MMF 2021 MIDTERM TEST 3 November 2017.
This is a closed-book test: no books, no notes, no calculators, no phones, no tablets, no computers
(of any kind) allowed.

Do NOT turn this page over until you are TOLD to start.

Duration of the test: 3 hours.

Please fill-in ALL the information requested on the front cover of EACH test booklet that you
use.

The test consists of 4 pages, including this one. Make sure you have all 4 pages.

The test consists of 4 questions. Answer all 4 questions. The mark for each question is listed
at the start of the question.

Write your answers in the test booklets provided.
The test was written with the intention that you would have ample time to complete it. You will be
rewarded for concise well-thought-out answers, rather than long rambling ones. We seek quality

rather than quantity.

Moreover, an answer that contains relevant and correct information as well as irrelevant or incorrect
information will be awarded fewer marks than one that contains the same relevant and correct
information only.

Write legibly. Unreadable answers are worthless.

Page 1 of 4 pages.

1.

2.

[10 marks: 5 marks for each part]

Consider the expression

1+ sin?(z) — cos(z) for x € [-7F, 7] (1)

When evaluated using IEEE Double-Precision Floating-Point Arithmetic, the computed value
for expression (1) is inaccurate in a relative error sense for a range of values of x within the
interval [—7, 7], even though computed values of both sin(x) and cos(z) are accurate for all

x < [_%v }
T

(a) Give a specific value of z € [~7, 7] for which the computed value of expression (1) has a
very large relative error. Show that the relative error is orders of magnitude larger than
the machine epsilon (i.e., €macn) for IEEE Double-Precision Floating-Point Numbers.

INER|

(b) Find another expression that is mathematically equivalent to (1) that is accurate in a

relative error sense for all x € [-7, T].

Explain why you believe the computed value of your new expression is accurate in a

relative error sense for all x € [-7, T].

[5 marks]

In class, for a given A > 0, we generated a doubly-exponential pseudo-random variable, X,
with probability density function

flx) = %e_’\m forx € R (2)

by

(a) sampling a pseudo-random variable U; ~ Unif|0, 1] and setting
X = —llo (th)

(Note: X is an exponential pseudo-random variable associated with the probability
density function g(z) = Ae™ for z > 0.)

(b) sampling another pseudo-random variable Uy ~ Unif[0, 1] and setting

X if Uy <1/2
X = N
-X ifUy>1/2

This method requires us to sample two Unif[0, 1] pseudo-random variables for each doubly-
exponential pseudo-random variable, X, that it generates.

For a given A > 0, explain how you can generate a doubly-exponential pseudo-random vari-
able, X, with probability density function (2) using only one Unif[0, 1] pseudo-random variable
for each X that you generate.

Your method should not use any other pseudo-random variables, other than the one allowed
Unif[0, 1] pseudo-random variable, to generate X.

Page 2 of 4 pages.

3.

[5 marks]

Let f(z) = af(x), where f(z) > 0 for all 2 € R and o > 0 is the normalizing constant so that
J f(z)dx = 1. That is, f(z) is a probability density function. In many practical problems,
you know f (), but you don’t know «, and « is expensive to compute. However, you may
know another probability density function g(z), having a shape similar to f (z), for which

f(x) < Mg(x) for all x € R and it may be relatively easy to find such an M and to generate
a pseudo-random variable Y with probability density function g(z).

Although I don’t think I mentioned it in class and it is not discussed in Brandimarte’s text-
book, you can make a small modification to the acceptance-rejection method that we discussed
in class so that you can use this modified version of the acceptance-rejection method to gener-
ate pseudo-random variables X having probability density function f(z) without knowing
«. Explain how this can be done.

[10 marks: 5 marks each part|

In Assignment 4, you used Monte Carlo with Importance Sampling to price a deep-out-of-
the-money call option. You assumed that the underlying S; for the option satisfies the SDE

dSt == T‘Stdt + O'Stth

in the risk-neutral world, where r is the risk-free interest rate and o is the volatility. The
parameters for the option are:

the initial stock price is Sy = $80.00,
the strike price is K = $100.00
the time to maturity is T' = 0.25 years,

the risk-free interest rate is r = 0.02, and
the volatility is o = 0.2.

Another effective way to approximate the price of this deep-out-of-the-money call option is
to use Stratified Sampling. To keep things simple, use just two strata:

e one stratum corresponds to St < K, and

e the other stratum corresponds to Sp > K.
One thing that you might find useful is that the Z that satisfies the equation
K = Soe(r—ﬁ)T—&-o\/Té
is
2~ 2.2314

and

= F(2) ~0.98717
¢ = 1—p=0.012826

where F' is the CDF for the standard normal distribution (i.e., N(0,1)).

Page 3 of 4 pages.

(a)

Describe how you could use Monte Carlo Stratified Sampling with the two strata de-
scribed above to approximate efficiently the price of this deep-out-of-the-money call
option. In describing your algorithm, you can assume you have access to functions that
compute F, F~! (in MatLab these functions are normcdf and norminv, respectively) and
a pseudo-random number generator (such as rand in MatLab) that computes uniform
[0, 1] pseudo-random numbers.

Provide sufficient detail in the description of your Monte Carlo Stratified Sampling
method so that an experienced MatLab programmer with no knowledge of computational
finance can implement your method in MatLab.

Do you expect that your method described in part (a) will be significantly more efficient
than simple Monte Carlo for pricing this deep-out-of-the-money call option?

Be as quantative as possible in answering this question.

Page 4 of 4 pages.

