Deep Object Detection

Kaustav Kundu

University of Toronto

February 9, 2016

• Object Detection Task

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

- Object Detection Task
- Object Detection Pipeline

- Object Detection Task
- Object Detection Pipeline
- Using Deep Networks
 - RCNN

- Object Detection Task
- Object Detection Pipeline
- Using Deep Networks
 - RCNN
 - Fast RCNN

- Object Detection Task
- Object Detection Pipeline
- Using Deep Networks
 - RCNN
 - Fast RCNN
 - Faster RCNN

Input Image

< 行い

Input Image

Question: Where are the cars in the image?

Input Image

Question: Where are the cars in the image?

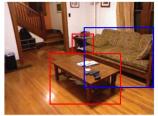
Answer:

Object Detection Approach: Recognition + Localization

Object Segmentation vs Detection

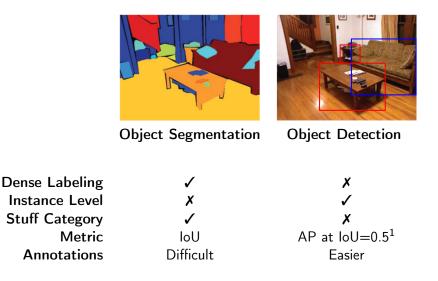
Input Image

Object Segmentation



Object Detection

Object Segmentation vs Detection



¹Modifications used sometimes, *e.g.* KITTI, MS COCO

Input Image

Input Image

• Candidate Box Selection

Input Image

Feature Extraction

- Candidate Box Selection
- Feature Extraction

Input Image

Feature Extraction

- Candidate Box Selection
- Feature Extraction
- Classification

Input Image

$$\left[\begin{array}{c} \mathbf{x} \end{array}\right] \qquad \qquad f_c\left(\mathbf{x}\right)$$

Feature Extraction

Classification

- Candidate Box Selection
- Feature Extraction
- Classification
- Post processing

	Candidate	Feature	Classification
	Box Selection	Extraction	Classification
Pre Deep Era	Exhaustive	Hand-crafted (<i>e.g</i> . HOG)	Linear
RCNN			
Fast RCNN			
Faster RCNN			

< AP

	Candidate Box Selection	Feature Extraction	Classification
Pre Deep Era	Exhaustive	Hand-crafted (<i>e.g</i> . HOG)	Linear
RCNN	Region Proposal	Deep	Linear
Fast RCNN			
Faster RCNN			

< AP

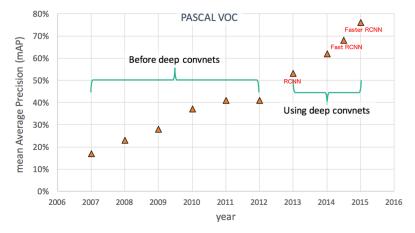
	Candidate Box Selection	Feature Extraction	Classification
Pre Deep Era	Exhaustive	Hand-crafted (<i>e.g</i> . HOG)	Linear
RCNN	Region Proposal	Deep	Linear
Fast RCNN	Region Proposal	Deep	
Faster RCNN			

< A

	Candidate Box Selection	Feature Extraction	Classification
Pre Deep Era	Exhaustive	Hand-crafted (<i>e.g</i> . HOG)	Linear
RCNN	Region Proposal	Deep	Linear
Fast RCNN	Region Proposal	Deep	
Faster RCNN	Deep	Deep	

< AP

Object Detection performance

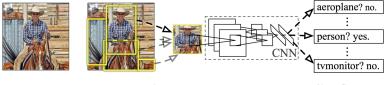


Source: Ross Girshick

February 9, 2016 8 / 33

< 17 ►

Region CNN (RCNN)



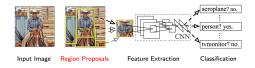
Input Image

Region Proposals

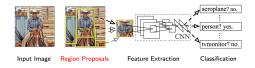
Feature Extraction

Classification

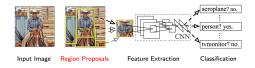
- Region Proposals: Selective Search
- Feature Network: Classification Networks
- Classifier: Linear Model



