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1 Supplementary Methods and Dis-
cussion

1.1 Models of Large Networks

The earliest model of large networks was introduced by
Erdös and Rényi in late 50s and early 60s (Erdös & Rényi,
1959; Erdös & Rényi, 1960; Erdös & Rényi, 1961). They
introduced the random graph model and initiated a large
area of research, a good survey of which can be found
in Bollobas’s book (Bollobas, 1985). There are several
versions of this model out of which the most commonly
studied is the one based on the principle that in a graph on


 nodes, every edges is present with probability � and ab-
sent with probability ���� ; this graph model is commonly
denoted by ����� � . Another commonly used random graph
model, denoted by � ��� � , is based on the principle that
a graph on 
 nodes and � edges is chosen uniformly at
random amongst all graphs on 
 nodes and � edges, or
equivalently, a set of � edges of the graph is chosen uni-
formly at random among all possible ���������! sets of edges.
These two models behave similarly when �#" �

� �� � . We
used the �$��� � model to construct ER graphs correspond-
ing to the PPI networks (details are below). Many of the
properties of random graphs can be calculated exactly in
the limit of large 
 (Bollobas, 1985).

Since properties of the random graph model deviate
from those of most real-world networks, several new net-
work models have recently been introduced. To capture
the scale-free character of real-world networks, the ran-
dom graph model was modified to allow for arbitrary de-
gree distributions while keeping all other aspects of the
random graph model. This model is called the general-
ized random graph model and finding properties of these
graphs has been an active area of research (Bender & Can-
field, 1978; Newman, 2002; Luczak, 1990; Molloy &
Reed, 1995; Molloy & Reed, 1998; Aiello et al., 2001;
Newman et al., 2001; Wilf, 1990). The ER-DD random
networks which we constructed to have the same num-
ber of nodes, edges, and the degree distributions as the
PPI networks belong to this network model. We surveyed
some of the main results on these graphs in (Przulj, 2004).
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The scale-free network model, characterized by a small
number of very highly connected nodes, has received a
lot of attention in recent years. Barabási, Albert, and
Jeong (Barabási & Albert, 1999; Barabási et al., 1999)
showed that a heavy-tailed degree distribution emerges
automatically from a stochastic growth model in which
new nodes are added continuously and they preferentially
attach to existing nodes with probability proportional to
the degree of the target node. That is, high-degree nodes
become of even higher degree with time and the result-
ing degree distribution is � ���  "������ . We constructed
the SF networks corresponding to PPI networks using this
network model (more details are given below). Many real-
world networks have power-law degree distributions, such
as for example, the Internet backbone (Faloutsos et al.,
1999), metabolic reaction networks (Jeong et al., 2000),
the telephone call graph (Abello et al., 1998), and the
World Wide Web (Broder et al., 2000); degrees of all
of these networks decay as a power law � ���  "��	�
� ,
with the exponent � "����� ���� � . Thus, a large body of
research on theoretical and experimental results on this
network model has appeared recently (Bollobas & Ri-
ordan, 2001; Aiello et al., 2001; Newman et al., 2001;
Krapivsky & Redner, 2001; Albert & Barabási, 2002; Al-
bert & Barabási, 2000; Dorogovtsev & Mendes, 2000;
Krapivsky et al., 2000; Albert et al., 2000; Broder et al.,
2000; Albert et al., 2000; Cohen et al., 2000; Callaway
et al., 2000; Bornholdt & Ebel, 2001; Jeong et al., 2000;
Wagner & Fell, 2001).

In the geometric random graph model, nodes cor-
respond to independently and uniformly randomly dis-
tributed points in a metric space, and two nodes are linked
by an edge if the distance between them is smaller than
or equal to some radius � , where distance is an arbitrary
distance norm in the metric space (see the definition in
the paper; more details about geometric random graphs
can be found in (Penrose, 2003)). We used 2-, 3-, and
4-dimensional “squares” and the Euclidean distance mea-
sure to construct GEO-2D, GEO-3D, and GEO-4D graphs
corresponding to PPI networks (more details are given be-
low).

Note that other network models exist and new ones will
certainly be designed in the future to model the real-world
phenomena better. It is not possible to predict how many
and which new models will appear in the future; this will
largely depend on the new data that need to be modeled.

We limited our current study to the above four network
models for two reasons. First, these models are very well
established and are most extensively used for modeling
various real-world phenomena, so we wanted to evalu-
ate how well each of them models PPI networks. Sec-
ond, we believe that our results show that geometric ran-
dom graphs provide a major modeling improvement for
PPI networks over the currently well accepted scale-free
model. We believe that further major improvements will
only be possible when larger and less noisy PPI data sets
become available.

1.2 Graphlet Analysis

We analyzed graphlet frequencies of four PPI networks:
(1) the high-confidence yeast S. cerevisiae PPI network
involving 2455 interactions amongst 988 proteins (von
Mering et al., 2002); (2) the yeast S. cerevisiae PPI net-
work involving 11000 interactions amongst 2401 proteins
(von Mering et al., 2002) (these are the top 11000 interac-
tions in von Mering et al. classification (von Mering et al.,
2002)); (3) the high-confidence fruitfly D. melanogaster
PPI network involving 4637 interactions amongst 4602
proteins (Giot et al., 2003); (4) and the entire fruitfly D.
melanogaster PPI network as published in (Giot et al.,
2003) involving 20007 interactions amongst 6985 pro-
teins which includes low confidence interactions. Since
we are interested in modeling entire PPI networks of var-
ious organisms, analyzing only a subset of a PPI network
obtained by a single experimental technique or by a sin-
gle lab is inappropriate because of an experimental bias
that a single high-throughput experimental technique in-
evitably carries. Thus, the yeast PPI data set compiled by
von Mering et al. (von Mering et al., 2002) containing
PPI interactions detected by various techniques and veri-
fied by various labs is best suited for PPI network model-
ing studies. Note that the two yeast PPI networks that we
analyzed contain only about ��� and ����� of the currently
publicly available yeast PPI interactions respectively, con-
tain interactions of highest confidence levels only, and
are obtained by a variety of different experimental tech-
niques and verified by various labs. Thus, we believe that
these PPI data sets represent the best currently available
PPI networks to try to model. Consequently, we were
not surprised to obtain the best network modeling results
for these two networks. We believe that the fruitfly PPI
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networks, which are obtained by a single lab and a sin-
gle experimental technique (Giot et al., 2003), are much
more noisy than the two yeast PPI networks. Therefore,
the noise present in the larger fruitfly PPI network largely
influences its topology and makes it correspond to a scale-
free model.

