
Solution to the MMF 2021 Exam

1. [5 marks]

The students were told that the MatLab statement

F = (1 - cos(x)) / x^2 (1)

produced inaccurate results if x is small, but positive. For example, for x = 1.0e-8,
the computed value of F is 0, but the true value of F is very close to 1/2.

They were asked to explain why the statement (1) computes such inaccurate values
of F for small, but positive, values of x and to rewrite the statement (1) so that it
computes accurate values of F for small, but positive, values of x as well as for larger
values of x (e.g., x = 1).

The reason why (1) computes such inaccurate values of F for small, but positive, values
of x is that there is catastrophic cancellation between 1 and cos(x) when x is small.
That is because

cos(x) = 1− x2/2 +O(x4) (2)

So, for x = 1.0e-8 for example, the computed value of cos(x) is 1, and the x2/2 +
O(x4) term is lost from the computed value of (2). Hence, the computed value of
1 - cos(x) is 0, due to catastrophic cancellation.

On the other hand, the true value of 1 - cos(x) is x2/2 + O(x4). Therefore, for x

sufficiently small, but nonzero, the computed value of F is zero, but the true value is
small, but nonzero. Therefore, the computed value is very inaccurate in a relative error
sense.

We can find a mathematically equivalent expression for (1) that is computationally
superior to (1) by using the “multiplying by the conjugate” trick:

1− cos(x)

x2
=

1− cos(x)

x2

1 + cos(x)

1 + cos(x)

=
1− cos2(x)

x2(1 + cos(x))

=
sin2(x)

x2(1 + cos(x))

This last expression does not suffer from any cancellation if cos(x) ≥ 0, which is the
case if x ∈ [−π

2
, π
2
].

Hence, we can replace (1) by

F = (sin(x))^2 / (x^2 * (1 + cos(x))) (3)

The new expression (3) computes a very accurate approximation to the true value of F
if x is small, but nonzero. For example, (3) is very accurate for x = 1.0e-8. It is also
very accurate for all nonzero normalized floating-point numbers in the range [−π

2
, π
2
],

excluding x = 0.

Page 1 of 21 pages.

2. [5 marks]

The students were told that the MatLab statement

G = sqrt(x^2 + y^2) (4)

has problems with

• overflows if x and/or y are very large in magnitude, and

• underflows if x and y are both very small in magnitude.

See the exam paper for details.

They were asked to rewrite the statement (4) in a mathematically equivalent form so
that it always produces an accurate approximation to the true value of G whenever
this is possible. In particular, they were asked to show that their new expression does
not overflow unless the true value of G overflows and the computed value of G does
not underflow if x and y are normalized IEEE double-precision floating-point numbers.
(However, their new expression could have an underflow in an intermediate expression,
but this underflow should be “harmless”.)

I gave them the following two hints.

Hint 1: when you rewrite (4), you may find it helpful to use either an if–then-else
statement or the min and max functions.

Hint 2: the largest IEEE double-precision floating-point number is about 1.7977e+308
and the smallest positive normalized IEEE double-precision floating-point number
is about 2.2251e-308.

I’ll use an if–then–else statement in my solution below, but it is easy to see how my
approach can be adapted to compute G using a little MatLab code fragment that
contains min and max functions.

I should have also said that they can use the MatLab abs function and an if–then–
else statement even in the min/max approach. Accept any reasonable MatLab code
fragment to compute a mathematically equivalent, but computationally superior, form
of G.

To rewrite (4) as a mathematically equivalent expression that is computationally su-
perior to (4), first note that, if |x| > |y| (whence x 6= 0), then

√

x2 + y2 = |x|
√

1 + (y/x)2 (5)

The computed value of the right side of (5) cannot overflow unless the true value of
√

x2 + y2 overflows. The term (y/x)2 can underflow, but this underflow is harmless,

Page 2 of 21 pages.

since, when coupled with 1+(y/x)2, it results in a very small relative error in the com-
puted value of 1+(y/x)2. Finally, note that |x|

√

1 + (y/x)2 ≥ |x|, so this computation
cannot result in an underflow if x is a normalized IEEE double-precision floating-point
number. Thus, the right side of (5) is a computationally effective way to evaluate the
left side of (5) in the case |x| > |y| (whence x 6= 0).