• Selective Search: Hierarchical grouping based on color, texture, size

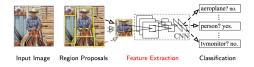


Selective Search: Hierarchical grouping based on color, texture, sizeCrop

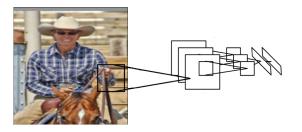


- Selective Search: Hierarchical grouping based on color, texture, size
- Crop
- Scale to a fixed size

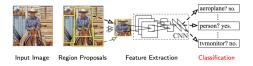
Feature Extraction



- Classification networks such as AlexNet/VGG-Net have been used
- Outputs from fc7 layer are taken as features corresponding to each proposal



11 / 33



• Linear Model with class dependent weights.

$$f_c(\mathbf{x}_{fc7}) = \mathbf{w}_c^\top \mathbf{x}_{fc7}$$

where,

 $\mathbf{x}_{fc7} = \text{fc7}$ features from the network c = object class

Bounding Box Regression

- Prediction of the 2D box, defined by its 2D location, (x, y) and dimensions, width (w) and height (h)
- For regression targets, x^*, y^*, w^*, h^* , we have

$$\frac{x^* - x}{w} = \mathbf{w}_{c,x}^{\top} \mathbf{x}_{pool5}$$
$$\frac{y^* - y}{w} = \mathbf{w}_{c,y}^{\top} \mathbf{x}_{pool5}$$
$$ln\left(\frac{w^*}{w}\right) = \mathbf{w}_{c,w}^{\top} \mathbf{x}_{pool5}$$
$$ln\left(\frac{h^*}{h}\right) = \mathbf{w}_{c,h}^{\top} \mathbf{x}_{pool5}$$

where, x_{pool5} are the features from the pool5 layer of the network.

• Deep Network: Fine-tune classification networks with log loss

Image: Image:

- Deep Network: Fine-tune classification networks with log loss
- Linear classification weights: Trained using hinge loss

- Deep Network: Fine-tune classification networks with log loss
- Linear classification weights: Trained using hinge loss
- Regression weights: Trained using ridge regression

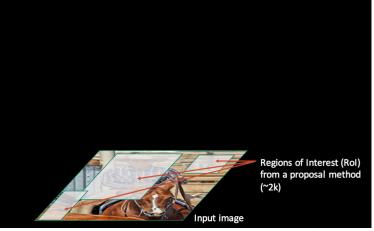
Image: Image:

3

Source: Ross Girshick

3

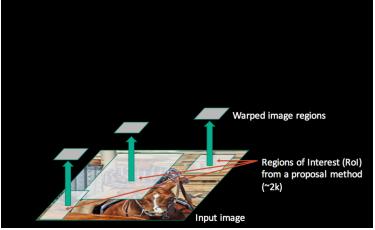
A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Source: Ross Girshick

э

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Source: Ross Girshick

Kaustav Kundu (UofT)

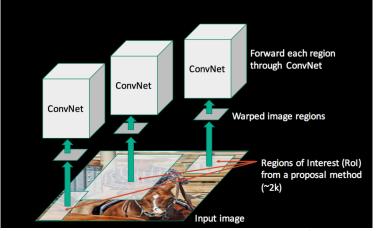
Deep Object Detection

February 9, 2016 15 / 33

- A 🖓

RCNN Review

Inference Time = PropTime + NumProps*ConvTime + NumProps*fcTime

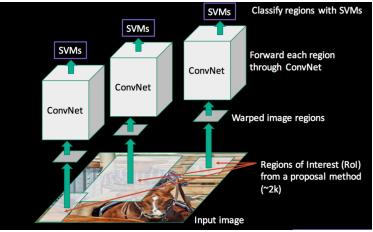


Source: Ross Girshick

< A

RCNN Review

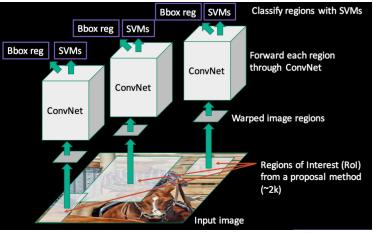
Inference Time = PropTime + NumProps*ConvTime + NumProps*fcTime