All graphlet counts were obtained by the exhaustive
graphlet search algorithm going through node adjacency
lists rather than the adjacency matrix for increased effi-
ciency. LEDA library for combinatorial and geometric
computing was used in its implementation (Mehlhorn &
Naher, 1999). In graphlet frequency figures in the pa-
per and in the supplementary graphlet frequency figures,
graphlet numbers on the abscissae are ordered as in Fig-
ure 1 in the paper, so that the node and edge numbers of
the graphlets they represent are monotonically increasing;
all zero graphlet frequencies are approximated by ��� � for
plotting them on log-scale. The same replacement of 0
graphlet counts by 0.1 was done for calculating the dis-
tances between networks (for taking logarithm in the dis-
tance formula described in the paper).

To evaluate how well the PPI networks fit different net-
work models with respect to their graphlet frequencies,
we compared frequencies of the 29 3-5-node graphlets in
PPI networks against their frequencies in different types
of random networks. For each of the PPI networks we
constructed five different random graphs belonging to
each of the following four random graph models: (1)
Erdös-Rényi �$��� � random graphs having the same num-
ber of nodes and edges as the corresponding PPI networks
(denoted by ER); (2) Erdös-Rényi � ��� � random graphs
having the same number of nodes, edges, and the de-
gree distribution as the corresponding PPI networks (de-
noted by ER-DD); (3) scale-free random graphs having
the same number of nodes and the number of edges within
� � of those of the corresponding PPI networks (denoted
by SF); (4) 2-, 3-, and 4-dimensional geometric random
graphs with the number of nodes and the number of edges
within � � of those of the corresponding PPI networks
(denoted by GEO-2D, GEO-3D, and GEO-4D, respec-
tively). Note that it is enough to compare graphlet fre-
quencies of the PPI networks against a very small number
of random graphs of each of these types because graphs
belonging to each network model have almost identical
graphlet frequency distribution (this can be experimen-
tally observed in Supplementary Figures 2 - 3 and Sup-

plementary Table 3 and also theoretically proved). In ad-
dition, searching for graphlets in large networks exhaus-
tively is very computing intensive; for example, on Asus
A7M-266D (AthlonMP1900+) and Dell PowerEdge 2650
(P4Xeon-2.80GHz) machines, it took up to one week to
exhaustively find all graphlets in SF random networks cor-
responding to the high confidence fruitfly PPI network,
while it took about two months to do this in an SF ran-
dom network corresponding to the entire currently pub-
licly available fruitfly PPI network. A heuristic sampling
algorithm for estimating the number of subgraphs of a net-
work has recently been proposed (Kashtan et al., 2004).
However, to evaluate how well the algorithm estimates the
number of subgraphs in a specific network, results of the
exhaustive search algorithms are still necessary (Kashtan
et al., 2004). This is why we chose to analyze the results
of exhaustive graphlet searches in this study and why it is
computationally infeasible to analyze a larger number of
large random networks.

1.2.1 Construction of Model Networks

We tested graphlet frequencies of five different � ��� �
graphs for 
�������� nodes and � � � ���	� edges with
those of five different �$��� � graphs with the same 
 and
� � �

� �� � and obtained identical frequency distributions.
Thus, we used the �$��� � model in our analysis. We used
the random graph generation function from LEDA library
to construct ER graphs of �$��� � type corresponding to PPI
networks. The ER-DD random graphs were constructed
by generating 
 nodes, where 
 is equal to the number of
nodes in a PPI network, assigning the degree sequence
of a PPI network to these generated nodes, sorting the
nodes by degree in decreasing order, and generating edges
from the sorted nodes towards randomly selected nodes
while preserving the assigned degree distribution. Since
this process yields some impossible edge assignments, we
repeated this process several times until it yielded the de-
sired graph; it took between 7 and 15 experiments to gen-
erate each of the desired ER-DD graphs.

Scale-free random graphs � ��
���  were generated in
the following way. Let � ��� ��

� ��� , and let an integer � be
such that ����������� � . We start the graph construc-
tion with an independent set of size � . We add a node to
this graph and connect it with the � nodes of the initial
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independent set. We add subsequent nodes and connect
them with either � or � � � other nodes in the graph with
probabilities � � �  � and �$ � respectively; attachment
is preferential (a new node is more likely to be attached
to a high-degree than to a low-degree node) and directly
proportional to the degree of the node that a new node is
being attached to.

We constructed 2-, 3-, and 4-dimensional geometric
random graphs with

� � (Euclidean) norm corresponding
to each of the above mentioned PPI networks. The pa-
rameters used for their construction are presented in Table
1.

