
Solution to the 2018 MMF 2021 Exam

1. [10 marks: 5 marks for each part]

I told the students that the function

f(x) =
ex − 1

x

satisfies
lim
x→0

f(x) = 1 (1)

I also told them that they don’t have to prove (1); just accept it as true.

I also gave them a table on page 3 of the exam (see the file exam.2018.pdf) that shows
the computed values of f(x) for x = 10−k and k = 1, 2, . . . , 15.

(a) I noted that the computed values for f(x) first seem to be converging to 1 for
k = 1, 2, . . . , 8, but then diverge from 1 for k = 11, 12, . . . , 15. I asked them to
explain why this happens.

The students should do a little rounding error analysis to explain why the com-
puted values for f(x) in the table behave the way they do. To this end, I told
them that they can assume

exp(x) = ex(1 + δx)

where δx changes with x, but its magnitude is at most a few multiples of ǫmach.
(I.e., |δx| ≤ c ǫmach for some c that is at most 2 or 3.)

Therefore,

fl(f(x)) = fl

(

ex − 1

x

)

=
(ex(1 + δx)− 1)(1 + δ1)

x
(1 + δ2)

(2)

for some δ1 and δ2 satisfying |δ1| ≤ 1
2
ǫmach and |δ2| ≤ 1

2
ǫmach. Now we can perform

standard mathematical operations on the last line of (2) to get

fl(f(x)) =
ex − 1 + exδx

x
(1 + δ1)(1 + δ2)

=

(

ex − 1

x
+

δx
x
ex
)

(1 + δ1)(1 + δ2)

=

((

1 +
1

2
x+O(x2)

)

+

(

δx
x
ex
))

(1 + δ1)(1 + δ2)

=

(

1 +

(

1

2
x+O(x2)

)

+

(

δx
x
ex
))

(1 + δ1)(1 + δ2)

(3)

Page 1 of 16 pages.

From our assumption above, |δx| ≤ c ǫmach / 10−15. So, for k = 1, 2, . . . , 6 and
x = 10−k,

∣

∣

∣

∣

δx
x

∣

∣

∣

∣

≪ 1

2
x+O(x2)

Hence, from the last line of (3),

fl(f(x)) ≈ 1 +
1

2
x+O(x2)

That is, our rounding error analysis predicts that the computed value of f(x) will
behave like 1 + 1

2
x + O(x2) for k = 1, 2, . . . , 6. We see quite clearly in the table

on page 3 of the exam that this is indeed the case.

For the values of k in the range k = 7, 8, . . . , 11, the behaviour of f(x) is not as
clear. That’s because, for the k in this range,

∣

∣

∣

∣

δx
x

∣

∣

∣

∣

≈ 1

2
x+O(x2)

Hence, from the last line of (3), we see that both

1

2
x+O(x2)

and
δx
x

affect the behaviour of f(x). So, our rounding error analysis predicts that the be-
haviour of f(x) is not particularly clear in this range. This prediction is supported
by the data in the table on page 3 of the exam.

However, for k = 12, 13, 14, 15,

0 <
1

2
x+O(x2) ≪

∣

∣

∣

∣

δx
x

∣

∣

∣

∣

So, for this range of k, our rounding error analysis predicts that

fl(f(x)) ≈ 1 +
δx
x

Since the δx is somewhat “random” in the range [−c ǫmach, c ǫmach], the values of
f(x) for k in this range are somewhat erratic, but |δx/x| generally grows at x
decreases (e.g., k increases). Hence, f(x) diverges from 1 (in a somewhat erratic
way) as k increases for k in this range. This prediction is supported by the data
in the table on page 3 of the exam.

Page 2 of 16 pages.

(b) The students are asked to explain why the computed values for

g(x) =
ex − 1

ln(ex)

shown in column four of the table on page 3 of the exam (see the file exam.2018.pdf)
give much more accurate results for small x than f(x) does, even though in exact
arithmetic f(x) = g(x) for all x ∈ R (assuming you define f(0) = g(0) = 1).