Similarly, if |x| ≤ |y| and y 6= 0, then

√

x2 + y2 = |y|
√

1 + (x/y)2 (6)

Finally, if x and y are both zero, then

√

x2 + y2 = 0 (7)

We can combine (5)–(7) to get the following computationally effective MatLab code
fragment to evaluate G.

if (x == 0 & y == 0)

G = 0;

elseif (abs(x) > abs(y))

G = abs(x) * sqrt(1 + (y/x)^2);

else % note in this case abs(x) <= abs(y) and y != 0

G = abs(y) * sqrt(1 + (x/y)^2);

end

Page 3 of 21 pages.

3. [15 marks: 5 marks for each part]

I gave them the pdf

f(x) =
2√
π
x2 e−x2

for x ∈ R

for a pseudo-random variable X. Obviously, the associated CDF is

F (x) =

∫ x

−∞
f(t) dt for x ∈ R

However, I told them that I don’t think you can easily use the CDF F (x) in the
inverse transform method to generate a pseudo-random variable X. However, for an
appropriately chosen γ > 0, f(x) is fairly similar to

gγ(x) = γ |x| e−γx2

for x ∈ R

Moreover,

Gγ(x) =

∫ x

−∞
gγ(t) dt =

{

1
2
e−γx2

for x ≤ 0

1− 1
2
e−γx2

for x ≥ 0

(a) For any γ > 0, I asked them to explain how to use the CDF Gγ(x) to generate a
pseudo-random variable Y having pdf gγ(x) and CDF Gγ(x).

You can use the inverse transform method to generate a pseudo-random variable
Y having pdf gγ(x) and CDF Gγ(x). To this end, first generate a uniform pseudo-
random variable U ∼ Unif[0, 1] and then solve Gγ(Y) = U for the pseudo-random
variable Y having pdf gγ(x) and CDF Gγ(x).

Note that Gγ(0) = 1/2. Therefore, if U ≤ 1/2, we solve

1

2
e−γY 2

= U (8)

for Y . Note also that Y ≤ 0 in this case. Therefore, the solution of (8) that we
seek is

Y = −
√

− log(2U)/γ

On the other hand, if U > 1/2, we solve

1− 1

2
e−γY 2

= U (9)

for Y . Note also that Y > 0 in this case. Therefore, the solution of (9) that we
seek is

Y =
√

− log(2(1− U))/γ

Putting this together, we get the following method to generate a pseudo-random
variable Y having pdf gγ(x) and CDF Gγ(x).

Page 4 of 21 pages.

Generate U ∼ Unif[0, 1]
if U ≤ 1/2 then

Y = −
√

− log(2U)/γ
else

Y =
√

− log(2(1− U))/γ
end

Page 5 of 21 pages.

(b) In part (c) below, the students are asked to use the acceptance-rejection method
to generate a pseudo-random variable X having the pdf f(x) using the proposal
pseudo-random variable Y having the pdf gγ(x). In this part of the question
(i.e., in part (b)), they are asked how to choose the free parameter γ > 0 in
gγ(x) to make the acceptance-rejection method developed in part (c) as efficient
as possible.

I also told them that they can answer this part of the question (i.e., part (b))
even if you didn’t answer part (a) or they got the wrong answer to part (a).

A requirement of the acceptance-rejection method is that you have a constant cγ
such that

f(x) ≤ cγ gγ(x) for all x ∈ R (10)

I called the constant cγ, rather than just c, because it obviously depends on the
choice of γ. Also, later we’ll minimize cγ with respect to γ. However, for now,
assume γ is a fixed constant.

