CSC2523 - Datasets and Metrics for Visual Recognition with Text

Kaustav Kundu

University of Toronto

Topics that Involve Images and Text

- Detecting text in images
- Generating textual descriptions of images/videos
- Visual retrieval based on complex textual queries
- Word-sense disambiguation
- Text to image/video alignment
- Learning visual models via text
- Using text to improve visual parsing
- Questions and answers

• Datasets

- 2D Images
 - UIUC Pascal Sentence
 - Flickr 8k, Flickr 30k
 - Microsoft CoCo
 - Abstract Scenes

- 2D Images
 - UIUC Pascal Sentence
 - Flickr 8k, Flickr 30k
 - Microsoft CoCo
 - Abstract Scenes
- RGB-D images
 - Chen et. al.
 - DAQUAR

- 2D Images
 - UIUC Pascal Sentence
 - Flickr 8k, Flickr 30k
 - Microsoft CoCo
 - Abstract Scenes
- RGB-D images
 - Chen et. al.
 - DAQUAR
- Videos
 - YouCook (Jason Corso, Ror)
 - TACoS

- 2D Images
 - UIUC Pascal Sentence
 - Flickr 8k, Flickr 30k
 - Microsoft CoCo
 - Abstract Scenes
- RGB-D images
 - Chen et. al.
 - DAQUAR
- Videos
 - YouCook (Jason Corso, Ror)
 - TACoS
- Metrics
 - Image measures

- 2D Images
 - UIUC Pascal Sentence
 - Flickr 8k, Flickr 30k
 - Microsoft CoCo
 - Abstract Scenes
- RGB-D images
 - Chen et. al.
 - DAQUAR
- Videos
 - YouCook (Jason Corso, Ror)
 - TACoS
- Metrics
 - Image measures
 - Text measures
 - Automatic measures
 - Human based measures

- Conceptual
 - Specific: Identifying people and locations
 - Generic: Related to scene understanding

- Conceptual
 - Specific: Identifying people and locations
 - Generic: Related to scene understanding
- Non Visual

I don't chew up the couch and pee in the kitchen mama!

Source: SBU caption dataset

Patriots quarterback Tom Brady holds the Super Bowl MVP trophy for the third time during a news conference held a day after New England beat Seattle 28-24 in Glendale, Artz Brady won a pickup truck for his standout performance and its hoping to give it to tearmise Medicoff Buffer, three sites gener interception sealed the victory. (Lemine SquirelGelly Images)

Source: CBC News Website

- Conceptual
 - Specific: Identifying people and locations
 - Generic: Related to scene understanding
- Non Visual

I don't chew up the couch and pee in the kitchen mama!

Patriots quarterback Tom Brady holds the Super Bowl MVP trophy for the third time during a news conference held a day after New England beat Seattle 28-24 in Glenalae, Ariz, Brady won a pickup truck for his standout performance and is helping to give it to tearmise Medicion Builder, vince sites gener interception sealed the victory. (Atmine Square(Gelt) images)

Source: SBU caption dataset

Source: CBC News Website

Perceptual

From a professional photographer's point of view

2D Image Datasets - UIUC Pascal Sentence¹

- A camouflaged plane sitting on the green grass.
- A plane painted in camouflage in a grassy field
- A small camouflaged airplane parked in the grass.
- Camouflage airplane sitting on grassy field.
- Parked camouflage high wing aircraft.

- 1000 images randomly sampled from PASCAL VOC 2008 training + validation data with 20 object categories.
- 5 generic conceptual descriptions per image.

¹Rashtchian et. al., *Collecting Image Annotations Using Amazon's Mechanical Turk*, 2010. [Dataset Link]

2D Image Datasets - UIUC Pascal Sentence¹

- A camouflaged plane sitting on the green grass.
- A plane painted in camouflage in a grassy field
- A small camouflaged airplane parked in the grass.
- Camouflage airplane sitting on grassy field.
- Parked camouflage high wing aircraft.

lssues:

- Only 1000 images to train and test models.
- Simple captions and images.
- 25% captions do not contain verbs. 15% contain static verbs like *sit, stand, wear, look.*

¹Rashtchian et. al., *Collecting Image Annotations Using Amazon's Mechanical Turk*, 2010. [Dataset Link]

2D Image Datasets - Flickr 8k, Flickr 30k

- A biker in red rides in the countryside.
- A biker on a dirt path.
- A person rides a bike off the top of a hill and is airborne.
- A person riding a bmx bike on a dirt course.
- The person on the bicycle is wearing red.