To see how rounding errors affect g(x), we first need to see how rounding errors
affect ln(u) for u close to 1. It’s reasonable to assume that

fl(ln(u)) = ln(u)(1 + δu) (4)

However, |δu| might be much larger than ǫmach, since ln(u) is ill-conditioned for u
close to 1. (Note, we are assuming here that u = ex and |x| is small, so u ≈ 1.)
For now, let’s not try to determine a bound on |δu|. We will come back to that
later. So, using (4), we can perform a rounding error analysis on g(x) that is
much like the one in part (a) for f(x). That is,

fl(g(x)) = fl

(

ex − 1

ln(ex)

)

=
(ex(1 + δx)− 1)(1 + δ1)
(

ln(ex(1 + δx))
)

(1 + δu)
(1 + δ2)

(5)

for some δ1 and δ2 satisfying |δ1| ≤ 1
2
ǫmach and |δ2| ≤ 1

2
ǫmach. It’s important to note

that the rounding error that is made when computing ex is the same for the ex in
the numerator of (5) and the ex in the denominator of (5). More generally, the
rounding error that is made when computing ex is deterministic. So, the rounding
error is the same whenever ex computed for the same value of x. Therefore, the
δx in the numerator of (5) is the same as the δx in the denominator of (5). This
is very important for the analysis below.

For the analysis that follows, it is convenient to note that there is a δ̂x such that

ex+δ̂x = ex(1 + δx) (6)

where by taking logarithms of both sides of (6), we see that

x+ δ̂x = x+ ln(1 + δx)

whence
δ̂x = ln(1 + δx) = δx +O(δ2x)

Since we assumed in part (a) that |δx| ≤ c ǫmach for some c that is at most 2 or 3,
it follows that |δ̂x| ≤ ĉ ǫmach for some ĉ that is only slightly different from c. That
is, we can also assume ĉ is at most 2 or 3.

Page 3 of 16 pages.

Therefore, we can rewrite (5) as

fl(g(x)) =
(ex+δ̂x − 1)(1 + δ1)
(

ln(ex+δ̂x)
)

(1 + δu)
(1 + δ2)

=
ex+δ̂x − 1

ln(ex+δ̂x)
× (1 + δ1)(1 + δ2)

(1 + δu)

=
(x+ δ̂x) +

1
2
(x+ δ̂x)

2 +O((x+ δ̂x)
3)

(x+ δ̂x)
× (1 + δ1)(1 + δ2)

(1 + δu)

=

(

1 +
1

2
(x+ δ̂x) +O((x+ δ̂x)

2

)

× (1 + δ1)(1 + δ2)

(1 + δu)

(7)

For k = 1, 2, . . . , 13 and x = 10−k,

|δ̂x| ≪ x

So,
(

1 +
1

2
(x+ δ̂x) +O((x+ δ̂x)

2

)

≈ 1 +
1

2
x (8)

which agrees very well with the numerical results shown in the table on page 3
of the exam (see the file exam.2018.pdf). A slightly surprising thing is that the
term

(1 + δ1)(1 + δ2)

(1 + δu)

on the right in (7) does not disturb the result (8). Although the δ1 and δ2 terms
would not disturb the result (8), since |δ1| ≤ 1

2
ǫmach and |δ2| ≤ 1

2
ǫmach, I would

have expected that the δu term could disturb the result (8), since I think we could
have |δu| ≫ ǫmach. However, the results in the table on page 3 of the exam do not
suffer from this potentially large perturbation.

Also, for k = 14, 15, you might expect that

|δ̂x| 6≪ x

This could also perturb the result (8). However, this potential perturbation does
not appear to occur in the numerical results reported in the table on page 3 of
the exam.

Page 4 of 16 pages.

2. [10 marks: 5 marks for each part]

(a) In this part of the question, the students are told to assume that an integer n ≥ 0
is given and that a real λn ∈ (0, 1) is given. They are asked to find a cn,λn

such
that

fn(x)/gλn
(x) ≤ cn,λn

(9)

for all x ≥ 0, where

fn(x) =
xne−x

n!
for x ≥ 0

and
gλn

(x) = λne
−λnx for x ≥ 0

As explained in more detail below, we want to find as small a cn,λn
as possible

such that (9) holds. The smallest cn,λn
can be is

cn,λn
= max

x≥0

fn(x)

gλn
(x)

(10)

since, if cn,λn
were any smaller than the right side of (10), there would be a finite

x∗
n,λn

= argmax
x≥0

fn(x)

gλn
(x)

such that
fn(x

∗
n,λn

)/gλn
(x∗

n,λn
) > cn,λn

which violates (9). Hence, the smallest that cn,λn
can be is given by (10).

