .

A single run, orexperiment, of the algorithm begins
with a random clusteringC0 and attempts to find a clus-
teringCs with low scaled cost. It does this by first find-
ing a clusteringCn with low naive cost, which can be
done quickly. This stage is called thenaive cost scheme.
Such a clusteringCn is generally a good approximation to
Cs. RNSC then improvesCn by running thescaled cost
scheme, which searches for a clustering with low scaled
cost, outputting the lowest-cost clustering it finds,Cs.

Both the naive cost scheme and the scaled cost scheme
involve gradually improving the clustering by succes-
sively makingmoves. A move involves moving a vertex
from its present cluster to another cluster. Figure 1 shows
a flowchart of the entire RNSC process. Figures 2 and 3
show flowcharts of the naive cost scheme and the scaled
cost scheme, respectively.NE is the number of experi-
ments that we wish to perform.Tn is thenaive stopping
tolerance: In the naive cost scheme, we stop when the
best naive cost has not been updated inTn moves.LE is
thescaled experiment length: In the scaled cost scheme,
we stop when a total ofLE moves have been made.

In the scaled cost scheme, RNSC performsdiversifica-
tion. Diversification is a common strategy in local search
algorithms. It involves periodically making a set of ran-
dom moves to avoid settling into a clustering that is lo-
cally optimal but globally poor. We have adiversification
period of F ′D moves: EveryF ′D moves, RNSC destroys
a randomly selected cluster by moving each node in the
cluster to a random cluster.

Another strategy that RNSC uses to avoid choosing a
globally poor clustering is the use of atabu list. A tabu
list acts as memory, forbidding a set of moves based on the
moves that were recently made in order to prevent cycling
(Glover, 1989). In this case, the tabu list is a list of vertices
that cannot be moved. The use of diversification and a
tabu list greatly improve the performance of RNSC (King,
2004).

4 Computational Performance

RNSC uses a number of data structures in order to search
the set of clusterings for a network quickly. However,
making moves is still costly: making a move in the naive
scheme carries a computational cost ofO(|V |), and mak-
ing a move in the scaled scheme carries a computational
cost ofO(|V |2). It is certainly not the fastest existing
clustering algorithm, but it is very effective in finding a
clustering of low cost according to our cost functions.

On a Pentium 4 2.8GHz processor, RNSC took as
little as 10 seconds per experiment forY2k, the yeast
network containing 988 proteins and 2455 interactions.
The most computation-intensive network wasF20k, the
D. melanogaster network containing 6985 proteins and
20,007 interactions. For this network, RNSC took roughly
150 minutes per experiment. Results for all of the PPI net-
works analyzed are given in Table 1.

RNSC is discussed in great detail from a graph-
theoretic and operational research perspective in King’s
Master’s thesis (King, 2004).
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# of # of Time per
Description Name proteins interactions Source experiment

Yeast 1 Y2k 988 2455 (von Meringet al., 2002) 10 sec.
Yeast 2 Y11k 2401 11,000 (von Meringet al., 2002) 3 min.
Yeast 3 Y45k 4687 45,000 (von Meringet al., 2002) 48 min.
Yeast 4 Y78k 5321 78,390 (von Meringet al., 2002) 65 min.

Fly 1 F5k 4602 4637 (Giotet al., 2003) 54 min.
Fly 2 F20k 6985 20,007 (Giotet al., 2003) 180 min.

Worm 1 W5k 3115 5222 (Liet al., 2004) 10 min.

Table 1: Protein-protein interaction networks clustered by RNSC
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