- 8k images in Flickr8k,² >30k images in Flickr30k,³ with 5 descriptions per image.
- More image sentence pairs to train and test models, but no image based labels.
- 21% images (vs 40% images in UIUC Pascal Sentence dataset) have static verbs like *sit, stand, wear, look* or no verbs.

²Hodosh et. al., *Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics*, 2013. [Datset Link]

³Young et. al., From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions, 2014. [Datset Link]

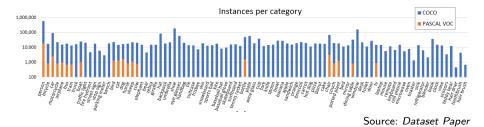
2D Image Datasets - Microsoft CoCo⁴

- A baseball winds up to pitch the ball.
- A pitcher throwing the ball in a baseball game.
- A pitcher throwing a baseball on the mound.
- A baseball player pitching a ball on the mound.
- A left-handed pitcher throwing for the San Francisco giants.

- 328k train + validation images [vs 1k(Pascal), 31k(Flikr)].
- Instance level segmentations labels with 91 object classes and 2.5M labelled instances.
- Benchmark to be released soon and more images to be added this year.

⁴Lin et. al., Microsoft COCO: Common Objects in Context, 2014.[Dataset Link]

2D Image Datasets - Microsoft CoCo⁴



- 328k train + validation images [vs 1k(Pascal), 31k(Flikr)].
- Instance level segmentations labels with 91 object classes and 2.5M labelled instances.
- Benchmark to be released soon and more images to be added this year.

⁴Lin et. al., Microsoft COCO: Common Objects in Context, 2014.[Dataset Link]

2D Image Datasets - Abstract Scenes Dataset⁵

Jenny loves to play soccer but she is worried that Mike will kick the ball too hard.

Mike and Jenny play outside in the sandbox. Mike is afraid of an owl that is in the tree.

Source: L. Zitnick

- 1002 sets of scenes with 10 images in each.
- Reduced variability (hence complexity) than real word scenes.
- Descriptions have non-visual attributes.
- Clip-arts provide segmentation labels.

⁵Zitnick et.al., Bringing Semantics Into Focus Using Visual Abstraction, 2013. [Dataset Link]

Kaustav Kundu (UofT)

8 / 24

2D Image Datasets - Abstract Scenes Dataset⁵

Mike fights off a bear by giving him a hotdog while jenny runs away.

Source: L. Zitnick

- 1002 sets of scenes with 10 images in each.
- Reduced variability (hence complexity) than real word scenes.
- Descriptions have non-visual attributes.
- Clip-arts provide segmentation labels.

⁵Zitnick et.al., Bringing Semantics Into Focus Using Visual Abstraction, 2013. [Dataset Link]

Kaustav Kundu (UofT)

8 / 24

RGB-D Image Datasets - Kong et al

Description: A big office desk is in the middle of the room. A Mac laptop is on top of the desk. There are a few bottles on top of the desk, on the right of the laptop. In front of the bottles there is a blue mug.

Source: S Fidler

RGB-D Image Datasets - Kong et al

Description: This room is filled with different types of furniture and home goods. The lights on the ceiling are strung across the room, they are circular and bright. At the back of the room, there are shelves filled with an assortment of pillows and blankets. There are a few couches facing away from those shelves. The couches have many pillows on top of them. On the second couch, which is dark green, sits a man in a plaid shirt. Another black couch faces the second couch. In front of the black couch is a shelf containing large brown bowls on the bottom shelf, towels on the second shelf, and vases on the top shelf. In front of the shelf is a dining table with brown wooden chairs, pink placemats, white dinnerware, and a brown glass bottle.

Source: S Fidler

# sent	# words	min # sent	max sent	min words	max words
3.2	39.1	1	10	6	144

# nouns of interest	# pronouns	# scene mentioned	scene correct	
3.4	0.53	0.48	83%	

Table: Statistics per description.

- 1449 RGB-D images with 20 object categories.
- Long and complex descriptions.
- Significant co-reference.
- Deceiving information (object and scene mis-classification).