To find the maximum of fn(x)/gλn
(x) for x ≥ 0, where the integer n ≥ 0 and the

real λn ∈ (0, 1) are give, let

hn,λn
(x) =

fn(x)

gλn
(x)

=
xn e−x(1−λn)

λn n!

Consider first the case n = 0. In this case,

h0,λ0(x) =
e−x(1−λ0)

λ0

Since λ0 ∈ (0, 1), 1− λ0 > 0. Therefore, h0,λ0(x) is a strictly decreasing function
of x for x ≥ 0. Hence, the maximum of h0,λ0(x), for x ≥ 0, occurs at x∗

0,λ0
= 0.

Thus,

c0,λ0 = max
x≥0

f0(x)

gλ0(x)
= max

x≥0
h0,λ0(x) = h0,λ0(0) = 1/λ0

That is,
c0,λ0 = 1/λ0 (11)

Page 5 of 16 pages.

Now consider the case n ≥ 1. In this case,

hn,λn
(x) =

xn e−x(1−λn)

λn n!

satisfies hn,λn
(0) = 0,

lim
x→∞

hn,λn
(x) = 0 (since 1− λn > 0)

and hn,λn
(x) > 0 for x ∈ (0,∞). So, hn,λn

(x) must have a maximum at some
x∗
n,λn

∈ (0,∞). To find x∗
n,λn

, differentiate hn,λn
(x) with respect to x and solve

h′
n,λn

(x∗
n,λn

) = 0. To this end, note that

h′
n,λn

(x) =
nxn−1e−x(1−λn) − xn(1− λn)e

−x(1−λn)

λn n!

=
xn−1e−x(1−λn)

(

n− x(1− λn)
)

λn n!

Now note that h′
n,λn

(x∗
n,λn

) = 0 and x∗
n,λn

∈ (0,∞) has only one solution

x∗
n,λn

=
n

1− λn

Therefore, for n ≥ 1,

cn,λn
= max

x≥0

fn(x)

gλn
(x)

= max
x≥0

hn,λn
(x) = hn,λn

(x∗
n,λn

) =

(

n

1− λn

)n
e−n

λn n!

That is,

cn,λn
=

(

n

1− λn

)n
e−n

λn n!
(12)

The students are asked to explain why they think the value for cn,λn
they chose

is the best choice for the given n ≥ 0 and the given λn ∈ (0, 1).

As noted above, the cn,λn
must satisfy (9). However, you want to choose as

small a cn,λn
as possible, since the probability of an acceptance in the acceptance-

rejection method is 1/cn,λn
. So, if you choose cn,λn

as small as possible, you make
the acceptance rate as large as possible and, the larger the acceptance rate, the
more efficient the acceptance-rejection method is.

As explained above, the smallest that cn,λn
can be, while satisfying (9), is given

by (10).

Page 6 of 16 pages.

Given the cn,λn
determined above, the acceptance-rejection method to compute a

random variable X having the pdf fn(x) is as follows.

1. U = rand(1,2) (Generate U(1) and U(2) independent Unif[0,1] random variables.)

2. Set Y = 1
λn

ln(U(1)) (Y is an exponential random variable with pdf gλn
(x).)

(In MatLab, replace ln by log.)

3. If U(2) ≤ fn(Y)

cn,λn
gλn

(Y)

then return X = Y (Accept X.)

else go to step 1 (Reject)

The students don’t have to include the comments that I have included above.
Accept anything that seems reasonable to you.

(b) For n = 0, we have from (11)
c0,λ0 = 1/λ0

and we also have the constraint λ0 ∈ (0, 1). Since we want c0,λ0 to be as small
as possible, we want to choose λ0 to be as large as possible. However, we must
choose λ0 < 1. So, we should pick a λ0 close to 1, such as λ0 = 0.9999. With this
choice of λ0,

c0,λ0 = 1/λ0 ≈ 1.0001

Note that the acceptance rate in this case is

1

c0,λ0

= λ0 = 0.9999

Hence, you almost always accept. So, this acceptance-rejection method is very
efficient.