1.2.2 Graphlet Frequency Results

We first established that graphlet frequencies of the two
yeast PPI networks are highly correlated (see Supplemen-
tary Figure 1 A and B). To quantify the correlation be-
tween the graphlet frequencies for these two and other
networks, we used the following simple method (also de-
scribed in the paper). We first normalized graphlet fre-
quencies of each graph in the following way: let ����� �  
be the number of graphlets of type � ( ����� ����� � � � � �
	 )
of graph � ; let the total number of graphlets of � be
denoted by � � �  �� ���

��� � � � � �  ; we computed nor-

malized values of frequencies, ��� � �  �  ����� ����� ��� �� ��� �  .Note that we use
�����

because we are interested in frac-
tional (or percentage) differences between graphlet fre-
quencies, and we change its sign to make its value pos-
itive and plotting them more intuitive. Then we mea-
sured differences between normalized graphlet frequen-
cies of graphs � and � using the distance function� � � ���  � � �!�

�"� �$# � � � �  %� � ���  # ; the smaller the value
of the distance function

� � � �!�  is, the more correlated
the graphlet frequencies of graphs � and � are. The plots
of normalized graphlet frequencies for the two yeast PPI
networks are presented in Supplementary Figure 1 B; the
distance between these two PPI networks is � � � � � . Note
that the distance between the two fruitfly PPI networks is
about three times as high, &'& � � � , indicating presence of
noise in the larger network, as expected; this can also be
seen in Supplementary Figure 1 C and D, which shows
non-normalized and normalized graphlet frequencies in
the two fruitfly PPI networks, respectively.

Non-normalized plots of graphlet frequencies for yeast
PPI networks and their corresponding ER, ER-DD, and

SF random networks are presented in Supplementary Fig-
ure 2. Clearly, these plots show that graphlet frequencies
of the two yeast PPI networks are far from the graphlet
frequencies of the corresponding ER, ER-DD, and SF ran-
dom networks. This can also be seen from Supplementary
Table 3, which shows distances between PPI networks
and their corresponding random networks computed by
the formula given above. In contrast, the graphlet fre-
quencies of yeast PPI networks and their corresponding
2-dimensional geometric random graphs are very close,
as presented in Supplementary Figure 3 A and B, and
in Supplementary Table 3. For example, distances be-
tween graphlet frequencies of the high confidence yeast
PPI network and five corresponding SF random networks
are between 125.46 and 142.91, while the distances be-
tween this PPI network and five corresponding GEO-2D
graphs are about 3.5 times smaller, i.e., between 35.46 and
38.96. The correlation is even stronger between yeast PPI
networks and their corresponding 3- and 4- dimensional
geometric random graphs, as presented in Supplementary
Figure 3 C and D and Supplementary Table 3. Further-
more, the correlation between the yeast high confidence
PPI network and 3-dimensional geometric random graphs
with the same number of nodes, but about three times as
many edges as the high confidence PPI network is particu-
larly striking (Supplementary Figure 3 E and Supplemen-
tary Table 3) and so is the correlation between this PPI
network and GEO-3D random graphs with the same num-
ber of nodes but about 6 times as many edges as the PPI
network (Supplementary Figure 3 F and Supplementary
Table 3); the distance between the PPI and these random
graphs is even lower than the distance between the two
yeast PPI networks that we analyzed. Note that we con-
structed the GEO-3D random graphs which are 6 times
denser than the yeast high-confidence PPI network (in
terms of the number of edges) in order to obtain similar
maximum degrees of the PPI and these model networks
(more explanation is given in the paper). We expect that
once the complete PPI network for yeast becomes avail-
able, it will be much denser than the one we are work-
ing with today and it will likely have properties of 3- or
4-dimensional geometric random graphs. This hypothesis
seems plausible since it is based on examining local struc-
tural properties of PPI networks (more details are given in
the paper). Also, note that ER, ER-DD, and SF random
networks have graphlet frequency pattern which is com-
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pletely different from the graphlet frequency pattern of
PPI and GEO random networks. For example, in ER net-
work model, the probability of an edge existing between
any two pair of nodes is the same, and thus, the likeli-
hood of edges appearing “close together” and forming a
dense graphlet in an ER network is very low; this is why
the number of dense graphlets in these networks is orders
of magnitude smaller than the number of sparse graphlets
with the same number of nodes (see Supplementary Fig-
ure 2). Therefore, increasing the density of ER, ER-DD
and SF random networks corresponding to the PPI net-
works would not result in networks with graphlet fre-
quency pattern similar to the corresponding PPI networks
and this is why we do not examine such model networks.

The results of the graphlet frequency analysis of the
fruitfly PPI networks are presented in Supplementary Fig-
ures 4 and 5, and in Supplementary Table 3. Even
though the fruitfly high confidence PPI network fits the
4-dimensional geometric random graph model about 1.3
times better then the next closest model, which is the ER
model, and about 3.2 times better than the SF model with
respect to graphlet frequencies (Supplementary Table 3),
the difference in fits is not as striking as for the two yeast
PPI networks. One explanation for this may be that, since
this is the first publicly available fruitfly PPI data set ob-
tained from cDNAs representing each predicted transcript
of the fruitfly genome (Giot et al., 2003), what we are
observing is a random sample of the full fruitfly PPI net-
work; by “full” PPI network we mean the PPI network
containing all proteins and all PPIs from all cell types
in an organism. An alternative explanation may be that,
since D. melanogaster is a multicellular organism while
yeast S. cerevisiae consists of a single cell, a different
model may be required for the complete fruitfly PPI net-
work, and yet different models may be needed for PPI
networks of different fruitfly cells that belong to different
tissues. If this is the case, it is reasonable to expect to
observe a common PPI network model for all multicellu-
lar organisms. Also, the larger fruitfly PPI network, with
about ��� � of its edges corresponding to lower confidence
interactions (Giot et al., 2003), is closest to the scale-free
model (Supplementary Figure 4 F and Supplementary Ta-
ble 3). This is one of the reasons why we believe that the
scale-free properties that have been observed in PPI net-
works are due to the presence of large amount of noise in
these networks; we believe that the true structure of PPI

networks is closer to the geometric graph model than to
the scale-free model.

