
Solution to the Midterm Test

1. [5 marks]

If x and y are positive real numbers and x ≈ y, but x 6= y, loge(x) ≈ loge(y), but
loge(x) 6= loge(y), Hence, the expression

loge(x)− loge(y) (1)

suffers from catastrophic cancellation. Therefore, you will not be able to evaluate the
expression (1) accurately if x ≈ y, but x 6= y.

The question notes that

loge(x)− loge(y) = loge(x/y)

You might hope that you can evaluate loge(x/y) more accurately than you can evaluate
loge(x)− loge(y), since loge(x/y) does not involve any cancellation. However, it turns
out that both expressions are about equally bad, as I explain below.

The hint suggests that you consider the conditioning of loge(x/y) for x ≈ y, whence
x/y ≈ 1. So, let u = x/y and note that u 6= 1, since we assumed above that x 6= y.
The assumption that u 6= 1 is important to avoid a division by zero when we compute
the relative error associated with w = loge(u). See (3) below.

Now note that, when we compute u = x/y, we get

û = fl(x/y) =
x

y
(1 + δ)

Assume the relative error
û− u

u
= δ

is small. Now let w = loge(x/y) = loge(u) and ŵ = loge(û). So, using our results from
class for the conditioning of evaluating w = f(u) = loge(u), we get that the associated
condition number is

uf ′(u)

f(u)
=

u d loge(u)
du

loge(u)
=

u 1
u

loge(u)
=

1

loge(u)
(2)

Since loge(u) = loge(x/y) ≈ 0 for u = x/y ≈ 1, the condition number (2) associated
with evaluating loge(u) = loge(x/y) is very large for u = x/y ≈ 1, whence x ≈ y.
Hence, since

ŵ − w

w
≈ uf ′(u)

f(u)

û− u

u
=

1

loge(u)

û− u

u
(3)

a small relative error in computing u = x/y can be transformed into a very large
relative error in computing w = loge(u) = loge(x/y).
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To apply a similar analysis to loge(x)−loge(y), assume that we change x to x̂ = x(1+δ)
for the same δ as above. Then let g(x) = loge(x) − loge(y), and consider the relative
error in g(x) that results from changing x to x̂:

g(x̂)− g(x)

g(x)

where you let x vary, but hold y fixed. In this case, the condition number is

xg′(x)

g(x)
=

x 1
x

loge(x)− loge(y)
=

1

loge(x/y)
(4)

So, you see that the condition number (2) of f(u) = loge(u) = loge(x/y) is the same
as the condition number (4) of g(x) = loge(x) − loge(y). Hence, if you make a small
relative change to x in either loge(x/y) or loge(x)− loge(y) and leave y unchanged, it
will produce an equally large relative change in both loge(x) − loge(y) and loge(x/y).
That is, both expressions loge(x)− loge(y) and loge(x/y) are equally badly conditioned.
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2. [5 marks]

The easiest (and, I think, best) way to generate a pseudo-random variable X with
the Cauchy(σ) distribution is to use the inverse CDF method. That is, generate at a
pseudo-random Uniform [0, 1] random variable, U , and then let

X = F−1(U) (5)

Equation (5) is equivalent to solving

F (X) = U

for X. That is, solve
1

2
+

1

π
arctan

(

X

σ

)

= U (6)

for X. The solution of (6) is

X = σ tan

(

π

(

U − 1

2

))

They might be able to use an acceptance-rejection method to compute X, but I think
that would be much harder than the solution I gave above. If anyone does this, let me
know and I can help you mark their answer.
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3. [5 marks]

Since both MC1 and MC2 use the same number of iterations, N , the computational
work required to evaluate them will be about the same. Actually, the computa-
tional work required to evaluate MC2 will be a little more than the computational
work required to evaluate MC1, since MC2 requires two independent random variables,
Xn,1 ∼ F and Xn,2 ∼ F , per iteration, while MC1 requires only one, Xn ∼ F . How-
ever, this will be a minor difference between the two simulations. The bigger difference
is that the variance associated with MC1 should be much smaller than the variance
associated with MC2, as we explain below. Hence, the confidence interval for MC1

should be much smaller than the confidence interval for MC2.