For each fixed γ, we want to find the smallest cγ that satisfies (10), since the
smaller cγ is the more efficient the acceptance-rejection method is. Clearly, for γ
fixed, the smallest constant cγ that satisfies (10) is

cγ = max
x∈R

f(x)

gγ(x)
(11)

Let

hγ(x) =
f(x)

gγ(x)
=

2

γ
√
π
|x| e−x2(1−γ) (12)

We see from (12) that, if γ ≥ 1, then hγ(x) → ∞ as x → ±∞, which implies that
cγ = ∞. However, c must be finite in the acceptance-rejection method. So, we
must have γ < 1. Combining this with the requirement that γ > 0 (stated at the
start of the question and required for gγ(x) to be a pdf), we have that γ must
satisfy 0 < γ < 1. So, for the rest of this question, assume 0 < γ < 1.

Now consider a fixed γ ∈ (0, 1) and consider maximizing hγ(x) with respect to x.
First note that hγ(x) is symmetric about x = 0 (i.e., hγ(−x) = hγ(x)). Therefore,
we need only consider maximizing hγ(x) for x ≥ 0. Also note that, for x ≥ 0,

hγ(x) =
2

γ
√
π
x e−x2(1−γ)

Moreover, hγ(0) = 0 and hγ(x) → 0 as x → ∞. So, the maximum of hγ(x) must
occur at some finite positive value of x. To find the maximum of hγ(x), consider

h′
γ(x) =

2

γ
√
π
e−x2(1−γ)

(

1− 2x2(1− γ)
)

Page 6 of 21 pages.

Note that h′
γ(x) = 0 if and only if

1− 2x2(1− γ) = 0 (13)

Since

x∗ =
1

√

2(1− γ)

is the only positive root of (13), x∗ is the only positive root of h′
γ(x), whence the

maximum of hγ(x) occurs at x
∗ and

hγ(x
∗) =

2

γ
√
π

1
√

2(1− γ)
e−

1

2 =

√

2

πe

1

γ
√
1− γ

(14)

Thus, we get from (11), (12) and (14) that

cγ =

√

2

πe

1

γ
√
1− γ

(15)

Recall that our goal is to choose γ ∈ (0, 1) to make cγ as small as possible. To
this end, we change the notation cγ to the functional notation c(γ), where

c(γ) = cγ =

√

2

πe

1

γ
√
1− γ

since we want to minimize c(γ) with respect to γ for γ ∈ (0, 1). To this end, note
that

c′(γ) =

√

2

πe

(

1

2
γ−1(1− γ)−3/2 − γ−2(1− γ)−1/2

)

=

√

2

πe
γ−1(1− γ)−1/2

(

1

2
(1− γ)−1 − γ−1

)

=

√

2

πe

1

γ(1− γ)1/2

1
2
γ − (1− γ)

γ(1− γ)

=

√

2

πe

3
2
γ − 1

γ2(1− γ)3/2

Since γ∗ = 2/3 is the unique root of c′(γ) for γ ∈ (0, 1) and c(γ) → ∞ as γ → 0
and γ → 1, γ∗ = 2/3 must be the minimizer of c(γ) for γ ∈ (0, 1). So the γ they
should use for their acceptance-rejection method in part (c) is γ∗ = 2/3.

Page 7 of 21 pages.

The corresponding cγ is

cγ∗ = c(γ∗)

= c(2/3)

=

√

2

πe

1

2
3

√

1− 2
3

=

√

2

πe

3

2

√
3

=
3

2

√

6

πe

They wouldn’t be able to calculate the value of the final expression above on the
exam, but it is easy to compute that

cγ∗ ≈ 1.2573

Hence, using γ = γ∗ = 2/3, the probability of acceptance in the acceptance-
rejection method in part (c) below is

1

cγ∗

≈ 0.79534 ≈ 0.8

So, this turns out to be a fairly effective acceptance-rejection method.