The graphlet frequency parameter is robust to random
perturbations (Supplementary Table 2 and Supplementary
Figures 6, 7, and 8). We perturbed the high-confidence
yeast PPI network by randomly adding, deleting, and
rewiring 10, 20, and 30 percent of its edges and com-
puted distances between the perturbed networks and the
PPI network by using the distance function defined above
(and in the paper). We constructed five perturbed net-
works in each of these nine categories (45 perturbed net-
works in total). We found the exceptional robustness of
the graphlet frequency parameter to random additions of
edges very encouraging, especially in light of the cur-
rently available PPI networks containing many false neg-
atives (missing edges). In particular, additions of �����
of edges resulted in networks which were about 21 times
closer to the PPI network than the corresponding SF ran-
dom networks (the distances between the PPI and the
perturbed PPI networks with additions of �	� � of edges
were between 5.78 and 7.14, while the distance between
the PPI and the corresponding SF random networks were
between 125.46 and 142.91, as shown in Supplemen-
tary Tables 2 and 3). We also found that graphlet fre-
quencies were fairly robust to random edge deletions and
rewirings (deletions and rewirings of ����� of edges re-
sulted in networks which were about 5.8 and 5.4 times
closer to the PPI network than the corresponding SF ran-
dom networks, respectively), which further increases our
confidence in PPI networks having geometric properties
despite the presence of false positives in the data.

1.3 Standard Global Network Parameters

1.3.1 Definitions

The most commonly studied statistical properties of large
networks measuring their global structure are the de-
gree distribution, network diameter, and clustering coeffi-
cients, defined as follows (also defined in the paper). The
degree of a node is the number of edges (connections)
incident to the node. The degree distribution, � � �  , de-
scribes the probability that a node has degree � . This
network property has been used to distinguish between
different network models; in particular, Erdös-Rényi ran-
dom networks have a Poisson degree distribution, while
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scale-free networks have a power-law degree distribution
� ���  �� ���
� , where � is a positive number. The small-
est number of links that have to be traversed to get from
node � to node � in a network is called the distance be-
tween nodes � and � and a path through the network that
achieves this distance is called a shortest path between� and � . The average of shortest path lengths over all
pairs of nodes in a network is called the network diam-
eter. (Note that in classical graph theory, the diameter
is the maximum of shortest path lengths over all pairs of
nodes in the network (West, 1996); we do not use this def-
inition.) This network property also distinguishes differ-
ent network models: for example, the diameter of Erdös-
Rényi random networks on 
 nodes is proportional to����� 
 , the network property often referred to as the small-
world property; the diameters of scale-free random net-
works with degree exponent �
	 ��	 � , which have been
observed for most real-world networks, are ultra-small
(Chung & Lu, 2002; Cohen & Havlin, 2003), i.e., pro-
portional to

���������� 
 . The clustering coefficient of node� in a network is defined as ��� � ������ � � � � � � � , where � is
linked to 
 � neighboring nodes and � � is the number of
edges amongst the 
 � neighbors of � . The average of � �
over all nodes � of a network is the clustering coefficient
� of the whole network and it measures the tendency of
the network to form highly interconnected regions called
clusters. The average clustering coefficient of all nodes
of degree � in a network, � ���  , has been shown to fol-
low � ���  �� ���

�
for many real-world networks indicat-

ing a network’s hierarchical structure (Ravasz & Barabási,
2003; Ravasz et al., 2002). Many real world networks
have been shown to have high clustering coefficients and
to exhibit small-world and scale-free properties.

1.3.2 Results on PPI and Model Networks

We obtained the degree distributions, diameters, and clus-
tering coefficients for the above four PPI networks, as
well as for the recently published C. elegans PPI network
(Li et al., 2004) involving � �'& � interactions between � � � �
proteins. We did not obtain graphlet frequencies for this
data set because it contains a large number of highly con-
nected nodes which are in close proximity of each other.
This makes it infeasible to find graphlets in this PPI net-
work using the standard, brute force exhaustive search
technique, which we have used to find graphlets in the

yeast and fruitfly PPI networks, as well as in all of their
corresponding model networks.

We confirmed that degree distributions of all of these
PPI networks approximately follow power law. In Sup-
plementary Figure 9 we present power law functions fitted
to the degree distributions of these five PPI networks. The
degree distributions of the fruitfly PPI networks (Supple-
mentary Figure 9 C and D) deviate the most from power-
law functions. Note that the exponents � of the fitted
power law functions � � �  ��� ��� are between � � � and
� � � for most of these PPI networks (the only exception
is the high confidence fruitfly PPI network, but the ap-
proximation of its degree distribution by � � ��� � is very
poor). This deviates from what was observed in many
other real-world networks, including metabolic pathway
networks of 43 different organisms (Jeong et al., 2000;
Jeong et al., 2001), where these exponents were between
� and � . An illustration of the degree distributions of the
PPI networks against the degree distributions of the corre-
sponding model networks is presented in Supplementary
Figure 10.

When calculating a network diameter, we used the stan-
dard method of considering only the lengths of shortest
paths between reachable pairs of nodes, i.e., pairs of nodes
which are in the same connected component of the net-
work. Diameters of the PPI networks and the correspond-
ing random networks are presented in Supplementary Ta-
ble 4. We observed that the diameters of yeast PPI net-
works are closest to the diameters of GEO-3D networks
which are 3 or 6 times denser than the corresponding PPI
networks, while diameters of fruitfly and worm PPI net-
works are closest to the diameters of the corresponding SF
networks (the only exception is the diameter of the larger
fruitfly PPI network which is slightly closer to the diame-
ters of ER-DD than to the diameters of SF networks; Sup-
plementary Table 4). However, once a network is dense
enough to have most of its nodes in the same connected
component, with increasing density of GEO-3D (or any
other type of) networks on the same number of nodes,
their diameters decrease (this is theoretically expected and
can also be experimentally observed in Table Supplemen-
tary 4), so it would not be hard to construct GEO-3D net-
works with the same number of nodes but more edges than
the fruitfly and the worm PPI networks have to achieve
a closer fit of the diameters of the PPI and the GEO-3D
model networks. Thus, GEO graphs do model PPI net-
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works with respect to this network parameter.
Clustering coefficients of the PPI and the correspond-