To be more specific,

Var[MC1] =
1

N

(

Var [g(X)]− 2Cov [g(X), h(X)] + Var [h(X)]
)

(7)

while

Var[MC2] =
1

N

(

Var [g(X)] + Var [h(X)]
)

(8)

where, in both (7) and (8), X ∼ F .

I’ll show below a derivation of both (7) and (8), but first note that, from a comparison
of (7) and (8), we see immediately that we should expect

Var[MC1] < Var[MC2]

since we should expect that
Cov [g(X), h(X)] > 0

because of our assumption that g(x) ≈ h(x) for all x. Indeed, we should expect that

Var[MC1] ≪ Var[MC2]

since, in addition, we should expect that

Cov [g(X), h(X)] ≈ Var [g(x)] ≈ Var [h(x)]

because of our assumption that g(x) ≈ h(x) for all x.

I give a justification of (7) and (8) below. My justification is much longer than I expect
the students’ justifications will be. They can leave out any details from my justification
that you think are reasonably obvious.

To begin, for a random variable X ∼ F , let

µg = E[g(X)]

µh = E[h(X)]

µ = E[g(X)− h(X)] = E[g(X)]− E[h(X)] = µg − µh

(9)
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First note that
E[MC1] = E[MC2] = µ (10)

They could just state (10), without proving it, since we proved it in class. However,
to make this solution self-contained, I show below that (10) holds.

To this end, note that, since Xn ∼ F for n = 1, 2, . . . , N ,

E[g(Xn)− h(Xn)] = µ for n = 1, 2, . . . , N

Therefore,

E[MC1] = E

[

1

N

N
∑

n=1

(

g(Xn)− h(Xn)
)

]

=
1

N

N
∑

n=1

E[g(Xn)− h(Xn)]

=
1

N

N
∑

n=1

µ

= µ

Similarly, since Xn,1 ∼ F and Xn,2 ∼ F for n = 1, 2, . . . , N ,

E[g(Xn,1)] = µg for n = 1, 2, . . . , N

E[h(Xn,2)] = µh for n = 1, 2, . . . , N

µ = µg − µh

from (9). Therefore,

E[MC2] = E

[

1

N

N
∑

n=1

g(Xn,1)−
1

N

N
∑

n=1

h(Xn,2)

]

=
1

N

N
∑

n=1

E[g(Xn,1)]−
1

N

N
∑

n=1

E[h(Xn,2)]

=
1

N

N
∑

n=1

µg −
1

N

N
∑

n=1

µh

= µg − µh

= µ

Now note that

Var[MC1] =
1

N
Var[g(X)− h(X)] (11)
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where X ∼ F . Again, the students could just state (11) without proof, since we proved
it in class. However, to make this solution self-contained, I show below that (11) holds.

To this end, recall that Xn ∼ F for n = 1, 2, . . . , N and the Xn are independent.
Hence, if m 6= n, then

E

[(

g(Xm)− h(Xm)− µ
)(

g(Xn)− h(Xn)− µ
)]

= E

[(

g(Xm)− h(Xm)− µ
)]

E

[(

g(Xn)− h(Xn)− µ
)]

= 0

(12)

since Xm and Xn are independent for m 6= n, whence the random variables Y =
g(Xm) − h(Xm) − µ and Z = g(Xn) − h(Xn) − µ are also independent for m 6= n, so
E[Y Z] = E[Y ]E[Z]. In addition, from (9),

E

[(

g(Xm)− h(Xm)− µ
)]

= 0

E

[(

g(Xn)− h(Xn)− µ
)]

= 0
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Therefore,

Var[MC1] = Var

[

1

N

N
∑

n=1

(

g(Xn)− h(Xn)
)

]

= E





((

1

N

N
∑

n=1

(

g(Xn)− h(Xn)
)

)

− µ

)2




= E





(

1

N

N
∑

n=1

(

g(Xn)− h(Xn)− µ
)

)2




=
1

N2
E

[(

N
∑

n=1

(

g(Xn)− h(Xn)− µ
)

)(

N
∑

n=1

(

g(Xn)− h(Xn)− µ
)

)]

=
1

N2
E

[(

N
∑

m=1

(

g(Xm)− h(Xm)− µ
)

)(

N
∑

n=1

(

g(Xn)− h(Xn)− µ
)

)]