Page 8 of 21 pages.

(c) I asked the students to use the results from parts (a) and (b) above to write an
acceptance-rejection method for the pseudo-random variable X having the pdf
f(x) using the proposal pseudo-random variable Y having the pdf gγ∗(x), where
γ∗ is their choice of γ from part (b).

I also told them that, if they didn’t do part (a), they can assume that they
can generate such a proposal pseudo-random variable Y . Also, if they didn’t do
part (b), they can use any γ∗ ∈ (0, 1) for part (c).

This question essentially comes down to writing out the acceptance-rejection
method. My MatLab pseudo-code for this follows.

1. Let γ∗ = 2/3 and cγ∗ = 3
2

√

6
πe

2. Generate a U ∼ Unif[0, 1] and a Y ∼ Gγ∗(x)

3. if U ≤ f(Y)

cγ∗ gγ∗(Y)
then

4. accept X = Y and stop
5. else
6. reject Y and go to step 2
7. end

Page 9 of 21 pages.

4. [10 marks: 5 marks for each part]

I asked the students to consider computing the price at time t = 0 of an exchange

option having the payoff
PT = max(S

(1)
T − S

(2)
T , 0) (16)

at time t = T , where S
(1)
t and S

(2)
t satisfy the SDEs

dS
(1)
t = rS

(1)
t dt+ σ1S

(1)
t dW

(1)
t , S

(1)
0 given

dS
(2)
t = rS

(2)
t dt+ σ2S

(2)
t dW

(2)
t , S

(2)
0 given

I also told them to assume that the parameters r, σ1, σ2 and T are known and W
(1)
t

and W
(2)
t are two uncorrelated standard Brownian motions.

I also told them to consider using the Control Variates variance reduction technique
with the payoff

P̂T = max(S
(1)
T −K, 0) (17)

where K = E[S
(2)
T]. I reminded them that the payoff (17) is just the payoff of a vanilla

European call option in the Black-Scholes framework. So, they know the price of this
option in closed form.

(a) I also reminded them that, for the Control Variates method we discussed in class,
we want to compute E[X] for some random variable X. There is another related
random variable Z for which we know E[Z]. In the Control Variates method, we
introduce another random variable

Y = X + c
(

Z − E[Z]
)

(18)

for an appropriately chosen c and do a Monte Carlo simulation to estimate E[Y].

I asked them to discuss how you can use the price of the vanilla European call
option associated with the payoff (17) as a Control Variate for the exchange option
discussed above. In particular,

(i) explain what X and Z are in this case,

(ii) explain how to compute E[Z] in this case,

(iii) explain how to compute K = E[S
(2)
T],

(iv) explain how to compute the parameter c in (18).

Page 10 of 21 pages.

Here are my answers to parts (i)–(iv) above.

(i) X is the random variable associated with the discounted payoff (16). That
is,

X = e−rT max(S
(1)
T − S

(2)
T , 0)

The price of the associated exchange option with payoff (16) is E[X].
Z is the random variable associated with the discounted payoff (17). That is,

Z = e−rT max(S
(1)
T −K, 0)

where K = E[S
(2)
T]. Note E[Z] is the price of a vanilla European call option

in the Black-Scholes framework.

(ii) As noted in (i) above, E[Z] is the price of a vanilla European call option in the
Black-Scholes framework. Therefore, we can use the Black-Scholes formula
to compute E[Z]. In MatLab, we could compute E[Z] as follows.

[Call,Put] = blsprice(S
(1)
0 , K, r, T , σ1)

E[Z] = Call

where K = E[S
(2)
T]. (See (iii) below for how to compute K = E[S

(2)
T].)