ing model networks are presented in Supplementary Table
5. Clustering coefficients of the two yeast PPI networks
are orders of magnitude larger than the clustering coeffi-
cients of the corresponding ER, ER-DD, and SF random
networks while they are in agreement with the clustering
coefficients of the corresponding GEO graphs (Supple-
mentary Table 5). This can not be said for the other three
PPI networks. In particular, the clustering coefficient of
the high-confidence fruitfly PPI network differs by an or-
der of magnitude from all model networks, while the clus-
tering coefficients of the larger fruitfly and the worm PPI
networks are closest to the clustering coefficients of the
corresponding SF random networks; we believe that this
may be due to the large amount of noise being present in
these PPI networks.

We measured the average clustering coefficients of all
nodes of degree � in a network, � ���  , for the above men-
tioned PPI and their corresponding model networks (Sup-
plementary Figures 11 – 15); zero values are replaced
with values close to zero and plotted along the abscissa in
these supplementary figures. High correlations between
� ���  of the two yeast PPI and their corresponding GEO-
3D networks (especially the corresponding GEO-3D net-
works which are about 6 times denser than the PPI net-
works, Supplementary Figures 11 F and 12 F) and the lack
of such correlation with other model networks is blind-
ingly obvious (Supplementary Figures 11 and 12). How-
ever, the values of � ���  are much lower for the other three
PPI networks and do not seem to correlate with � ���  of
any of the corresponding model networks (Supplementary
Figures 13 – 15); we find these values of � � �  of PPI net-
works to be unrealistically small for real-world networks
and believe they are an artifact of the lack of PPI data for
fruitfly and worm (false negatives). Also, we observed a
lack of scaling of � � �  � � �

�
in all of these PPI networks

(Supplementary Figures 11 – 15).
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Figure 1: Graphlet frequencies in the two yeast PPI networks (von Mering et al., 2002) and in the two
fruitfly PPI networks (Giot et al., 2003): A. Non-normalized frequencies for the two yeast PPI networks. B.
Normalized frequencies for the two yeast PPI networks. C. Non-normalized frequencies for the two fruitfly
PPI networks. D. Normalized frequencies for the two fruitfly PPI networks.
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Figure 2: Comparison of frequencies of graphlets in the S. cerevisiae PPI networks (von Mering et al., 2002)
with ER, ER-DD, and SF random graphs: A. High confidence PPI network versus the corresponding ER
random graphs. B. Top 11000 PPI network versus the corresponding ER random graphs. C. High confi-
dence PPI network versus the corresponding ER-DD random graphs. D. Top 11000 PPI network versus
the corresponding ER-DD random graphs. E. High confidence PPI network versus the corresponding SF
random graphs. F. Top 11000 PPI network versus the corresponding SF random graphs.
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Figure 3: Comparison of frequencies of graphlets in the S. cerevisiae PPI networks (von Mering et al., 2002) and
geometric random graphs: A. High confidence PPI network versus the five corresponding GEO-2D graphs. B. Top
11000 PPI network versus the five corresponding GEO-2D graphs. C. High confidence PPI network versus a 2-, 3-,
and 4-dimensional geometric random graph. D. Top 11000 PPI network versus a 2-, 3-, and 4-dimensional geometric
random graph. E. High confidence PPI network versus five GEO-3D graphs with the same number of nodes, but
approximately three times as many edges as the PPI network. F. High-confidence S. cerevisiae PPI networks (von
Mering et al., 2002) versus GEO-3D networks which are about 6 times as dense as the PPI network.
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Figure 4: Comparison of frequencies of graphlets in the D. melanogaster PPI networks (Giot et al., 2003)
with ER, ER-DD, and SF random graphs: A. High confidence fruitfly network versus the corresponding
ER random graphs. B. Entire currently available fruitfly PPI network versus the corresponding ER random
graphs. C. High confidence fruitfly PPI network versus the corresponding ER-DD random graphs. D.
Entire currently available fruitfly PPI network versus the corresponding ER-DD random graphs. E. High
confidence fruitfly PPI network versus the corresponding SF random graphs. F. Entire currently available
fruitfly PPI network versus the corresponding SF random graphs.
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Figure 5: Comparison of frequencies of graphlets in D. melanogaster PPI networks (Giot et al., 2003) with
geometric random graphs: A. High confidence fruitfly PPI network versus GEO-2D random graphs. B.
Entire currently available fruitfly PPI network versus GEO-2D random graphs. C. High confidence fruitfly
PPI network versus GEO-2D, GEO-3D, and GEO-4D random graphs. D. Entire currently available fruitfly
PPI network versus GEO-2D, GEO-3D, and GEO-4D random graphs. E. High confidence fruitfly PPI
network versus three GEO-3D random graphs and three GEO-4D random graphs. F. Entire currently
available fruitfly PPI network versus three GEO-3D random graphs and three GEO-4D random graphs.
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Figure 6: Comparison of graphlet frequencies in the high confidence yeast PPI network with networks
obtained by adding edges at random to the PPI network: A. five different networks with

�����
of edges

added. B. five different networks with � ��� of edges added. C. five different networks with � ��� of edges
added.
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Figure 7: Comparison of graphlet frequencies in the high confidence yeast PPI network with networks
obtained by deleting edges at random from the PPI network: A. five different networks with

�����
of edges

deleted. B. five different networks with � � � of edges deleted. C. five different networks with � � � of edges
deleted.
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Figure 8: Comparison of graphlet frequencies in the high confidence yeast PPI network with networks
obtained by rewiring edges at random in the PPI network: A. five different networks with