[Aside: you don’t really need to use the acceptance-rejection method for n = 0,
since in this case f0(x) = e−x. So, f(x) is the pdf of an exponential random
variable. So, you can just compute X = − ln(U). Picking λ0 = 0.9999 makes
gλ0(x) ≈ f0(x) for all x ≥ 0. So, the acceptance-rejection method works very well
in this case, even though it would be better to generate X as X = − ln(U).]

For n ≥ 1, we have from (12)

cn,λn
=

(

n

1− λn

)n
e−n

λn n!
(13)

Page 7 of 16 pages.

For a given n ≥ 1, we want to choose λn ∈ (0, 1) to make cn,λn
given by (13)

as small as possible. (As explained above, this makes the acceptance-rejection
method as efficient as possible.) To this end, let

c(λ) =

(

n

1− λ

)n
e−n

λn!

and attempt to find the minimum of c(λ) for λ ∈ (0, 1).

Note c(λ) → ∞ as λ → 0 and also as λ → 1 and c(λ) is finite and positive for all
λ ∈ (0, 1). Therefore c(λ) has a minimum at some λ∗

n ∈ (0, 1).

To find the minimum of c(λ) for λ ∈ (0, 1), differentiate c(λ) with respect to λ
and solve c′(λ∗

n) = 0 for λ∗
n. To this end, note that

c′(λ) = n

(

n

1− λ

)n−1
n

(1− λ)2
e−n

λn!
−
(

n

1− λ

)n
e−n

λ2 n!

=

(

n

1− λ

)n
e−n

λn!

(

n

1− λ
− 1

λ

)

The only solution of c′(λ∗
n) = 0 is

λ∗
n =

1

n+ 1

For this λ∗
n,

cn,λ∗

n
= c(λ∗

n) =
e−n (n+ 1)n+1

n!

Note that this is the value αn given on page 5 of the exam. So, cn,λ∗

n
= αn is the

optimal choice of cn,λn
for n ≥ 1.

If n is fairly small (e.g., 1 ≤ n ≤ 5), then the table for αn values on page 5 of
the exam shows that 1.4715 ≤ cn,λ∗

n
= αn ≤ 2.6197. Hence, the acceptance rate

(i.e., 1/cn,λ∗

n
) varies from about 0.67 (for n = 1) to about 0.38 (for n = 5). So,

the acceptance-rejection method is reasonably efficient for n in the range 1 to 5.

However, the acceptance rate for the acceptance-rejection method decreases as n
increases. For n in the range 6 to 20, cn,λ∗

n
= αn increases from about 2.8352 to

about 4.9498. Hence, the acceptance rate (i.e., 1/cn,λ∗

n
) varies from about 0.35

(for n = 6) to about 0.20 (for n = 20). This is still tolerable, but not particularly
good.

However, for large n, I told them that cn,λ∗

n
= αn ≈ 1.1

√
n. Hence, the acceptance

rate (i.e., 1/cn,λ∗

n
) is about 0.9/

√
n. Although this is not too bad for n = 21, for

n = 100, the acceptance rate is about 0.09, which is starting to get too small.
As n continues to grow, the acceptance rate continues to get smaller. So, the
method becomes very inefficient for large n. For example, for n = 1, 000, 000, the
acceptance rate is about 0.0009, which makes the method very inefficient.

Page 8 of 16 pages.

3. [10 marks]

As noted in the question, the option price at time t = 0 is

P0 = E[e−rTh(S
(1)
T , S

(2)
T)] (14)

where
h(S

(1)
T , S

(2)
T) = max(ω1S

(1)
T + ω2S

(2)
T − K̂, 0) (15)

where ω1 and ω2 are real constants satisfying ω1 ∈ [0, 1], ω2 ∈ [0, 1], ω1 + ω2 = 1 and
K̂ ∈ R is a positive constant. So, combining (14) and (15), we get

P0 = E[e−rT max(ω1S
(1)
T + ω2S

(2)
T − K̂, 0)] (16)