=
1

N2
E

[

N
∑

m=1

N
∑

n=1

((

g(Xm)− h(Xm)− µ
)(

g(Xn)− h(Xn)− µ
))

]

=
1

N2

N
∑

m=1

N
∑

n=1

E

[(

g(Xm)− h(Xm)− µ
)(

g(Xn)− h(Xn)− µ
)]

=
1

N2

(

N
∑

n=1

E

[(

g(Xn)− h(Xn)− µ
)(

g(Xn)− h(Xn)− µ
)]

+
N
∑

m=1

N
∑

n=1
n 6=m

E

[(

g(Xm)− h(Xm)− µ
)(

g(Xn)− h(Xn)− µ
)]







=
1

N2

N
∑

n=1

E

[(

g(Xn)− h(Xn)− µ
)(

g(Xn)− h(Xn)− µ
)]

=
1

N2

N
∑

n=1

E

[

(

g(Xn)− h(Xn)− µ
)2
]

=
1

N2

N
∑

n=1

Var [g(Xn)− h(Xn)]

=
1

N2

N
∑

n=1

Var [g(X)− h(X)]

=
1

N
Var [g(X)− h(X)]

(13)
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where we used (12) in the fifth equation from the bottom in the sequence of equations
(13) and

Var [g(Xn)− h(Xn)] = Var [g(X)− h(X)] (14)

in the second equation from the bottom in the sequence of equations (13). Note that
(14) holds because both Xn ∼ F and X ∼ F .

Now, using (9), we can expand (11) to get

Var[MC1] =
1

N
Var[g(X)− h(X)]

=
1

N
E
[

(g(X)− h(X)− µ)2
]

=
1

N
E
[

(g(X)− h(X)− (µg − µh))
2
]

=
1

N
E
[

((g(X)− µg)− (h(X)− µh))
2
]

=
1

N
E
[

(g(X)− µg)
2 − 2(g(X)− µg)(h(X)− µh) + (h(X)− µh))

2
]

=
1

N

(

E
[

(g(X)− µg)
2
]

− 2E [(g(X)− µg)(h(X)− µh)] + E
[

(h(X)− µh)
2
]

)

=
1

N

(

Var [g(X)]− 2Cov [g(X), h(X)] + Var [h(X)]
)

Therefore, we have verified (7).

Equation (8) is a little different from any results that we proved in class, but it is not
too different. Therefore, the students should give a little justification of why (8) is
true, but their justification need not be as detailed as the one I give below.

To verify (8), assume Xn,1 ∼ F , Xn,2 ∼ F for n = 1, 2, . . . , N and also assume that all
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the {Xn,1, Xn,2 : n = 1, 2, . . . , N} are independent. Hence,

Var[MC2] = Var

[

1

N

N
∑

n=1

g(Xn,1)−
1

N

N
∑

n=1

h(Xn,2)

]

= E





((

1

N

N
∑

n=1

g(Xn,1)−
1

N

N
∑

n=1

h(Xn,2)

)

− µ

)2




= E





((

1

N

N
∑

n=1

g(Xn,1)−
1

N

N
∑

n=1

h(Xn,2)

)

− (µg − µh)

)2




= E





((

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

−
(

1

N

N
∑

n=1

(h(Xn,2)− µh)

))2




= E

[((

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

−
(

1

N

N
∑

n=1

(h(Xn,2)− µh)

))

×
((

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

−
(

1

N

N
∑

n=1

(h(Xn,2)− µh)

))]

= E

[((

1

N

N
∑

m=1

(g(Xm,1)− µg)

)

−
(

1

N

N
∑

m=1

(h(Xm,2)− µh)

))

×
((

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

−
(

1

N

N
∑

n=1

(h(Xn,2)− µh)

))]

= E

[(

1

N

N
∑

m=1

(g(Xm,1)− µg)

)(

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

−
(

1

N

N
∑

m=1

(g(Xm,1)− µg)

)(

1

N

N
∑

n=1

(h(Xn,2)− µh)

)

−
(

1

N

N
∑

m=1

(h(Xm,2)− µh)

)(

1

N

N
∑

n=1

(g(Xn,1)− µg)

)

+

(

1

N

N
∑

m=1

(h(Xm,2)− µh)

)(

1

N

N
∑

n=1

(h(Xn,2)− µh)