� � �
of edges

rewired. B. five different networks with � ��� of edges rewired. C. five different networks with � ��� of edges
rewired.
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Figure 9: Degree distributions for PPI networks. The abscissa for each panel is node degree � and the
ordinate is the probability distribution of degrees, i.e., the fraction of nodes having degree � . A. High
confidence S. cerevisiae PPI network (von Mering et al., 2002). B. S. cerevisiae “top 11000” PPI network
(von Mering et al., 2002). C. D. melanogaster high confidence PPI network(Giot et al., 2003) . D. Entire
currently available D. melanogaster PPI network (Giot et al., 2003). E. C. elegans PPI network (Li et al.,
2004).
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Figure 10: Degree distributions for PPI networks versus the degree distributions of the corresponding ran-
dom graphs. Degree distribution of only one random graph belonging to each of the network models is
drawn in each panel, since this is just an illustration. The abscissa for each panel is node degree � and
the ordinate is the probability distribution of degrees, i.e., the fraction of nodes having degree � . A. High
confidence S. cerevisiae PPI network (von Mering et al., 2002). B. S. cerevisiae “top 11000” PPI network
(von Mering et al., 2002). C. D. melanogaster high confidence PPI network(Giot et al., 2003) . D. Entire
currently available D. melanogaster PPI network (Giot et al., 2003). E. C. elegans PPI network (Li et al.,
2004).
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Figure 11: Comparison of degree
�

node average clustering coefficients ��� ��� as a function of degree
�

in
high confidence S. cerevisiae PPI network (von Mering et al., 2002) and corresponding random graphs: A.
PPI network versus five corresponding ER networks. B. PPI network versus five corresponding ER-DD
networks. C. PPI network versus five corresponding SF networks. D. PPI network versus five correspond-
ing GEO-3D networks. E. PPI network versus five corresponding GEO-3D networks which are 3 times
denser than the PPI network. F. PPI network versus five corresponding GEO-3D networks which are 6
times denser than the PPI network.
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Figure 12: Comparison of degree
�

node average clustering coefficients ��� ��� as a function of degree
�

in
the “top 11000” S. cerevisiae PPI network (von Mering et al., 2002) and corresponding random graphs: A.
PPI network versus five corresponding ER networks. B. PPI network versus five corresponding ER-DD
networks. C. PPI network versus five corresponding SF networks. D. PPI network versus five correspond-
ing GEO-3D networks. E. PPI network versus five corresponding GEO-3D networks which are 3 times
denser than the PPI network. F. PPI network versus five corresponding GEO-3D networks which are 6
times denser than the PPI network.
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Figure 13: Comparison of degree
�

node average clustering coefficients ��� ��� as a function of degree
�

in
the high-confidence D. melanogaster PPI network (Giot et al., 2003) and corresponding random graphs:
A. PPI network versus five corresponding ER networks. B. PPI network versus five corresponding ER-DD
networks. C. PPI network versus five corresponding SF networks. D. PPI network versus five correspond-
ing GEO-3D networks. E. PPI network versus five corresponding GEO-3D networks which are 3 times
denser than the PPI network. F. PPI network versus five corresponding GEO-3D networks which are 6
times denser than the PPI network.
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Figure 14: Comparison of degree
�

node average clustering coefficients ��� ��� as a function of degree
�

in
the entire currently available D. melanogaster PPI network (Giot et al., 2003) and corresponding random
graphs: A. PPI network versus five corresponding ER networks. B. PPI network versus five corresponding
ER-DD networks. C. PPI network versus five corresponding SF networks. D. PPI network versus five
corresponding GEO-3D networks. E. PPI network versus five corresponding GEO-3D networks which are
3 times denser than the PPI network. F. PPI network versus five corresponding GEO-3D networks which
are 6 times denser than the PPI network.
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Figure 15: Comparison of degree
�

node average clustering coefficients ��� ��� as a function of degree
�

in
the C. elegans PPI network (Li et al., 2004) and corresponding random graphs: A. PPI network versus five
corresponding ER networks. B. PPI network versus five corresponding ER-DD networks. C. PPI network
versus five corresponding SF networks. D. PPI network versus five corresponding GEO-3D networks. E.
PPI network versus five corresponding GEO-3D networks which are 3 times denser than the PPI network. F.
PPI network versus five corresponding GEO-3D networks which are 6 times denser than the PPI network.
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GEO-2D GEO-3D GEO-4D GEO-2D 3 denser GEO-3D 3 denser GEO-3D 6 denser

Yeast H.C. 95 x 95, r=4 50 x 50 x 50, r=5.55 30 x 30 x 30 x 30, r=5.74 95 x 95, r=7 50 x 50 x 50, r=8 50 x 50 x 50, r=10.3
Yeast 11K 150 x 150, r=5.3 50 x 50 x 50, r=5 30 x 30 x 30 x 30, r=5.25 150 x 150, r=9.22 50 x 50 x 50, r=7.4 50 x 50 x 50, r=9.5
Fly H.C. 250 x 250, r=3 84 x 84 x 84, r=4 30 x 30 x 30 x 30, r=3 250 x 250, r=5 43 x 43 x 43, r=3 45 x 45 x 45, r=4
Fly Larger 310 x 310, r=5 67 x 67 x 67, r=4 35 x 35 x 35 x 35, r=4.13 310 x 310, r=9 51 x 51 x 51, r=4.4 58 x 58 x 58, r=6.4
Worm 160 x 160, r=3 50 x 50 x 50, r=3.3 30 x 30 x 30 x 30, r=3.85 160 x 160, r=5 40 x 40 x 40, r=3.8 40 x 40 x 40, r=4.9

Table 1: Parameters used for construction of geometric random networks corresponding to yeast, fruitfly, and worm
PPI networks. Rows represent the PPI networks and columns represent the corresponding geometric random networks.
The values in the boxes represent sizes of 2-, 3-, and 4-dimensional “squares” and radii used to construct these
model networks. “3 denser” and six “6 denser” denote geometric random graphs with the same number of nodes, but
approximately three and six times as many edges as the corresponding PPI network, respectively.

Add Delete Rewire

10 � graph 1 2.01 10.02 10.28
10 � graph 2 2.19 10.72 13.76
10 � graph 3 2.28 9.03 12.53
10 � graph 4 2.36 11.88 11.47
10 � graph 5 2.61 10.05 11.26
20 � graph 1 3.80 17.02 21.91
20 � graph 2 3.77 16.02 18.81
20 � graph 3 3.74 17.99 19.85
20 � graph 4 5.22 16.02 21.45
20 � graph 5 4.35 19.31 21.81
30 � graph 1 7.14 24.84 24.35
30 � graph 2 5.92 20.91 25.77
30 � graph 3 5.96 19.72 22.89
30 � graph 4 5.78 25.18 26.60
30 � graph 5 7.03 24.20 23.88

Table 2: Graphlet frequency distances between high-confidence yeast PPI network and the perturbed networks with
10, 20, and 30 percent of edges added, deleted, or rewired at random. For example, 2.013974 in the top left-most
field indicates that the first perturbed network with � � � of edges added at random to the yeast high-confidence PPI
network is at distance 2.013974 from the yeast high-confidence PPI network.
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Yeast High Conf. Yeast top 11000 Fruitfly High Conf. Fruitfly Entire

ER 1 171.03 213.49 118.70 109.82
ER 2 179.22 207.73 98.23 112.95
ER 3 171.10 208.92 124.54 111.69
ER 4 171.59 217.69 98.47 100.81
ER 5 169.16 213.81 91.24 100.81
ER-DD 1 164.33 157.61 107.40 98.36
ER-DD 2 164.23 159.11 139.98
ER-DD 3 162.80 158.04 112.84
ER-DD 4 162.18 161.41 110.19
ER-DD 5 154.19 158.00 133.96
SF 1 142.91 125.50 229.71 50.55
SF 2 142.56 297.43
SF 3 130.97 244.78
SF 4 125.97 252.43
SF 5 125.46 270.79
GEO-2D 1 35.46 51.38 89.89 156.01
GEO-2D 2 38.96 51.21 90.87 156.79
GEO-2D 3 36.78 50.55 89.04 156.15
GEO-2D 4 37.54 51.15 92.28 156.17
GEO-2D 5 37.01 51.09 93.67 156.96
GEO-3D 1 27.25 40.79 90.39 142.89
GEO-3D 2 33.47 41.07 92.64 142.66
GEO-3D 3 34.26 41.52 87.95 142.71
GEO-3D 4 31.70 41.29 86.76
GEO-3D 5 31.39 41.29 90.06
GEO-4D 1 32.33 38.78 80.76 134.65
GEO-4D 2 30.96 40.18 82.51 134.44
GEO-4D 3 30.73 39.16 82.17 135.15
GEO-4D 4 31.91 39.02 75.95
GEO-4D 5 31.42 38.64 82.78
GEO-2D 3 denser 1 30.55
GEO-3D 3 denser 1 18.38
GEO-3D 3 denser 2 19.63
GEO-3D 3 denser 3 20.16
GEO-3D 3 denser 4 20.11
GEO-3D 3 denser 5 19.46
GEO-3D 6 denser 1 20.50
GEO-3D 6 denser 2 20.13
GEO-3D 6 denser 3 19.86
GEO-3D 6 denser 4 20.10
GEO-3D 6 denser 5 20.56

Table 3: Graphlet frequency distances between PPI networks and the corresponding random networks. Rows represent network
types (for example, PPI, ER, ER-DD etc.) and columns represent the corresponding data set. Some values are missing due
to the lack of computing power needed for exhaustive graphlet searches in large networks (the values of some ER-DD and SF
model networks corresponding to the larger fruitfly and yeast PPI networks), or because they are not relevant for our analysis (the
remaining missing values). The last 11 rows corresponds to 2- and 3-dimensional geometric random graphs with the same number
of nodes, but approximately three (“3 denser”) and six (“6 denser”) times as many edges as the corresponding PPI graph.
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Yeast High Conf. Yeast top 11000 Fruitfly High Conf. Fruitfly Entire Worm Entire

PPI network 5.19 4.93 9.43 4.47 4.96

ER 1 4.48 3.75 10.94 5.27 6.55
ER 2 4.45 3.75 11.23 5.26 6.56
ER 3 4.47 3.75 11.19 5.26 6.57
ER 4 4.47 3.75 11.09 5.26 6.53
ER 5 4.46 3.75 10.88 5.26 6.56
ER-DD 1 3.65 3.33 12.92 4.23 4.66
ER-DD 2 3.66 3.32 13.26 4.23 4.67
ER-DD 3 3.65 3.33 12.50 4.23 4.65
ER-DD 4 3.65 3.33 13.23 4.23 4.65
ER-DD 5 3.65 3.33 12.82 4.22 4.67
SF 1 3.75 3.32 9.33 4.16 4.84
SF 2 3.62 3.34 7.77 4.12 4.85
SF 3 3.68 3.31 8.35 4.20 4.75
SF 4 3.70 3.30 8.05 4.19 4.81
SF 5 3.65 3.32 8.86 4.12 4.78
GEO-2D 1 26.74 20.36 3.61 49.95 12.71
GEO-2D 2 23.55 20.15 3.51 51.30 18.53
GEO-2D 3 23.32 20.37 3.46 51.26 11.43
GEO-2D 4 22.56 19.95 4.01 51.68 17.95
GEO-2D 5 24.21 19.94 3.81 52.26 14.53
GEO-3D 1 11.89 10.05 6.12 19.45 27.52
GEO-3D 2 11.75 10.21 5.96 19.37 28.87
GEO-3D 3 10.98 10.16 4.83 19.34 30.85
GEO-3D 4 11.55 10.04 8.97 19.06 25.82
GEO-3D 5 12.42 10.21 5.59 18.93 32.47
GEO-4D 1 8.29 7.37 21.74 12.49 16.39
GEO-4D 2 8.03 7.41 17.32 12.39 16.16
GEO-4D 3 8.33 7.35 22.34 12.45 16.54
GEO-4D 4 8.26 7.45 9.68 12.38 16.26
GEO-4D 5 8.59 7.45 9.78 12.65 15.66