Also, the question notes that

S
(1)
T = S

(1)
0 e(r−σ2

1/2)T+σ1W
(1)
T

S
(2)
T = S

(2)
0 e(r−σ2

2/2)T+σ2W
(2)
T

and the correlated Brownian motions W
(1)
T and W

(2)
T satisfy

W
(1)
T =

√
T
(

√

1− ρ2Z(1) + ρZ(2)
)

W
(2)
T =

√
TZ(2)

where Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1) and Z(1) and Z(2) are independent. Therefore,

S
(1)
T = S

(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

S
(2)
T = S

(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2)

(17)

where Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1) and Z(1) and Z(2) are independent. Substituting

the S
(1)
T and S

(2)
T from (17) into (16), we get

P0 = E[e−rT max(ω1S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

+ω2S
(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2) − K̂, 0)]

(18)

Now we can apply conditional expectation to (18) to get

P0 = EZ(2) [EZ(1) [e−rT max(ω1S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

+ω2S
(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2) − K̂, 0)|Z(2)]]

(19)

where the outer expectation is with respect to Z(2) and the inner expectation is with
respect to Z(1). To clarify (19) a little, we introduce a deterministic variable z2 and
re-write (19) as

P0 = EZ(2) [EZ(1) [e−rT max(ω1S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρz2

)

+ω2S
(2)
0 e(r−σ2

2/2)T+σ2

√
Tz2 − K̂, 0)|z2 = Z(2)]]

(20)

Page 9 of 16 pages.

Now note that

ω1S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρz2

)

= ω1S
(1)
0 e(r−σ2

1(1−ρ2)/2)T−σ2
1ρ

2T/2+σ1

√
1−ρ2

√
TZ(1)+σ1ρ

√
Tz2

= ω1S
(1)
0 e−σ2

1ρ
2T/2+σ1ρ

√
Tz2e(r−σ2

1(1−ρ2)/2)T+σ1

√
1−ρ2

√
TZ(1)

= S0(z2)e
(r−σ2/2)T+σ

√
TZ(1)

where

S0(z2) = ω1S
(1)
0 e−σ2

1ρ
2T/2+σ1ρ

√
Tz2

σ = σ1

√

1− ρ2
(21)

In addition, let

K(z2) = K̂ − σ2S
(2)
0 e(r−σ2

2/2)T+σ2

√
Tz2 (22)

So, we can re-write the inner expectation in (20) as

EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)] (23)

There is a complication here that I didn’t notice when I wrote the question: we can use
the Black-Scholes formula to evaluate (23) if K(z2) > 0, but I don’t think the Black-
Scholes formula is applicable if K(z2) < 0. Take off one mark only if the students
fail to notice this and use the the Black-Scholes formula to evaluate (23) without the
modification I describe below.

To handle the complication noted above for K(z2) < 0, notice that, if K(z2) ≤ 0, then

S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2) ≥ 0

Hence, if K(z2) ≤ 0, then

max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0) = S0(z2)e

(r−σ2/2)T+σ
√
TZ(1) −K(z2)

Therefore, we can rewrite (23) as

EZ(1) [e−rT
(

max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)1K(z2)>0

+
(

S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2)

)

1K(z2)≤0

)

]
(24)

We can rewrite (24) in turn as

EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)]1K(z2)>0

+ EZ(1) [e−rT
(

S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2)

)

]1K(z2)≤0

(25)

Page 10 of 16 pages.

The first expectation in (25) is the price of a “vanilla” call option with strike price
K(z2) > 0, expiry t = T and underlying asset St that starts from S0(z2) at time t = 0
and evolves in time according to the SDE

dSt = rStdt+ σStdWt

Therefore, if K(z2) > 0,

Call = EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)]

where

[Call, Put] = blsprice(S0(z2), K(z2), r, T, σ)

and σ = σ1

√

1− ρ2. So, write a little wrapper function blspriceCall such that

Call = blspriceCall(S0(z2), K(z2), r, T, σ)

where Call is given above by blsprice with the same parameters.