(iii) We used several times in class that, if

dSt = rSt dt+ σSt dWt, S0 given

then
E[ST] = S0 e

rT

Hence,
K = E[S

(2)
T] = S

(2)
0 erT

Alternatively, they could use that

S
(2)
T = S

(2)
0 e

(

r−σ2

2

2

)

T+σ2

√
T N

(19)

where N is a standard normal random variable (i.e., N ∼ N(0, 1)), and then

compute E[S
(2)
T] from (19) by applying the standard formula for computing

the expectation of a function of a random variable.

(iv) The optimal choice for c in (18) is

c∗ = −Cov(X,Z)

Var(Z)

We can approximate c∗ by doing a pilot computation. That is, compute
several samples of X and Z and use the MatLab functions cov and var to
compute Cov(X,Z) and Var(Z).

Page 11 of 21 pages.

(b) I asked the students to write a MatLab pseudo-code to implement the Control-
Variates Monte-Carlo method described in part (a). I told them that they can
use all the standard MatLab functions such as rand, randn, blsprice, etc.

I also told them that their MatLab pseudo-code does not have to be syntactically
correct MatLab. All that is required is that we understand what they are trying
to compute.

Here’s my MatLab pseudo-code.

% Initialize the parameters r, sigma1 = σ1, sigma2 = σ2, T ,

% S10 = S
(1)
0 and S20 = S

(2)
0 for the exchange option

% First do a pilot computation to approximate c = - cov(X,Z) / var(Z)

M = 10000; % Any reasonable value for M is fine here.

N1 = randn(M,1);
S1T = S10 * exp((r - sigma1^2/2)*T + sigma1*sqrt(T)*N1);

N2 = randn(M,1);
S2T = S20 * exp((r - sigma2^2/2)*T + sigma2*sqrt(T)*N2);

X = exp(-r*T) * max(S1T - S2T, 0);

K = S20 * exp(r*T);
Z = exp(-r*T) * max(S1T - K, 0);

C = cov(X,Z);
c = - C(1,2) / var(Z);

% Use the Black-Scholes formula to compute the exact value of E[Z]
[Call,Put] = blsprice(S10, K, r, T, sigma1);
EZ = Call;

% Now do a Monte Carlo simulation using control variates to compute the
% price of the exchange option.

M = 1000000; % Any reasonable value for M is fine here.

N1 = randn(M,1);
S1T = S10 * exp((r - sigma1^2/2)*T + sigma1*sqrt(T)*N1);

N2 = randn(M,1);
S2T = S20 * exp((r - sigma2^2/2)*T + sigma2*sqrt(T)*N2);

X = exp(-r*T) * max(S1T - S2T, 0);

Page 12 of 21 pages.

Z = exp(-r*T) * max(S1T - K, 0);

Y = X + c * (Z - EZ);

price = mean(Y);

Page 13 of 21 pages.

5. [10 marks: 5 marks for each part]

I asked the students to consider pricing at time t = 0 a barrier option having the payoff

PT =

{

max(ST −K1, 0) if ST/2 ≤ L
max(ST −K2, 0) if ST/2 > L

(20)

at time t = T , where St satisfies the SDE

dSt = rSt dt+ σSt dWt S0 given (21)

I told them to assume that the parameters r, σ, K1, K2, L and T are known and Wt

is a standard Brownian motion. I also told them that, if we let

X = e−rT
(

max(ST −K1, 0)I{ST/2≤L} +max(ST −K2, 0)I{ST/2>L}

)

then the price of the option is
C0 = E[X]

I also gave them an outline of a simple Monte Carlo method for approximating C0.
(See the exam paper for the details.)

I also told them that we can improve upon the simple Monte Carlo method I gave
them by using conditioning as a variance reduction method.

The way conditioning is described in the course textbook, if you want to compute
E[X], you use

E[X] = E[E[X|Y]]

for some random variable Y related to X. This method is most effective when you can
compute E[X|Y] in closed form (i.e., you don’t have to use a Monte Carlo simulation
to estimate it).

(a) For the barrier option pricing problem described above, I asked them to discuss
how you can choose Y such that

(i) you can compute E[X|Y] in closed form,

(ii) you need to use only one standard normal random variable Z ∼ N(0, 1) for
each Monte Carlo iteration for this conditioning approach.