)]

(15)
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Carrying on from (15) above, we get

Var[MC2] = E

[

1

N2

N
∑

m=1

N
∑

n=1

(g(Xm,1)− µg)(g(Xn,1)− µg)

− 1

N2

N
∑

m=1

N
∑

n=1

(g(Xm,1)− µg)(h(Xn,2)− µh)

− 1

N2

N
∑

m=1

N
∑

n=1

(h(Xm,2)− µh)(g(Xn,1)− µg)

+
1

N2

N
∑

m=1

N
∑

n=1

(h(Xm,2)− µh)(h(Xn,2)− µh)

]

=
1

N2

(

N
∑

m=1

N
∑

n=1

E[(g(Xm,1)− µg)(g(Xn,1)− µg)]

−
N
∑

m=1

N
∑

n=1

E[(g(Xm,1)− µg)(h(Xn,2)− µh)]

−
N
∑

m=1

N
∑

n=1

E[(h(Xm,2)− µh)(g(Xn,1)− µg)]

+
N
∑

m=1

N
∑

n=1

E[(h(Xm,2)− µh)(h(Xn,2)− µh)]

)

(16)

Now note that, since Xm,1 and Xn,2 are independent for all m = 1, 2, . . . , N and
n = 1, 2, . . . , N , (g(Xm,1) − µg) and (h(Xn,2) − µh) are also independent for all m =
1, 2, . . . , N and n = 1, 2, . . . , N . In addition, since Xm,1 ∼ F and Xn,2 ∼ F for all
m = 1, 2, . . . , N and n = 1, 2, . . . , N , it follows from (9) that

E[(g(Xm,1)− µg)] = 0 for all m = 1, 2, . . . , N

E[(h(Xn,2)− µh)] = 0 for all n = 1, 2, . . . , N

Therefore,

E[(g(Xm,1)− µg)(h(Xn,2)− µh)]

= E[(g(Xm,1)− µg)]E[(h(Xn,2)− µh)]

= 0

for all m = 1, 2, . . . , N and n = 1, 2, . . . , N , Similarly,

E[(h(Xm,2)− µh)(g(Xn,1)− µg)] = 0
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for all m = 1, 2, . . . , N and n = 1, 2, . . . , N . Therefore, carrying on from (16) above,
we get

Var[MC2] =
1

N2

(

N
∑

m=1

N
∑

n=1

E[(g(Xm,1)− µg)(g(Xn,1)− µg)]

+
N
∑

m=1

N
∑

n=1

E[(h(Xm,2)− µh)(h(Xn,2)− µh)]

) (17)

Since Xm,1 and Xn,1 are independent for m 6= n, it follows from an argument similar
to the one above that

E[(g(Xm,1)− µg)(g(Xn,1)− µg)] = 0

for m 6= n. Similarly,

E[(h(Xm,2)− µh)(h(Xn,2)− µh)] = 0

for m 6= n. Hence, (17) reduces to

Var[MC2] =
1

N2

(

N
∑

n=1

E[(g(Xn,1)− µg)(g(Xn,1)− µg)]

+
N
∑

n=1

E[(h(Xn,2)− µh)(h(Xn,2)− µh)]

)

=
1

N2

(

N
∑

n=1

E[(g(Xn,1)− µg)
2]

+
N
∑

n=1

E[(h(Xn,2)− µh)
2]

)

=
1

N2

(

N
∑

n=1

Var[g(Xn,1)] +
N
∑

n=1

Var[h(Xn,2)]

)

=
1

N2

(

N
∑

n=1

Var[g(X)] +
N
∑

n=1

Var[h(X)]

)

=
1

N

(

Var[g(X)] + Var[h(X)]
)

(18)

where we used in the second to last equation in the sequence of equations (18) that

Var[g(Xn,1)] = Var[g(X)]

Var[h(Xn,2)] = Var[h(X)]

since Xn,1 ∼ F , Xn,2 ∼ F and X ∼ F . Therefore, we have verified that (8) holds.
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4. [5 marks]

As noted in the question, the option price at time t = 0 is

P0 = E[e−rTh(S
(1)
T , S

(2)
T )] (19)

where
h(S

(1)
T , S

(2)
T ) = max(S

(1)
T − S

(2)
T − K̂, 0) (20)

for some constant K̂. So, combining (19) and (20), we get

P0 = E[e−rT max(S
(1)
T − S

(2)
T − K̂, 0)] (21)