Source: Ross Girshick

Image: Image:

Inference Time = PropTime + NumProps*ConvTime + NumProps*fcTime



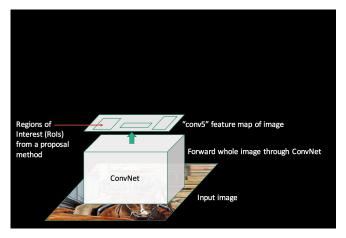
Source: Ross Girshick

Image: A matrix

- Ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (\approx 3 days) and testing (47s per image) is slow².
- Takes a lot of disk space

Source: Ross Girshick

Forward Pass:

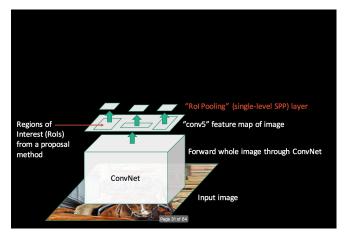


Source: Ross Girshick

3

Image: A mathematical states and a mathem

Forward Pass:

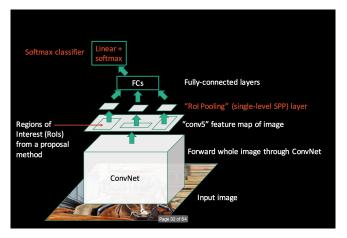


Source: Ross Girshick

э

Image: A matrix and a matrix

Forward Pass:

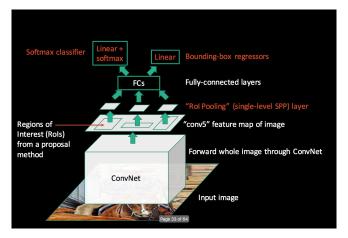


Source: Ross Girshick

э

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Forward Pass:

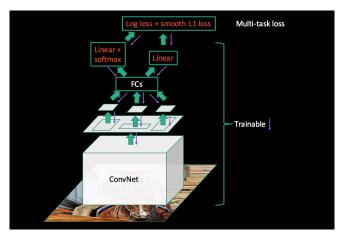


Source: Ross Girshick

э

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Backward Pass:

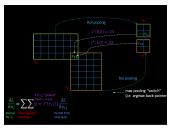


Source: Ross Girshick

æ

Fast RCNN: Training

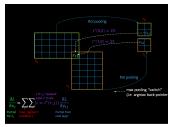
• Computing gradients for Rol pooling layer



Source: Ross Girshick

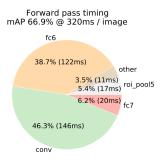
Fast RCNN: Training

• Computing gradients for Rol pooling layer



Source: Ross Girshick

- Selecting mini-batches
 - Taking boxes from different images will lead to similar training time as RCNN
 - Instead take more boxes from a limited number of images.

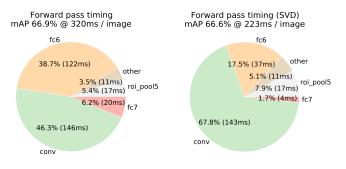


Source: Ross Girshick

- ∢ 🗗 🕨

3

Fast RCNN: More Speedup



Source: Ross Girshick

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Fast RCNN: Main Results

Approach	Time
RCNN	PropTime + NumProp*ConvTime + NumProp*fcTime
Fast RCNN	PropTime + 1*ConvTime + NumProp*fcTime

³PASCAL VOC 07 test set

Kaustav Kundu (UofT)