The key idea here is to condition on Y = ST/2 as follows.

Page 14 of 21 pages.

E[X] = E

[

e−rT
(

max(ST −K1, 0)I{ST/2≤L} +max(ST −K2, 0)I{ST/2>L}

)]

= E

[

e−rT/2
(

e−rT/2 max(ST −K1, 0)I{ST/2≤L}

+ e−rT/2 max(ST −K2, 0)I{ST/2>L}

)]

= E

[

e−rT/2
E

[

e−rT/2 max(ST −K1, 0)I{ST/2≤L}

+ e−rT/2 max(ST −K2, 0)I{ST/2>L}

∣

∣

∣ST/2

]]

= E

[

e−rT/2
(

E

[

e−rT/2max(ST −K1, 0)I{ST/2≤L}

∣

∣

∣
ST/2

]

+ E

[

e−rT/2 max(ST −K2, 0)I{ST/2>L}

∣

∣

∣
ST/2

])]

(22)

Now note that we know both

E

[

e−rT/2max(ST −K1, 0)I{ST/2≤L}

∣

∣

∣
ST/2

]

E

[

e−rT/2max(ST −K2, 0)I{ST/2>L}

∣

∣

∣
ST/2

]

in closed form, since, if we know ST/2, we know both I{ST/2≤L} and I{ST/2≤L} and
we also know that

E

[

e−rT/2 max(ST −K1, 0)
∣

∣

∣
ST/2

]

E

[

e−rT/2 max(ST −K2, 0)
∣

∣

∣
ST/2

]

are just the prices of two vanilla European call options, each starting with the
value ST/2 at time t = T/2, but having strike prices K1 and K2, respectively.
Therefore, their values can be computed in closed form from the Black-Scholes
formula.

To be more specific, let C(ST/2, K, r, T/2, σ) be the price of a vanilla European
call option with strike price K, risk free interest rate r, volatility σ, where the
underlying St has value ST/2 at time t = T/2 and evolves according to the SDE
(21) for t ∈ (T/2, T] and expires at time t = T . Then, from the equations (22)
above,

E[X] = E

[

e−rT
(

max(ST −K1, 0)I{ST/2≤L} +max(ST −K2, 0)I{ST/2>L}

)]

= E

[

e−rT/2
(

E

[

e−rT/2max(ST −K1, 0)I{ST/2≤L}

∣

∣

∣
ST/2

]

+ E

[

e−rT/2 max(ST −K2, 0)I{ST/2>L}

∣

∣

∣
ST/2

])]

= E

[

e−rT/2
(

C(ST/2, K1, r, T/2, σ)I{ST/2≤L}

+C(ST/2, K2, r, T/2, σ)I{ST/2>L}

)]

(23)

Page 15 of 21 pages.

Note that a Monte Carlo method to approximate the final expectation of (23)
above needs to simulate ST/2 only; it does not need to simulate ST . So, we need
only one standard normal random variable Z ∼ N(0, 1) to compute

ST/2 = S0e

(

r−σ2

2

)

T/2+σ
√

T/2Z

for each Monte Carlo iteration for this conditioning approach that culminates in
the final expectation of (23) above.

Page 16 of 21 pages.

(b) I asked them to write a MatLab pseudo-code to implement their Conditioning
Monte-Carlo method described in part (a). I told them that they could use all
the standard MatLab functions such as rand, randn, blsprice, etc.

I also told them that their MatLab pseudo-code does not have to be syntactically
correct MatLab. All that is required is that we understand what they are trying
to compute.

Here’s my MatLab pseudo-code.

% Initialize the parameters r, sigma = σ, T, S0 = S0,
% K1 = K1, K2 = K2 and L for the barrier option

% Now do a Monte Carlo simulation for the barrier option based on the
% conditioning approach described in part (a).