On the other hand, a simple integration with the normal distribution shows that the
second expectation in (25) can be evaluated as

EZ(1) [e−rT
(

S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2)

)

] = S0(z2)− e−rTK(z2)

Therefore, (23) can be evaluated as follows:

EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)]

= blspriceCall
(

S0(z2), K(z2), r, T, σ
)

1K(z2)>0

+
(

S0(z2)− e−rTK(z2)
)

1K(z2)≤0

(26)

So, we can use (26) to rewrite (20) as

P0 = EZ(2) [blspriceCall
(

S0(Z
(2)), K(Z(2)), r, T, σ

)

1K(Z(2))>0

+
(

S0(Z
(2))− e−rTK(Z(2))

)

1K(Z(2))≤0]
(27)

Page 11 of 16 pages.

We can use (27) as the basis for the Monte Carlo simulation below to price this basket
option.

for n = 1, 2, . . . , N ,
Generate Zn ∼ N(0, 1) using a function such as MatLab’s randn
if K(Zn) > 0 then

Yn = blspriceCall(S0(Zn), K(Zn), r, T, σ)
else

Yn = S0(Zn)− e−rTK(Zn)
end if

end for

Approximate the option price P0 by

P̂0 =
1
N

∑N
n=1 Yn

Note that, in the pseudo-code above, S0(z) and σ are given in (21) and K(z) is given
in (22).

Page 12 of 16 pages.

4. [13 marks: 3 marks for part (a) and 5 marks for each of parts (b) and (c)]

This question focuses on the mixed PDE

∂u

∂t
+

∂u

∂x
=

∂2u

∂y2
(28)

for u(t, x, y), where t ∈ (0, T), x ∈ (0, 1) and y ∈ (0, 1). Assume that you are given an
initial condition at t = 0

u(0, x, y) = u0(x, y) for x ∈ [0, 1] and y ∈ [0, 1]

and appropriate boundary conditions for t ∈ (0, T].

(a) The students are asked to give a consistent and stable numerical method for (28).

I probably should have told them to give an explicit method. The method I give
below is explicit. However, since I didn’t stipulated an explicit method, they could
give an implicit method, such as the fully implicit method or the Crank-Nicholson
method.

The only method that we discussed in class for discretizing the ∂2u/∂y2 term is
the central difference formula for second-order derivatives. So, I expect that they
will likely use the central difference formula for this term, as I do below.

We discussed in class three methods for discretizing the ∂u/∂x term. I use the
backward difference formula for this term, since I think it is the only formula of
the three that is stable for an explicit method.

It will probably be very easy to see if their method is consistent, but it might be
trickier to see if it is stable. Possibly the easiest way to check if it is stable is to
just program the method and test it. It should be very easy to see if it is not
stable. Also, there should not be many different numerical methods to consider.
If you have any trouble with this, let me know and I will help.

Take off two marks if the method is not consistent and take off two marks if the
method is not stable. However, if the method is neither consistent nor stable, give
them 0, not −1.

Since u(t, x, y) has three variables, let uk
i,j ≈ u(k∆t, i∆x, j∆y). Given this nota-

tion and the discussion above, my explicit numerical method is

uk+1
i,j − uk

i,j

∆t
+

uk
i,j − uk

i−1,j

∆x
=

uk
i,j+1 − 2uk

i,j + uk
i,j−1

(∆y)2
(29)

They could also write the method in the equivalent form

uk+1
i,j = uk

i,j −
∆t

∆x

(

uk
i,j − uk

i−1,j

)

+
∆t

(∆y)2

(

uk
i,j+1 − 2uk

i,j + uk
i,j−1

)

(30)

Page 13 of 16 pages.

(b) To determine the order of consistency of a numerical method for a PDE, such
as (28), it is much better to work with the numerical method in the form (29),
rather than (30). If you work with (30), it is easy to get the order of consistency
in t one too high.

So, let’s work with the numerical method in the form (29). To determine the
order of consistency, move all the terms to the left side and substitute in the
exact solution for all the approximate values uk

i,j . To make the notation a little
easier, let uk

i,j ≈ u(k∆t, i∆x, j∆y) = u(t, x, y). That is, to simplify the notation
below, use t = k∆t, x = i∆x and y = j∆y. Following this approach, we get

u(t+∆t, x, y)− u(t, x, y)

∆t

+
u(t, x, y)− u(t, x−∆x, y)

∆x

− u(t, x, y +∆y)− 2u(t, x, y) + u(t, x, y −∆y)

(∆y)2

= ut(t, x, y) +O(∆t) + ux(t, x, y) +O(∆x)− uyy(t, x, y) +O((∆y)2)

(31)

They don’t have to actually show that

u(t+∆t, x, y)− u(t, x, y)

∆t
= ut(t, x, y) +O(∆t)

for example. We did this in class. So, just accept this if they write it without proof.
Similarly, just accept the other derivative approximations if they are correct.