Source: S Fidler

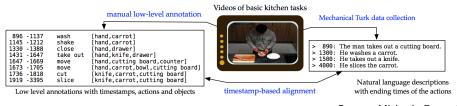
⁶Kong et.al., What are you talking about? Text-to-Image Coreference, 2014. [Dataset Link] Kaustav Kundu (UofT) Datasets and Metrics <u>11 / 24</u>

Q. What is between the the two white and black garbage bins?A. Chair

Q. How many objects are between the fire extinguisher and the white oven on the floor? **A.** 3

- 1449 RGB-D images with ∼9 Q&A pairs/image.
- 37 object classes.

⁷Malinowski et. al., A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input, 2014. [Dataset Link]



Source: Michaela Regneri

- 127 cooking videos with 20 different text descriptions/video.
- Time stamp labeling of textual descriptions with each description describing an activity label like wash, slicing, trash.
- Time stamp labelings of low level activity and participants(involving tool, patient, source, and target).
- Similarity scores of object activity pairs are available.

⁸Regneri et. al., Grounding Action Descriptions in Videos, 2013. [Dataset Link] Kaustav Kundu (UofT) Datasets and Metrics

Video Datasets - YouCook⁹

She chops the egg with an egg chopper and put the egg chopper in a glass container. Then she takes the egg mixture in the steel bowl and the bread pieces and butter which are kept in plates on the kitchen counter top. Then she places it near the sink. Then she applies butter on the frying pan and takes the chopped egg kept in the steel bowl.

- 88 videos with ${\sim}8$ descriptions/video.
- Each video annotated with human descriptions, tracks for 48 different objects (belonging to 7 categories), and time intervals of 7 different actions.

⁹Das et. al., A Thousand Frames in Just a Few Words: Lingual Description of Videos through Latent Topics and Sparse Object Stitching, 2013. [Dataset Link]

Kaustav Kundu (UofT)

Datasets and Metrics

	UIUC Sentence	Flickr 30k	MS CoCo	Abstract Scenes	Chen et al	DAQUAR	YouCook	TACoS
Generation	1	1	1	 ✓ 	1	1	1	1
Retrieval	1	1	1	1	1	1	1	1
Word Sense Disambiguation	1	1	1		1	1	1	1
Image-text Alignment	1		1	1	1	1	1	1
Learning Visual Models	1	1	1		1	1	1	1
Visual Parsing	1	✓	1	1	\checkmark	1	1	1
Q&A						1		

ICDAR Robust Reading Competition¹⁰

- Challeneges
 - **Born Digital**: Difficulties due to low resolution images, with compression artefacts, anti-aliasing.
 - Scene Text: Difficulties due to high illumination variability, perspective.
 - Text in Videos
 - Accidental Scene Text: Similar to Scene Text, but not centered.
- Tasks
 - Localization/Tracking
 - Segmentation
 - Recognition
 - End-to-end: Simultaneous localization and recognition

¹⁰Dataset Link

• IoU¹¹(or Jaccard Index)

$$\mathsf{IoU}(A,B) = \frac{A \cap B}{A \cup B}$$

• Precision, Recall, F1 measure

$$P = \frac{TP}{TP + FP}$$
$$R = \frac{TP}{TP + FN}$$
$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

¹¹Everingham et al

BLEU¹³ (BiLingual Evaluation Understudy)

a : candidate sentence, *b* : set of reference sentences, w_n : n-gram $c_x(y_n)$: count of n-gram y_n in sentence *x*.

• Based on n-gram based precision.

• BLEU_n(a, b) =
$$\frac{\sum_{w_n \in a} \min\left(c_a(w_n), \max_{j=1,\dots,|b|} c_{b_j}(w_n)\right)}{\sum_{w_n \in a} c_a(w_n)}$$

• BLEU or BLEU_{Overall} is a geometric mean of n-gram scores from 1 to 4.

¹²Detailed results in: Callison-Burch et. al., 2006; Reiter et. al., 2008; Hodosh et. al., 2013
 ¹³Papineni et. al., BLEU: A Method for Automatic Evaluation of Machine Translation, 2002

BLEU¹³ (BiLingual Evaluation Understudy)

a : candidate sentence, *b* : set of reference sentences, w_n : n-gram $c_x(y_n)$: count of n-gram y_n in sentence *x*.

• Based on n-gram based precision.