N = 100000; % Any reasonable value for N is fine.

Z = randn(N,1);
ST2 = S0 * exp((r-sigma^2/2)*T/2 + sigma*sqrt(T/2)*Z);

[Call1,Put] = blsprice(ST2, K1, r, T/2, sigma);
[Call2,Put] = blsprice(ST2, K2, r, T/2, sigma);

Y = exp(-r*T/2) * (Call1 .* (ST2 <= L) + Call2 .* (ST2 > L));

price = mean(Y)

Page 17 of 21 pages.

6. [10 marks: 5 marks for each part]

I asked the students to consider the transport PDE

∂φ

∂t
+ c

∂φ

∂x
= 0 (24)

where φ = φ(x, t), c > 0 and φ satisfies the initial condition

φ(x, 0) = f(x) for all x ∈ R (25)

One numerical method that we did not consider in class for this problem is

φm+1
n − φm

n

δt
+ c

φm
n+1 − φm

n−1

2δx
= 0 (26)

where δt > 0 is the stepsize in the t direction, δx > 0 is the stepsize in the x di-
rection and φm

n ≈ φ(nδx,mδt). I also told them that you can rewrite (26) in the
computationally more convenient form

φm+1
n = φm

n − c
δt

2δx

(

φm
n+1 − φm

n−1

)

which in turn can be rewritten as

φm+1
n = φm

n + ρ
(

φm
n+1 − φm

n−1

)

(27)

where ρ = −c
δt

2δx
.

(a) I asked them to determinate the order of consistency of the numerical method (26).
That is, find the truncation error associated with the numerical method (26), show
that the truncation error can be written in the form O((δt)p)+O((δx)q), and state
the largest values possible for p and q.

To determine the truncation error associated with the numerical method (26),
substitute the exact solution φ(nδx,mδt) for the numerical solution φm

n in (26) to
get

φ(nδx, (m+ 1)δt)− φ(nδx,mδt)

δt
+ c

φ((n+ 1)δx,mδt)− φ((n− 1)δx,mδt)

2δx
= φt(nδx,mδt) +O(δt) + c φx(nδx,mδt) +O((δx)2)

= O(δt) +O((δx)2)

(28)

because φt(nδx,mδt) + c φx(nδx,mδt) = 0 in the middle equation of (28), since
φ(x, t) satisfies the transport equation (24).

So, the numerical method (26) is first-order consistent in t and second-order con-
sistent in x.

Page 18 of 21 pages.

(b) I asked them to determinate whether the numerical method (26) is stable.

I suggested, to answer this, it might be easier to consider the equivalent form (27)
of the numerical method (26).

I think this is the hardest question on the exam. The numerical method (26) is
not stable, but it is a little tricky to get a good explanation for why it is not
stable.

A numerical method of the type (26) is stable if there is a constant K such that,
if you perturb the initial conditions for (26) by a small amount and you perturb
the numerical method (26) itself by a small amount, then the difference between
the solution to the original numerical method (26) and the perturbed version can
be bounded by K times the maximum of the perturbations.

To be more specific, let

φ0
n = f(nδx)

φ̂0
n = f(nδx) + e0n

Note φ0
n satisfies the initial condition (25) of the transport equation (24) and φ̂0

n

satisfies a slightly perturbed version of the initial condition (25) (assuming all the
e0n are small in magnitude).

For m ≥ 0, φm+1
n can be computed from (26). The corresponding perturbed

version of (26) is

φ̂m+1
n − φ̂m

n

δt
+ c

φ̂m
n+1 − φ̂m

n−1

2δx
= ǫmn (29)

Now, if you let emn = φ̂m
n − φm

n and you subtract (26) from (29), you get the
following equations for the errors, emn :

em+1
n − emn

δt
+ c

emn+1 − emn−1

2δx
= ǫmn (30)

A method is stable if there exists a constant K such that for all n and all M ≥ 1
satisfying Mδt ≤ T

|eMn | ≤ K
(

max
n

|e0n|+ max
n

m<M

|ǫmn |
)

To show that the method (26) is not stable, we need to show that such a K does
not exist.