Also, the question notes that

S
(1)
T = S

(1)
0 e(r−σ2

1/2)T+σ1W
(1)
T

S
(2)
T = S

(2)
0 e(r−σ2

2/2)T+σ2W
(2)
T

and the correlated Brownian motions W
(1)
T and W

(2)
T satisfy

W
(1)
T =

√
T
(

√

1− ρ2Z(1) + ρZ(2)
)

W
(2)
T =

√
TZ(2)

where Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1) and Z(1) and Z(2) are independent. Therefore,

S
(1)
T = S

(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

S
(2)
T = S

(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2)

(22)

where Z(1) ∼ N(0, 1), Z(2) ∼ N(0, 1) and Z(1) and Z(2) are independent. Substituting

the S
(1)
T and S

(2)
T from (22) into (21), we get

P0 = E[e−rT max(S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

− S
(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2) − K̂, 0)]

(23)

Now we can apply conditional expectation to (23) to get

P0 = EZ(2) [EZ(1) [e−rT max(S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρZ(2)
)

− S
(2)
0 e(r−σ2

2/2)T+σ2

√
TZ(2) − K̂, 0)|Z(2)]]

(24)

where the outer expectation is with respect to Z(2) and the inner expectation is with
respect to Z(1). To clarify (24) a little, we introduce a deterministic variable z2 and
re-write (24) as

P0 = EZ(2) [EZ(1) [e−rT max(S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρz2

)

− S
(2)
0 e(r−σ2

2/2)T+σ2

√
Tz2 − K̂, 0)|z2 = Z(2)]]

(25)
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Now note that

S
(1)
0 e(r−σ2

1/2)T+σ1

√
T
(√

1−ρ2Z(1)+ρz2

)

= S
(1)
0 e(r−σ2

1(1−ρ2)/2)T−σ2
1ρ

2T/2+σ1

√
1−ρ2

√
TZ(1)+σ1ρ

√
Tz2

= S
(1)
0 e−σ2

1ρ
2T/2+σ1ρ

√
Tz2e(r−σ2

1(1−ρ2)/2)T+σ1

√
1−ρ2

√
TZ(1)

= S0(z2)e
(r−σ2/2)T+σ

√
TZ(1)

where

S0(z2) = S
(1)
0 e−σ2

1ρ
2T/2+σ1ρ

√
Tz2

σ = σ1

√

1− ρ2
(26)

In addition, let

K(z2) = S
(2)
0 e(r−σ2

2/2)T+σ2

√
Tz2 + K̂ (27)

So, we can re-write the inner expectation in (25) as

EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)] (28)

Note that (28) is the price of a “vanilla” call option with strike price K(z2), expiry
t = T and underlying asset St that starts from S0(z2) at time t = 0 and evolves in time
according to the SDE

dSt = rStdt+ σStdWt

Therefore,

Call = EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)]

where

[Call, Put] = blsprice(S0(z2), K(z2), r, T, σ)

and σ = σ1

√

1− ρ2. So, write a little wrapper function blspriceCall such that

Call = blspriceCall(S0(z2), K(z2), r, T, σ)

where Call is given above by blsprice with the same parameters. Therefore,

EZ(1) [e−rT max(S0(z2)e
(r−σ2/2)T+σ

√
TZ(1) −K(z2), 0)]

= blspriceCall(S0(z2), K(z2), r, T, σ)
(29)

So, we can use (29) to rewrite (25) as

P0 = EZ(2) [blspriceCall(S0(Z2), K(Z2), r, T, σ)] (30)

We can use (30) as the basis for the Monte Carlo simulation below to price this exchange
spread option.

Page 13 of 14 pages.



(a) For n = 1, 2, . . . , N ,

i. Generate Zn ∼ N(0, 1) using a function such as MatLab’s randn

ii. Let
Yn = blspriceCall(S0(Zn), K(Zn), r, T, σ)

where S0(z2) and σ are given in (26) and K(z2) is given in (27).

(b) Approximate the option price P0 by

P̂0 =
1

N

N
∑

n=1

Yn

Page 14 of 14 pages.