• BLEU_n(a, b) =
$$\frac{\sum_{w_n \in a} \min\left(c_a(w_n), \max_{j=1,\dots,|b|} c_{b_j}(w_n)\right)}{\sum_{w_n \in a} c_a(w_n)}$$

- BLEU or BLEU_{Overall} is a geometric mean of n-gram scores from 1 to 4.
- Strength
 - Automatic, easy to compute
- Weakness¹²
 - No constraints on the ordering of n-grams.
 - Each n-gram is treated equally.
 - A measure of fluency rather than semantic similarity between a and b.

 12 Detailed results in: Callison-Burch et. al., 2006; Reiter et. al., 2008; Hodosh et. al., 2013 13 Papineni et. al., BLEU: A Method for Automatic Evaluation of Machine Translation, 2002

Rouge¹⁴ (Recall Oriented Understudy of Gisting Evaluation)

a : candidate sentence, *b* : set of reference sentences, w_n : n-gram $c_x(y_n)$: count of n-gram y_n in sentence *x*.

• Based on n-gram based recall.

• ROUGE_n(a, b) =
$$\frac{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} \min\left(c_a(w_n), c_{b_j}(w_n)\right)}{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} c_{b_j}(w_n)}$$

¹⁴Lin et. al., ROUGE: A Package for Automatic Evaluation of Summaries, 2004

Rouge¹⁴ (Recall Oriented Understudy of Gisting Evaluation)

a : candidate sentence, *b* : set of reference sentences, w_n : n-gram $c_x(y_n)$: count of n-gram y_n in sentence *x*.

• Based on n-gram based recall.

• ROUGE_n(a, b) =
$$\frac{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} \min\left(c_a(w_n), c_{b_j}(w_n)\right)}{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} c_{b_j}(w_n)}$$

There are other variants like ROUGE_S, ROUGE_L

¹⁴Lin et. al., ROUGE: A Package for Automatic Evaluation of Summaries, 2004

Rouge¹⁴ (Recall Oriented Understudy of Gisting Evaluation)

a : candidate sentence, *b* : set of reference sentences, w_n : n-gram $c_x(y_n)$: count of n-gram y_n in sentence *x*.

• Based on n-gram based recall.

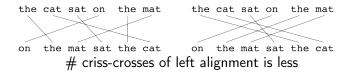
• ROUGE_n(a, b) =
$$\frac{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} \min\left(c_a(w_n), c_{b_j}(w_n)\right)}{\sum_{j=1}^{|b|} \sum_{w_n \in b_j} c_{b_j}(w_n)}$$

- There are other variants like ROUGE_S, ROUGE_L
- Similar strengths and weaknesses as BLEU.

¹⁴Lin et. al., ROUGE: A Package for Automatic Evaluation of Summaries, 2004

METEOR¹⁵ (Metric for Evaluation of Translation with Explicit ORdering)

- a : candidate sentence, b : set of reference sentences
 - An alignment between *a* and *b* is first computed.

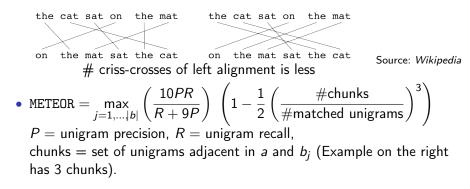


Source: Wikipedia

¹⁵Banerjee et. al., METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments, 2005

METEOR¹⁵ (Metric for Evaluation of Translation with Explicit ORdering)

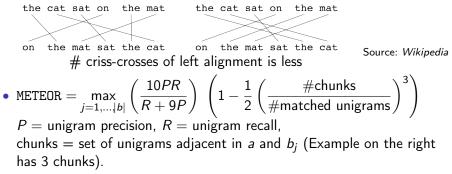
- a : candidate sentence, b : set of reference sentences
 - An alignment between *a* and *b* is first computed.



¹⁵Banerjee et. al., METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments, 2005

METEOR¹⁵ (Metric for Evaluation of Translation with Explicit ORdering)

- a : candidate sentence, b : set of reference sentences
 - An alignment between *a* and *b* is first computed.



- Smoother penalization of different ordering of chunks.
- Higher correlation with human consensus scores.

