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Object Detection

Input Image

Question: Where are the cars in the image?
Answer:

Object Detection Approach: Recognition + Localization
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Object Segmentation vs Detection

Input Image

Object Segmentation Object Detection

Kaustav Kundu (UofT) Deep Object Detection February 9, 2016 4 / 33



Object Segmentation vs Detection

Object Segmentation Object Detection

Dense Labeling 3 7

Instance Level 7 3

Stuff Category 3 7

Metric IoU AP at IoU=0.51

Annotations Difficult Easier

1Modifications used sometimes, e.g. KITTI, MS COCO
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Typical Object Detection Pipeline
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Object Detection performance

Source: Ross Girshick
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Region CNN (RCNN)

Input Image Region Proposals Feature Extraction Classification

Region Proposals: Selective Search
Feature Network: Classification Networks
Classifier: Linear Model
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Region Proposals

Selective Search: Hierarchical grouping based on color, texture, size

Crop
Scale to a fixed size

→ →
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Feature Extraction

Classification networks such as AlexNet/VGG-Net have been used
Outputs from fc7 layer are taken as features corresponding to each
proposal
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Classification

Linear Model with class dependent weights.

fc (xfc7) = w>c xfc7

where,

xfc7 = fc7 features from the network
c = object class
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Bounding Box Regression

Prediction of the 2D box, defined by its 2D location, (x , y) and
dimensions, width (w) and height (h)
For regression targets, x∗, y∗,w∗, h∗, we have

x∗ − x

w
= w>c,xxpool5

y∗ − y

w
= w>c,yxpool5

ln

(
w∗

w

)
= w>c,wxpool5

ln

(
h∗

h

)
= w>c,hxpool5

where, xpool5 are the features from the pool5 layer of the network.
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Training

Deep Network: Fine-tune classification networks with log loss

Linear classification weights: Trained using hinge loss
Regression weights: Trained using ridge regression
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RCNN Review

Inference Time = PropTime + NumProps*ConvTime + NumProps*fcTime

Source: Ross Girshick
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Problems with RCNN

Ad hoc training objectives
Fine tune network with softmax classifier (log loss)
Train post-hoc linear SVMs (hinge loss)
Train post-hoc bounding-box regressors (squared loss)

Training (≈3 days) and testing (47s per image) is slow2.
Takes a lot of disk space

Source: Ross Girshick

2Using VGG-Net
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Fast RCNN

Forward Pass:

Source: Ross Girshick
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Fast RCNN

Backward Pass:

Source: Ross Girshick
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Fast RCNN: Training

Computing gradients for RoI pooling layer

Source: Ross Girshick

Selecting mini-batches
Taking boxes from different images will lead to similar training
time as RCNN
Instead take more boxes from a limited number of images.
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Fast RCNN: More Speedup

Source: Ross Girshick
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Fast RCNN: Main Results

Approach Time
RCNN PropTime + NumProp*ConvTime + NumProp*fcTime

Fast RCNN PropTime + 1*ConvTime + NumProp*fcTime

RCNN Fast RCNN Fast RCNN
(w/o SVD) (with SVD)

Training
Time (in hours) 84 9.5 9.5

Speedup 1x 8.8x 8.8x

Testing
Time (in s/image) 47 0.32 0.22

Speedup 1x 146x 214x
Performance3 AP 66.0 % 66.9% 66.6%

Testing time does not include time to compute region proposals.
Selective Search: ≈ 2s
Edge Boxes: 0.25s

3PASCAL VOC 07 test set
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Faster RCNN

Predict candidate boxes Classify Objects
(RPN) (fc layers)

Source: Andy Tsai
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RPN

After conv5 layer:
Convolution layer to produce 256 dim vector for each anchor at each
location

Convolution layer to produce objectness score and region bounds of
anchors.

Source: Andy Tsai
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RPN: Training

Source: Andy Tsai

L ({pi}, {ti}) =
1

Ncls

∑
i

Lcls (pi , p
∗
i ) + λ

1
Nreg

∑
i

pi∗Lcls (ti , t
∗
i )
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Faster RCNN: Training

Finetune RPN from pre-trained ImageNet network.

Finetune fast RCNN from pre-trained ImageNet network using
bounding boxes from step 1.
Keeping common convolutional layer parameters fixed from step 2,
finetune RPN (post conv5 layers)
Keeping common convolution layer parameters fixes from step 2,
fine-tune fast RCNN fc layers.
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Faster RCNN: Time comparisons

Approach Time
RCNN PropTime + NumProp*ConvTime + NumProp*fcTime

Fast RCNN PropTime + 1*ConvTime + NumProp*fcTime
Faster RCNN 1*ConvTime + NumProp*fcTime
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Results

RCNN
Fast RCNN Fast RCNN Faster RCNN
(w/o SVD) (with SVD) (w/o SVD)

Time
48.5 1.82 1.72 0.20

(in s/image)
Speedup 1x 27x 28x 243x
AP4 66.0 % 66.9% 66.6% 69.9%

Num. Proposals 2500 2500 2500 300

4PASCAL VOC 07 test set
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Object Detection: State of the Art

Approach Data mAP (in %)

Fast RCNN
12 65.7

07+12 68.4

Faster RCNN
12 67.0

07+12 70.4
COCO+07+12 75.9

Faster RCNN
COCO+07+12 83.8

(ResNet)
PASCAL VOC 2012 Test Set
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Other Datasets

MS COCO
Approach mAP (in %)

Faster RCNN + ResNet 58.8
ION 52.9

FAIRCNN 51.9

3D Object Detection
Datasets: KITTI, NYUv2, SUN3D
Metric: AP at 3D IoU=0.25

Approach mAP (in %)
Deep Sliding Shapes 72.3

RCNN3D 58.5
NYUv2
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Object Detection for Autonomous Driving

Approach Car Pedestrian Cyclist
(in %) (in %) (in %)

3DOP5 88.64 67.47 68.94
3DOP-Monocular 88.09 66.34 67.03
Faster RCNN 81.84 65.90 63.35

KITTI
IoU threshold for Cars = 0.7

5Chen et al., 3D Object Proposals for Accurate Object Class Detection, 2015.
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3DOP

Left Image Right Image Stereo

Proposal Generation

: Occupancy : Road plane
: Free Space BlueBlue → RedRed: Increasing height

Object Detection: Fast RCNN Network
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