э

Approach	Time
RCNN	PropTime + NumProp*ConvTime + NumProp*fcTime
Fast RCNN	PropTime + 1*ConvTime + NumProp*fcTime

		RCNN	Fast RCNN	Fast RCNN
			(w/o SVD)	(with SVD)
Training	Time (in hours)	84	9.5	9.5
Training	Speedup	1x	8.8x	8.8x
Testing	Time (in s/image)	47	0.32	0.22
resting	Speedup	1x	146×	214x
Performance ³	AP	66.0 %	66.9%	66.6%

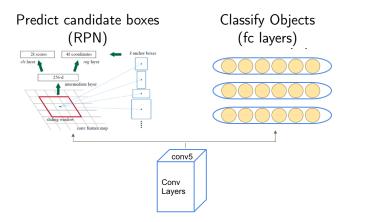
Testing time does not include time to compute region proposals.

- Selective Search: pprox 2s
- Edge Boxes: 0.25s

³PASCAL VOC 07 test set

Kaustav Kundu (UofT)

21 / 33



Source: Andy Tsai

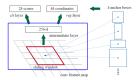
3

February 9, 2016 22 / 33

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

After conv5 layer:

• Convolution layer to produce 256 dim vector for each anchor at each location

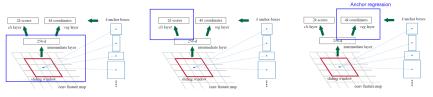


Source: Andy Tsai

э

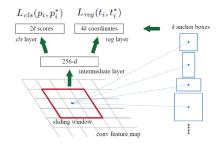
After conv5 layer:

- Convolution layer to produce 256 dim vector for each anchor at each location
- Convolution layer to produce objectness score and region bounds of anchors.



Source: Andy Tsai

э



Source: Andy Tsai

3

24 / 33

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i * L_{cls}(t_i, t_i^*)$$

February 9, 2016

イロト イポト イヨト イヨト

• Finetune RPN from pre-trained ImageNet network.

э

- Finetune RPN from pre-trained ImageNet network.
- Finetune fast RCNN from pre-trained ImageNet network using bounding boxes from step 1.

- Finetune RPN from pre-trained ImageNet network.
- Finetune fast RCNN from pre-trained ImageNet network using bounding boxes from step 1.
- Keeping common convolutional layer parameters fixed from step 2, finetune RPN (post conv5 layers)

- Finetune RPN from pre-trained ImageNet network.
- Finetune fast RCNN from pre-trained ImageNet network using bounding boxes from step 1.
- Keeping common convolutional layer parameters fixed from step 2, finetune RPN (post conv5 layers)
- Keeping common convolution layer parameters fixes from step 2, fine-tune fast RCNN fc layers.

Approach	Time
RCNN	<pre>PropTime + NumProp*ConvTime + NumProp*fcTime</pre>
Fast RCNN	PropTime + 1*ConvTime + NumProp*fcTime
Faster RCNN	1*ConvTime + NumProp*fcTime

æ

	RCNN	Fast RCNN (w/o SVD)	Fast RCNN (with SVD)	Faster RCNN (w/o SVD)
Time (in s/image)	48.5	1.82	1.72	0.20
Speedup	1x	27×	28x	243x
AP ⁴	66.0 %	66.9%	66.6%	69.9%
Num. Proposals	2500	2500	2500	300

⁴PASCAL VOC 07 test set

Kaustav Kundu (UofT)

Deep Object Detection

▶ < ≣ > < ≣ > 3 February 9, 2016

Image: A matched block of the second seco

Ξ.