In class, we discussed the Bad example of a finite difference scheme in section
5.2.1. of Brandimarte’s textbook. To show that method was not stable, we let
e0n = (−1)nǫ for all n, where ǫ is a small positive constant, and ǫmn = 0 for all m
and n. We were able to show that |eMn | cannot be bounded by Kǫ for any K.
(The key here is to note that, even though Mδt ≤ T , you can take δt arbitrary
small while keeping ρ = −c δt

2δx
constant by decreasing δx at the same rate as δt

and thereby allowing M to be arbitrarily large.

Page 19 of 21 pages.

For the method (26), I don’t think we can use such a simple choice of e0n and ǫmn ,
but let’s use again ǫmn = 0 for all n and m and assume

e0n = vn mod 4ǫ

where n mod 4 = q if n = 4p+ q for an integer p and an integer q ∈ {0, 1, 2, 3}.
Let’s rewrite (30) in the form (27):

em+1
n = emn + ρ

(

emn+1 − emn−1

)

(31)

where we have used ǫmn = 0 and ρ = −c
δt

2δx
.

Now consider (31) for m = 0:

e1n = e0n + ρ
(

e0n+1 − e0n−1

)

=
(

vn mod 4 + ρ
(

v(n+1) mod 4 − v(n−1) mod 4

))

ǫ
(32)

Now let

v = [v0, v1, v2, v3]
T

= [e04p, e
0
4p+1, e

0
4p+2, e

0
4p+3]

T

for some integer p. Using the periodicity of the e0n, we can write the right side of
the second equation in (32) in vector form as

(

(I + ρB)v
)

ǫ

where

B =









0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0









Now, if we choose v to be an eigenvector of B with eigenvalue λ (i.e., Bv = λv),
then

(I + ρB)v = (1 + ρλ)v

So, for all n, e1n = (1 + ρλ)e0n. Clearly, we can continue in this way to get

emn = (1 + ρλ)me0n = (1 + ρλ)mvn mod 4ǫ (33)

So, if |1+ ρλ| > 1, this method will be unstable, because, as noted above, we can
take m arbitrarily large in (33), since we can decrease δt at the same rate as δx,
thereby keeping ρ constant, allowing m to be arbitrarily large while still satisfying
mδt ≤ T .

Page 20 of 21 pages.

So, all that remains is to show that |1 + ρλ| > 1 for some eigenvalue λ of B.
To this end, note that B is skew-symmetric (i.e., BT = −B). Therefore, all the
eigenvalues of B are either 0 or purely complex (i.e., of the form λ = iµ for some
nonzero real µ). All the eigenvalues of B cannot be 0, since B can be written as
B = V ∗DV where V is a unitary matrix and D is a diagonal matrix with the
eigenvalues of B on its diagonal. Hence, if all the eigenvalues of B were 0, D would
be the zero matrix and B = V ∗DV would be the zero matrix too. Therefore, B
must have a purely complex eigenvalue λ = iµ for some nonzero real µ. Therefore,

|1 + ρλ| =
√

1 + (ρµ)2 > 1

So, we’ve shown that the numerical method (26) is unstable.

There is one thing that is unsatisfying about this proof that (26) is unstable.
The vector v is complex and it seems a little artificial to allow the initial error
e0n = vn mod 4ǫ to be complex.

However, if λ and v are an eigenvalue-eigenvector pair of B, then λ̄ and v̄ are also
an eigenvalue-eigenvector pair of B. So, we can let w = (v + v̄) be the real part
of v and set e0n = wn mod 4ǫ. With a little more work, I believe you can show that
emn also blows-up. However, the proof of this is a little more complex and so I’ll
leave it to another time.

Page 21 of 21 pages.