Now note that, since u(t, x, y) is the solution of the PDE (28),

ut(t, x, y) + ux(t, x, y)− uyy(t, x, y) = 0

Hence, (31) reduces to

u(t+∆t, x, y)− u(t, x, y)

∆t

+
u(t, x, y)− u(t, x−∆x, y)

∆x

− u(t, x, y +∆y)− 2u(t, x, y) + u(t, x, y −∆y)

(∆y)2

= O(∆t) +O(∆x) +O((∆y)2)

(32)

Therefore, the numerical method (29) is first-order consistent in t, first-order
consistent in x and second-order consistent in y.

Page 14 of 16 pages.

(c) We want to show that our numerical method (29), or equivalently (30), is stable.
There are several ways that the students could do this.

One thing you have to be careful about, though, is that the eigenvalue method
I showed them in class may not work in this case to show that (30) is stable,
because the associated iteration matrix may not have a full set of eigenvectors.
This is the case if they use either a forward or backward difference to discretize
the ∂u/∂x term. That is, for these differences, the iteration matrix is defective.
The eigenvalue method that we used in class requires that we write out the error
vector in terms of the eigenvectors of the iteration matrix. This is not possible if
the iteration matrix is defective.

(The eigenvalue method may work if they use a central difference for the ∂u/∂x
term, but I’m not completely sure about this.)

I think the easiest way to show that the method (29) is stable is to show that the
iteration matrix associated with the form (30) has norm 1. I showed the students
in class that in this case the method is stable. (See my lecture notes.)

For this approach, for each time level k, you put all the values uk
i,j into a vector

and then you can write (30) in vector form as

uk+1 = Auk + bk

where bk contains the boundary values. Now consider a “generic” row of A. It
will have the terms

∆t

(∆y)2
· · · ∆t

∆x

(

1− ∆t

∆x
− 2

∆t

(∆y)2

)

· · · ∆t

(∆y)2

where the term
(

1− ∆t

∆x
− 2

∆t

(∆y)2

)

is on the diagonal and the other terms are in different off-diagonal elements. Some
rows that correspond to uk

ij terms that are beside the boundary may be missing
some of the off-diagonal terms.

Now consider the infinity-norm (i.e., the max-norm) of A. If you take the absolute
value of all the elements in the generic row above and sum them across the row,
you get

∣

∣

∣

∣

1− ∆t

∆x
− 2

∆t

(∆y)2

∣

∣

∣

∣

+ 2
∆t

(∆y)2
+

∆t

∆x
(33)

If

1− ∆t

∆x
− 2

∆t

(∆y)2
≥ 0 (34)

then (33) reduces to

1− ∆t

∆x
− 2

∆t

(∆y)2
+ 2

∆t

(∆y)2
+

∆t

∆x
= 1 (35)

Page 15 of 16 pages.

For the rows that correspond to uk
ij terms that are beside the boundary the cor-

responding sum will be < 1.

Hence, from (35), ‖A‖∞ = 1, if constraint (34) is satisfied. Note also that the
constraint (34) is equivalent to

∆t

∆x
+ 2

∆t

(∆y)2
≤ 1 (36)

which is similar to the constraint

∆t

(∆y)2
≤ 1

2

that we got for the heat equation. Therefore, the numerical method (29), or
equivalently (30), is stable if (34), or equivalently (36), is satisfied.

I think the numerical method (29), or equivalently (30), is not stable if (34), or
equivalently (36), is not satisfied, but it is not necessary for the students to show
this. For an explicit method, they just need to get some condition on the ∆t, ∆x
and ∆y that ensures that the method is stable.

If their method is implicit, they may not need a constraint on the ∆y, but they
may still need a constraint on the ∆t and ∆x.

If you have trouble marking any of the solutions that the students give you, let
me know and I will help.

Page 16 of 16 pages.