GEO-2D 3 denser 1 9.21 9.91 43.17 21.73 22.05
GEO-3D 3 denser 1 5.84 5.78 16.37 10.41 10.44
GEO-3D 3 denser 2 5.95 5.84 16.49 10.33 10.44
GEO-3D 3 denser 3 5.92 5.83 15.99 10.34 10.33
GEO-3D 3 denser 4 5.96 5.82 16.30 10.39 10.46
GEO-3D 3 denser 5 5.90 5.88 16.63 10.29 10.37
GEO-3D 6 denser 1 4.24 4.44 10.43 7.54 7.16
GEO-3D 6 denser 2 4.21 4.41 10.73 7.53 7.15
GEO-3D 6 denser 3 4.29 4.41 10.57 7.57 7.26
GEO-3D 6 denser 4 4.25 4.41 10.67 7.54 7.25
GEO-3D 6 denser 5 4.26 4.39 10.62 7.57 7.29

Table 4: Diameters of PPI networks and their corresponding ER, ER-DD, SF, GEO-2D, GEO-3D, and GEO-4D
random networks. Only distances between nodes in the same connected component are reported. Rows represent
network types (for example, PPI, ER, ER-DD etc.) and columns represent the corresponding data set. “3 denser” and
“6 denser” have the same meaning as in Supplementary Table 3.
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Yeast High Conf. Yeast top 11000 Fruitfly High Conf. Fruitfly Entire Worm Entire

PPI network 0.343733 0.304902 0.017923 0.008434 0.069764

ER 1 0.006276 0.003471 0.000000 0.000820 0.000369
ER 2 0.003828 0.003694 0.000072 0.000632 0.000990
ER 3 0.003721 0.003283 0.000000 0.001034 0.000191
ER 4 0.004622 0.003177 0.000311 0.000972 0.000477
ER 5 0.004372 0.003795 0.000406 0.000807 0.001447
ER-DD 1 0.021663 0.029159 0.000487 0.003655 0.003763
ER-DD 2 0.016042 0.028207 0.000652 0.003210 0.005372
ER-DD 3 0.020910 0.026906 0.000109 0.004831 0.003904
ER-DD 4 0.021649 0.027990 0.000355 0.004874 0.004419
ER-DD 5 0.022328 0.029896 0.000000 0.003544 0.004275
SF 1 0.032902 0.020945 0.000000 0.007449 0.012701
SF 2 0.035412 0.021071 0.000000 0.008452 0.011027
SF 3 0.028359 0.024110 0.000000 0.007440 0.013002
SF 4 0.026749 0.021944 0.000000 0.006447 0.012038
SF 5 0.037393 0.019636 0.000000 0.007994 0.018236
GEO-2D 1 0.561738 0.579556 0.323860 0.562504 0.469442
GEO-2D 2 0.551851 0.578821 0.336352 0.560252 0.477439
GEO-2D 3 0.542434 0.585639 0.329381 0.552721 0.474385
GEO-2D 4 0.534709 0.581867 0.337864 0.555136 0.477508
GEO-2D 5 0.529600 0.577737 0.332533 0.565060 0.474463
GEO-3D 1 0.470745 0.498465 0.284394 0.469083 0.406792
GEO-3D 2 0.482708 0.497322 0.280968 0.470272 0.416314
GEO-3D 3 0.489211 0.500503 0.300616 0.473269 0.414913
GEO-3D 4 0.487208 0.496027 0.258490 0.472467 0.416880
GEO-3D 5 0.456253 0.496865 0.266211 0.470765 0.408034
GEO-4D 1 0.394535 0.430832 0.233926 0.395276 0.352444
GEO-4D 2 0.389667 0.428035 0.243421 0.400708 0.345016
GEO-4D 3 0.406101 0.428948 0.230490 0.395749 0.360883
GEO-4D 4 0.414717 0.442019 0.227551 0.393788 0.333224
GEO-4D 5 0.406548 0.433822 0.217219 0.399770 0.354642

GEO-2D 3 denser 1 0.608068 0.602326 0.563866 0.589434 0.584729
GEO-3D 3 denser 1 0.523472 0.518105 0.470257 0.498982 0.500098
GEO-3D 3 denser 2 0.520203 0.519829 0.472369 0.498337 0.499070
GEO-3D 3 denser 3 0.522614 0.517125 0.473605 0.496640 0.502030
GEO-3D 3 denser 4 0.520670 0.516553 0.478754 0.504280 0.493827
GEO-3D 3 denser 5 0.517115 0.520450 0.479796 0.497585 0.500288
GEO-3D 6 denser 1 0.538432 0.535339 0.492736 0.504445 0.506230
GEO-3D 6 denser 2 0.540154 0.531674 0.496888 0.503071 0.505796
GEO-3D 6 denser 3 0.543724 0.534059 0.495386 0.505574 0.508243
GEO-3D 6 denser 4 0.537005 0.532969 0.500067 0.502805 0.506092
GEO-3D 6 denser 5 0.539893 0.534842 0.493908 0.505338 0.514109

Table 5: Clustering coefficients of PPI networks and their corresponding ER, ER-DD, SF, GEO-2D, GEO-3D, and
GEO-4D random networks. Rows represent network types (for example, PPI, ER, etc.) and columns represent the
corresponding data set.
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