¹⁵Banerjee et. al., METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments, 2005

a : candidate sentence, b : set of reference sentences

•
$$CIDEr_n(a, b) = \frac{1}{|b|} \sum_{j=1}^{|b|} \frac{\mathbf{g}^n(a) \cdot \mathbf{g}^n(b_j)}{\|\mathbf{g}^n(a)\|\|\mathbf{g}^n(b_j)\|}$$

 $\mathbf{g}^n(x)$: vector formed by TF-IDF scores of all n-grams in x .
 $CIDEr(a, b) = \sum_{n=1}^{N} w_n CIDEr_n(a, b)$

¹⁶Vedantam et. al., CIDEr: Consensus-based Image Description Evaluation, 2014

a : candidate sentence, b : set of reference sentences

•
$$CIDEr_n(a, b) = \frac{1}{|b|} \sum_{j=1}^{|b|} \frac{\mathbf{g}^n(a) \cdot \mathbf{g}^n(b_j)}{\|\mathbf{g}^n(a)\|\|\mathbf{g}^n(b_j)\|}$$

 $\mathbf{g}^n(x)$: vector formed by TF-IDF scores of all n-grams in x.
 $CIDEr(a, b) = \sum_{n=1}^{N} w_n CIDEr_n(a, b)$

- Gives more weight-age to *important* n-grams.
- Higher correlation with human consensus scores compared to above metrics.

¹⁶Vedantam et. al., CIDEr: Consensus-based Image Description Evaluation, 2014

- Recall@k = % image sentence pairs for which the ground truth sentence was present in the top-k list.
- Median rank = k at which the system has a recall of 50%.

¹⁷Hodosh et. al., Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics, 2013

- Recall@k = % image sentence pairs for which the ground truth sentence was present in the top-k list.
- Median rank = k at which the system has a recall of 50%.
- Such measures can be used for retrieval based systems.

¹⁷Hodosh et. al., Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics, 2013

- Recall@k = % image sentence pairs for which the ground truth sentence was present in the top-k list.
- Median rank = k at which the system has a recall of 50%.
- Such measures can be used for retrieval based systems.
- Hodosh et. al.¹⁷ shows that both automatic ranking based measures are *more* robust than metrics that consider only the quality of the first result.

¹⁷Hodosh et. al., Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics, 2013

- Measuring quality of a single best result
 - Rating system of 1-4 from Hodosh et. al.¹⁸

¹⁸Hodosh et. al., Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics, 2013

¹⁹Manning et. al., Introduction to Information Retrieval, 2008

Kaustav Kundu (UofT)

Datasets and Metrics

- Measuring quality of a single best result
 - Rating system of 1-4 from Hodosh et. al.¹⁸
- Measuring ranked candidates
 - Success@k = % image sentence pairs for which at least one relevant result is found in the top-k list.
 - **R-precision**¹⁹ = average % of relevant items in the top-k list.

¹⁸Hodosh et. al., Framing Image Description as a Ranking Task: Data, Models and Evaluation Metrics, 2013

¹⁹Manning et. al., Introduction to Information Retrieval, 2008

- Datasets
 - Using humans to make binary/choosing decisions, rather than complex decisions. Helps in faster and quality annotation.²⁰
 - Games to make the creation of datasets more interesting for annotators. $^{\rm 21}$
 - Anyhow involves post-processing to remove spelling mistakes, and sometimes grammatical mistakes.

²⁰Parikh et. al., 2011; Vedantam et. al., 2014
²¹Deng et. al., 2013; Kazemzadeh et. al., 2014
²²More details in Reiter et. al., 2008; Hodosh et. al., 2013

- Datasets
 - Using humans to make binary/choosing decisions, rather than complex decisions. Helps in faster and quality annotation.²⁰
 - Games to make the creation of datasets more interesting for annotators. $^{\rm 21}$
 - Anyhow involves post-processing to remove spelling mistakes, and sometimes grammatical mistakes.
- Metrics
 - Hodosh et. al. used qualification tests to get *experts* to compare correlation between human based measures and automatic measures.²²
 - Common practice to use averaged responses from humans rather than single responses. Vedantam et. al.(2014) uses as many as 50 human responses per image sentence pair to ensure the quality of responses.

²⁰Parikh et. al., 2011; Vedantam et. al., 2014

²¹Deng et. al., 2013; Kazemzadeh et. al., 2014

²²More details in Reiter et. al., 2008; Hodosh et. al., 2013