27 / 33

Approach	Data	mAP (in %)	
Fast RCNN	12	65.7	
Fast RCININ	07+12	68.4	
	12	67.0	
Faster RCNN	07+12	70.4	
	COCO+07+12	75.9	
Faster RCNN	COCO+07+12 83.8		
(ResNet)	000+07+12	05.0	
PASCAL VOC 2012 Test Set			

PASCAL VOC 2012 Test Set

3

28 / 33

Other Datasets

MS COCO

Approach	mAP (in %)
Faster RCNN + ResNet	58.8
ION	52.9
FAIRCNN	51.9

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

MS COCO

Approach	mAP (in %)
Faster RCNN + ResNet	58.8
ION	52.9
FAIRCNN	51.9

• 3D Object Detection

- Datasets: KITTI, NYUv2, SUN3D
- Metric: AP at 3D IoU=0.25

Approach	mAP (in %)		
Deep Sliding Shapes	72.3		
RCNN3D	58.5		
NYUv2			

э

29 / 33

Object Detection for Autonomous Driving

Ammunah	Car	Pedestrian	Cyclist
Approach	(in %)	(in %)	(in %)
3DOP ⁵	88.64	67.47	68.94
3DOP-Monocular	88.09	66.34	67.03
Faster RCNN	81.84	65.90	63.35
KITTI			

• IoU threshold for Cars = 0.7

 ⁵Chen et al., 3D Object Proposals for Accurate Object Class Detection, 2015.
 Image: Class Detection, 2015.

 Kaustav Kundu (UofT)
 Deep Object Detection
 February 9, 2016
 30 / 33

Object Detection for Autonomous Driving

Annroach	Car	Pedestrian	Cyclist
Approach	(in %)	(in %)	(in %)
3DOP ⁵	88.64	67.47	68.94
3DOP-Monocular	88.09	66.34	67.03
Faster RCNN	81.84	65.90	63.35
KITTI			

• IoU threshold for Cars = 0.7

⁵Chen et al., 3D Object Proposals for Accurate Object Class Detection, 2015. Kaustav Kundu (UofT) Deep Object Detection February 9, 2016 30 / 33

Left Image

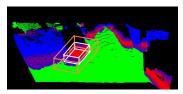
Right Image

Stereo

Image: Image:

æ

Left ImageProposal Generation



 $\blacksquare : Road plane$ Blue \rightarrow Red: Increasing height

Kaustav Kundu (UofT)

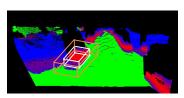
Deep Object Detection

February 9, 2016

31 / 33

Stereo

Left ImageProposal Generation



 $\blacksquare : Road plane$ Blue \rightarrow Red: Increasing height

• Object Detection: Fast RCNN Network

31 / 33

References

- Pre-Deep Era:
 - Felzenszwalb et al., Discriminatively trained deformable part models, 2010.
 - Fidler *et al.*, Bottom-up Segmentation for Top-down Detection, 2013.
- RCNN and related ideas:
 - Girshick *et al.*, Region-based Convolutional Networks for Accurate Object Detection and Semantic Segmentation, 2014.
 - Zhu et al., segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection, 2015.
- Fast RCNN and related ideas:
 - He *et al.*, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, 2014.
 - Girshick, Ross, Fast R-CNN, 2015.
- Faster RCNN and related ideas:
 - Szegedy et al., Scalable, High-Quality Object Detection, 2014.
 - Ren *et al.*, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2015.
- Bell *et al.*, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks, 2015.

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

References

- 3D Object Detection
 - Gupta et al., Learning Rich Features from RGB-D Images for Object Detection and Segmentation, 2014.
 - Gupta et al., Inferring 3D Object Pose in RGB-D Images, 2015.
 - Chen et al., 3D Object Proposals for Accurate Object Class Detection, 2015.
 - Song and Xiao, Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images, 2015.
- Joint Detection and Segmentation
 - Hariharan et al., Simultaneous Detection and Segmentation, 2014.
 - Hariharan *et al.*, Hypercolumns for Object Segmentation and Fine-grained Localization, 2014 .
 - Dai et al., Instance-aware Semantic Segmentation via Multi-task Network Cascades, 2015.
- Segmentation Aware Detection
 - Zhu et al., segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection, 2015.
 - Gidaris et al., Object detection via a multi-region & semantic segmentation-aware CNN model, 2015.

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <