
Solution to the MMF 2021 Midterm Test for 2019

1. [10 marks: 5 marks for each part]

I asked the students to consider the expression

√
1 + x−

√
1− x (1)

for x ∈ [−1, 1].

(a) I asked them for what range of values of x does expression (1) produce inaccurate results in IEEE
double-precision floating-point arithmetic?
(By inaccurate I mean that the absolute value of the relative error in the floating-point approxi-
mation to (1) is orders of magnitude larger than machine epsilon for this floating-point number
system.)

I asked them to justify their answer.

The loss of accuracy in (1) arises from catastrophic cancellation in the subtraction between
√
1 + x

and
√
1− x when |x| is small, but nonzero, in which case both

√
1 + x ≈ 1 and

√
1− x ≈ 1.

For example, suppose x is a nonzero, normalized IEEE floating-point number satisfying
|x| < 1

4 ǫmach. Then both fl(1 + x) = 1 and fl(1 − x) = 1. Consequently, fl(
√
1 + x) = 1 and

fl(
√
1− x) = 1. Therefore,

A = fl(
√
1 + x−

√
1− x) = 0

However, since x 6= 0, the true value of (1) is not 0. That is,

T =
√
1 + x−

√
1− x 6= 0

Therefore, the relative error in the computation of (1) is

A− T

T
= −1

So, in this case, the absolute value of the relative error in the floating-point approximation to (1) is
orders of magnitude larger than machine epsilon, which for IEEE double-precision floating-point
arithmetic is about 2.22 · 10−16. That is, the computed value of (1) is extremely inaccurate in a
relative error sense.

Note that it is important that they exclude x = 0, since, for x = 0, both the exact and computed
values for (1) are 0. Although, the relative error in this case is technically 0/0, it seems reasonable
to extend the definition in this case to say that the relative error is 0, since the absolute error is
0.

Some students might think the computation of (1) will be inaccurate if x ≈ 1 or x ≈ −1, since
in this case there will be cancellation in the computation of either 1 − x or 1 + x, respectively.
However, this will not cause a serious loss of accuracy in the computation of (1).

The students don’t have to give as extreme an example as I have above, but they should show
that there is a nonzero x, with |x| small, for which the absolute value of the relative error in the
floating-point approximation to (1) is orders of magnitude larger than machine epsilon.

Marking: give them 3 marks for identifying that the computed value of (1) will be very inaccurate
for a nonzero x satisfying |x| ≪ 1. Given them an additional 2 marks for correctly justifying their
answer.

Of course, you can give them part marks for each of the points above if their answer is on the
right track, but not completely correct.
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(b) I asked the students to give another expression that is mathematically equal to (1), but is compu-
tationally much more effective than (1) in the sense that it is accurate in IEEE double-precision
floating-point arithmetic for all x ∈ [−1, 1].
(By accurate I mean that the the absolute value of the relative error associated with your new
floating-point expression is less than 10 times machine epsilon.)

I also asked them to justify their answer.

One way to find another expression that is mathematically equal to (1), but is computationally
much more effective than (1), is to multiply (1) by what I sometimes call the conjugate of (1) as
follows.

√
1 + x−

√
1− x =

(√
1 + x−

√
1− x

)

√
1 + x+

√
1− x√

1 + x+
√
1− x

=
(1 + x)− (1− x)√
1 + x+

√
1− x

=
2x√

1 + x+
√
1− x

We show below that
2x√

1 + x+
√
1− x

(2)

is computationally much more effective than (1) in the sense that it is accurate in IEEE double-
precision floating-point arithmetic for all x ∈ [−1, 1].

To see that (2) is accurate in IEEE double-precision floating-point arithmetic for all x ∈ [−1, 1],
consider

fl

(

2x√
1 + x+

√
1− x

)

=
2x(1 + δ1)

(

√

(1 + x)(1 + δ2)(1 + δ3) +
√

(1− x)(1 + δ4)(1 + δ5)
)

(1 + δ6)
(1 + δ7)

(3)

where |δi| ≤ 1
2 ǫmach for i = 1, 2, . . . , 7.

First note that
√

(1 + x)(1 + δ2) =
√
1 + x

√

1 + δ2

=
√
1 + x (1 + δ̂2)

(4)

for some δ̂2 satisfying |δ̂2| ≤ 1
2 ǫmach, and

√

(1− x)(1 + δ4) =
√
1− x

√

1 + δ4

=
√
1− x (1 + δ̂4)

(5)

for some δ̂4 satisfying |δ̂4| ≤ 1
2 ǫmach. I explained (4) and (5) to them in class. So, it is fine if they

just use them here without proof.

Substitute (4) and (5) into (3) to get

fl

(

2x√
1 + x+

√
1− x

)

=
2x(1 + δ1)

(√
1 + x (1 + δ̂2)(1 + δ3) +

√
1− x (1 + δ̂4)(1 + δ5)

)

(1 + δ6)
(1 + δ7)

(6)
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Since both
√
1 + x ≥ 0 and

√
1− x ≥ 0 for all x ∈ [−1, 1], it follows that

√
1 + x (1 + δ̂2)(1 + δ3) +

√
1− x (1 + δ̂4)(1 + δ5)

=
(√

1 + x+
√
1− x

)

(1 + δ̃2)(1 + δ̃3)
(7)

for some δ̃2 and δ̃3 satisfying |δ̃2| ≤ 1
2 ǫmach and |δ̃3| ≤ 1

2 ǫmach. I explained (7) in class. So, it is
fine if they just use it here without proof.

Substitute (7) into (6) to get

fl

(

2x√
1 + x+

√
1− x

)

=
2x(1 + δ1)

(√
1 + x+

√
1− x

)

(1 + δ̃2)(1 + δ̃3)(1 + δ6)
(1 + δ7)

=
2x√

1 + x+
√
1− x

(1 + δ1)(1 + δ7)

(1 + δ̃2)(1 + δ̃3)(1 + δ6)

(8)

I told them in class, that, if |δ| ≤ 1
2 ǫmach and ǫmach ≪ 1, then

1

1 + δ
= 1 + δ̌ (9)

for some δ̌ satisfying |δ̌| ≤ 1.01
2 ǫmach. So, using (9) in (8) three times, we get

fl

(

2x√
1 + x+

√
1− x

)

=
2x√

1 + x+
√
1− x

(1 + δ1)(1 + δ7)(1 + δ̌2)(1 + δ̌3)(1 + δ̌6)

(10)

Now note that

(1 + δ1)(1 + δ7)(1 + δ̌2)(1 + δ̌3)(1 + δ̌6)

= 1 + δ1 + δ7 + δ̌2 + δ̌3 + δ̌6 + h.o.t.

= 1 + δ

(11)

where
δ = δ1 + δ7 + δ̌2 + δ̌3 + δ̌6 + h.o.t

and h.o.t. stands for higher order terms. These are terms such as δ1δ7, δ1δ̌2, etc. Note that

|δ| = |δ1 + δ7 + δ̌2 + δ̌3 + δ̌6 + h.o.t|
≤ |δ1|+ |δ7|+ |δ̌2|+ |δ̌3|+ |δ̌6|+ |h.o.t|

(12)

Since δi ≤ 1
2 ǫmach for i = 1, 7 and δ̌i ≤ 1.01

2 ǫmach for i = 2, 3, 6, it follows that

|δ1|+ |δ7|+ |δ̌2|+ |δ̌3|+ |δ̌6| ≤
5.03

2
ǫmach (13)

I also told them in class that, if ǫmach ≪ 1, they can bound the h.o.t by

|h.o.t| ≤ 1

2
ǫmach (14)
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(Actually, since ǫmach = 2.22 · 10−16, you can get a much tighter bound than (14), but (14) is fine
for our purposes.) Therefore, using (12), (13) and (14), we get

|δ| ≤ 6.03

2
ǫmach = 3.015 ǫmach

Hence, we have shown that

fl

(

2x√
1 + x+

√
1− x

)

=
2x√

1 + x+
√
1− x

(1 + δ)

for some δ satisfying |δ| ≤ 3.015 ǫmach. Since δ is the relative error in the computation of

2x√
1 + x+

√
1− x

we have shown that (2) is accurate (in a relative error sense) in IEEE double-precision floating-
point arithmetic for all x ∈ [−1, 1].

It’s fine is they get a bound on the relative error that is less tight than the one I have developed
above. Recall that I asked them to show only that the relative error associated with their new
floating-point expression is less than 10 times machine epsilon.)

Marking: give them 2 marks for deriving (2) and 3 marks for explaining why it is accurate.

Of course, you can give them part marks for each of the points above if their answer is on the
right track, but not completely correct.

Some students might give a “hand-wavy” argument for why (2) is accurate. Given them 0, 1 or
2 (usually 1 or 2) for this, depending on how believable you find their argument.
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2. [5 marks]

The proof that acceptance-rejection method given in this question for a discrete random variable is
very similar to the proof I gave in class for the acceptance-rejection method for continuous random
variable.

For the random variable X generated by the method given in this question,

P(X = k) = P

(

Y = k
∣

∣U ≤ p(Y )

c q(Y )

)

=

P

(

Y = k & U ≤ p(Y )

c q(Y )

)

P

(

U ≤ p(Y )

c q(Y )

)

(15)

Note that

P

(

U ≤ p(Y )

c q(Y )

)

=

∞
∑

k=0

P

(

U ≤ p(Y )

c q(Y )

∣

∣Y = k

)

P (Y = k)

=

∞
∑

k=0

P

(

U ≤ p(k)

c q(k)

)

P (Y = k)

=

∞
∑

k=0

p(k)

c q(k)
q(k) (since U ∼ Unif[0, 1])

=
1

c

∞
∑

k=0

p(k)

=
1

c

(16)

Combining (15) and (16), we get

P(X = k) =

P

(

Y = k & U ≤ p(Y )

c q(Y )

)

1/c

= cP

(

Y = k & U ≤ p(Y )

c q(Y )

)

= cP

(

Y = k & U ≤ p(k)

c q(k)

)

= cP(Y = k)P

(

U ≤ p(k)

c q(k)

)

(since Y and U are independent)

= c q(k)
p(k)

c q(k)
(since U ∼ Unif[0, 1])

= p(k)

Therefore, we have shown P(X = k) = p(k) as required.

Marking: use the usual marking scheme:

• 5 marks if essentially everything is correct,

• 4 marks if most everything is correct, but there are a few minor errors,
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• 3 marks if they are clearly on the right path, but there are some significant errors,

• 2 marks if they have a good start, but it is far from a correct answer,

• 1 mark if there is anything useful in their answer,

• 0 marks if there is nothing useful in their answer.
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3. [5 marks]

Our goal is to find a method that generates a random variable, X, with probability density function
(pdf) g(x) that requires only one Unif[0, 1] random variable for each X that it generates. The key to
finding such a method is to use the inverse transform method with the cumulative distribution function
(CDF) G(x) associated with the probability density function (pdf) g(x).

Recall that the pdf g(x) for this question is defined as follows. If k ∈ {1, 2, . . . , L} and
x ∈ [(k − 1)/L, k/L), then

g(x) = Lqk

where, in addition, we set g(1) = LqL. It is noted in the question that

qk > 0

and
L
∑

k=1

qk = 1

See the question for a confirmation of this.

So, the CDF G(x) associated with the pdf g(x) is

G(x) =

∫ x

0

g(t) dt

Note that, if x ∈ [(k − 1)/L, k/L), then

G(x) =

∫ x

0

g(t) dt

=

∫ (k−1)/L

0

g(t) dt+

∫ x

(k−1)/L

g(t) dt

=
k−1
∑

j=1

∫ j/L

(j−1)/L

g(t) dt+

∫ x

(k−1)/L

g(t) dt

=

k−1
∑

j=1

∫ j/L

(j−1)/L

Lqj dt+

∫ x

(k−1)/L

Lqk dt

=

k−1
∑

j=1

Lqj
1

L
+ Lqk(x− (k − 1)/L)

=
k−1
∑

j=1

qj + qk(Lx− (k − 1))

(17)

and

G(1) =

∫ 1

0

g(t) dt

=

L
∑

j=1

qj

= 1
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Note that, in (17) above, if k = 1, we take

k−1
∑

j=1

qj =

0
∑

j=1

qj = 0

Now the inverse transform method works as follows.

(i) Generate a U ∼ Unif[0, 1]

(ii) Set X = G−1(U)

We need to expand a little on step (ii) above.

First note that X = G−1(U) is equivalent to G(X) = U . So, given U from step (i), we need to solve
G(X) = U for X in step (ii). To this end, note that if

k−1
∑

j=1

qj ≤ U <

k
∑

j=1

qj

then there is an X ∈ [(k − 1)/L, k/L) such that

G(X) = U

since

G((k − 1)/L) =

k−1
∑

j=1

qj ≤ U

G(k/L) =

k
∑

j=1

qj > U

and G(X) is continuous.

To solve G(X) = U , given that X ∈ [(k − 1)/L, k/L), note

G(X) =
k−1
∑

j=1

qj + qk(LX − (k − 1)) = U

is equivalent to

qk(LX − (k − 1)) = U −
k−1
∑

j=1

qj

whence

X =
k − 1

L
+

1

Lqk



U −
k−1
∑

j=1

qj





So we can rewrite that inverse transform method above as follows.
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(i) Generate a U ∼ Unif[0, 1]

(iia) Find k ∈ {1, 2, . . . , L} such that
k−1
∑

j=1

qj ≤ U <

k
∑

j=1

qj

If U = 1, set k = L.

(iib) Set

X =
k − 1

L
+

1

Lqk



U −
k−1
∑

j=1

qj





Note that the formula for X in Step (iib) works correctly for U = 1, since in this case, k = L from
step (iia) and so

X =
L− 1

L
+

1

LqL



U −
L−1
∑

j=1

qj





=
L− 1

L
+

1

LqL



1−
L−1
∑

j=1

qj





=
L− 1

L
+

1

LqL
(qL)

=
L− 1

L
+

1

L
= 1

Marking: give them 2 marks if they realize that they should use the inverse transform method and
another 3 marks if they develop a method similar to my method at the top of this page.

Of course, you can give them part marks for each of the points above if their answer is on the right
track, but not completely correct.
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4. [15 marks: 5 marks for each part]

First I’ll repeat the question. My answer begins on page 12.

In many applications, you need to compute tail probabilities, P(X ≥ x). For example, if L is the loss
associated with defaults in a portfolio of bonds over some time period T , you might want to compute
P(L ≥ l). This is required, for example, if you want to compute the Value-at-Risk associated with the
portfolio.

However, to keep things simple in this question, we’ll focus on computing P(X ≥ 10), where X ∼
N(0, 1) is a standard normal random variable (i.e., X is a normal random variable with mean 0 and
variance 1). You might think that you can compute P(X ≥ 10) from the CDF, Φ(x), of the normal
distribution, since P(X ≥ 10) = 1 − Φ(10). Although this is true in theory, if you evaluate this in
MatLab, you’ll find that the computed value of Φ(10) is 1, whence the computed value of 1 − Φ(10)
is 0. So, this does not lead to a good approximation to P(X ≥ 10). The reason for this is that
P(X ≥ 10) ≈ 10−23. So, your computer would need to carry the equivalent of at least 23 decimal digits
to be able to differentiate Φ(10) from 1.

Even if we could compute Φ(10) to sufficient accuracy, this would not help in the more realistic example
P(L ≥ l) mentioned above. So, let’s forget about computing P(X ≥ 10) from Φ(x) for now.

Another approach is to approximate P(X ≥ 10) by a Monte Carlo simulation. To this end, note that

P(X ≥ 10) =

∫

∞

10

f(x) dx =

∫

∞

−∞

H10(x)f(x) dx = Ef [H10(X)]

where X ∼ N(0, 1),

f(x) =
e−x2/2

√
2π

and

H10(x) =

{

1 if x ≥ 10
0 if x < 10

Hence, we can write a very simple Monte Carlo simulation to approximate
p = P(X ≥ 10) = Ef [H10(X)]:

p̂ =
1

N

N
∑

i=1

H10(Xi) (18)

where Xi ∼ N(0, 1). Suppose we want p̂ to approximate p = P(X ≥ 10) to at least two significance
digits with a 95% confidence level.

(a) First show that the variance of H10(X) satisfies

Varf [H10(X)] = Ef [(H10(X)− p)2] = p− p2 (19)

Then use Varf [H10(X)] (even if you were not able to verify (19)) to estimate how large you need
to choose N in (18) to achieve this level of accuracy.

Your estimation of N needs to be of the right order of magnitude only. So, you can use zδ/2 ≈ 2
for the 95% confidence level and p ≈ 10−23 in computing your estimate of N .

Your value of N computed in part (a) above should be so large that the Monte Carlo simulation (18) is
completely impractical. However, we can use importance sampling to get a much more efficient Monte
Carlo simulation. To this end, let

g(x) =
e−(x−10)2/2

√
2π
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be the probability density function for Y ∼ N(10, 1). Then

p = P(X ≥ 10) =

∫

∞

10

f(x) dx

=

∫

∞

−∞

H10(x)f(x) dx

=

∫

∞

−∞

H10(x)
f(x)

g(x)
g(x) dx

= Eg

[

H10(Y )
f(Y )

g(Y )

]

(20)

where X ∼ N(0, 1) and Y ∼ N(10, 1).

(b) What is the Monte-Carlo importance-sampling simulation associated with

Eg[H10(Y ) f(Y )
g(Y ) ] in (20) above to approximate p = P(X ≥ 10)?

Clearly state what random variables you are using in this Monte Carlo simulation and how you
would compute them if you have a function such as MatLab’s randn that returns N(0, 1) normal
random variables.

Let

Varg

[

H10(Y )
f(Y )

g(Y )

]

= Eg

[

(

H10(Y )
f(Y )

g(Y )
− p

)2
]

where Y ∼ N(10, 1). To assess the efficiency of the Monte-Carlo importance-sampling simulation in
part (b) above compared to the simple Monte-Carlo simulation (18), we need to estimate how much

smaller the variance Varg

[

H10(Y ) f(Y )
g(Y )

]

is than the variance Varf [H10(X)].

It does not seem too easy to get a closed form expression for Varg

[

H10(Y ) f(Y )
g(Y )

]

, but it is not too hard

to show

Varg

[

H10(Y )
f(Y )

g(Y )

]

≤ e−50p− p2 (21)

Thus, Varg

[

H10(Y ) f(Y )
g(Y )

]

is about e−50 ≈ 2× 10−22 times smaller than Varf [H10(X)]. This is quite a

significant variance reduction!

(c) Show that (21) is true.

Then use (21) (even if you were not able to prove it is true) to estimate how large you need
to choose N in your Monte-Carlo importance-sampling simulation to achieve the same level of
accuracy as was specified in part (a) above.

Your estimation of N needs to be of the right order of magnitude only. So, you can use zδ/2 ≈ 2
for the 95% confidence level, p ≈ 10−23 and e−50 ≈ 2× 10−22 in computing your estimate of N .
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My answer begins here.

(a) Since p = Ef [H10(X)],

Varf [H10(X)] = Ef [(H10(X)− Ef [H10(X)])2]

= Ef [(H10(X)− p)2]

= Ef [(H10(X))2]− p2

= Ef [H10(X)]− p2

= p− p2

where I used (H10(X))2 = H10(X), since H10(X) is either 0 or 1.

The 95% confidence interval for p is

(

p̂− zδ/2 σf√
N

, p̂+
zδ/2 σf√

N

)

where σ2
f = Varf [H10(X)] = p− p2. So, if we want p̂ to approximate p to at least two significance

digits with a 95% confidence level, we need to choose N such that

zδ/2 σf√
N

. 10−2p̂ (22)

Since we want to choose N as small as possible, we should choose N to satisfy

zδ/2 σf√
N

≈ 10−2p̂ (23)

That is,

N ≈
104 z2δ/2 σ

2
f

p̂2

Recall that zδ/2 ≈ 2, p̂ ≈ p, p ≈ 10−23 and σ2
f = Varf [H10(X)] = p− p2. So, σ2

f ≈ p. Therefore,

N ≈ 104 · 4 · p
p2

=
4 · 104

p
≈ 4 · 104 · 1023 = 4 · 1027

Marking:

• give them 2 marks for calculating Varf [H10(X)] correctly,

• give them 2 marks for realizing that, if they want to approximate p to at least two significance
digits with a 95% confidence level, they need a bound on N like (22) (i.e., they need p or p̂
on the right side of (22)),

• give them 1 mark for using some “reasonable” confidence interval to compute an approxima-
tion to N , even if they missed the p or p̂ on the right side of (22).

Of course, you can give them part marks for each of the points above if their answer is on the
right track, but not completely correct.
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(b) The Monte-Carlo importance-sampling simulation associated with Eg[H10(Y ) f(Y )
g(Y ) ] in (20) to ap-

proximate p = P(X ≥ 10) is

p̂ =
1

N

N
∑

i=1

H10(Yi)
f(Yi)

g(Yi)
(24)

where Yi ∼ N(10, 1) and the Yi, i = 1, 2, . . . , N , are independent. We noted in class that, to
generate the independent Yi ∼ N(10, 1), for i = 1, 2, . . . , N , we can first generate independent
Xi ∼ N(0, 1), for i = 1, 2, . . . , N , and then set

Yi = 10 +Xi, for i = 1, 2, . . . , N

Note that we can use randn to generate the independent Xi ∼ N(0, 1) for i = 1, 2, . . . , N .

They could leave p̂ as written above in (24) or they could simplify it a little further by noting
that, for the pdfs f(x) and g(x) given above,

H10(Yi)
f(Yi)

g(Yi)
= H10(Yi)

e−Y 2

i
/2

e−(Yi−10)2/2

= H10(10 +Xi)
e−(Xi+10)2/2

e−X2

i
/2

= H10(10 +Xi) e
−10Xi−50

Therefore, the p̂ above in (24) can be rewritten as

p̂ =
1

N

N
∑

i=1

H10(10 +Xi) e
−10Xi−50 (25)

where the independent Xi ∼ N(0, 1), for i = 1, 2, . . . , N , can be computed by randn.

Marking:

• give them 3 marks for a Monte-Carlo importance-sampling simulation such as (24) or an
equivalent one such as (25),

• give them 2 marks for explaining how to generate independent Yi ∼ N(10, 1), for i =
1, 2, . . . , N .

Of course, you can give them part marks for each of the points above if their answer is on the
right track, but not completely correct.
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(c) To prove that (21) is true, first recall that

p = Ef [H10(X)] = Eg

[

H10(Y )
f(Y )

g(Y )

]

Therefore,

Varg

[

H10(Y )
f(Y )

g(Y )

]

= Eg

[

(

H10(Y )
f(Y )

g(Y )
− Eg

[

H10(Y )
f(Y )

g(Y )

])2
]

= Eg

[

(

H10(Y )
f(Y )

g(Y )
− p

)2
]

= Eg

[

(

H10(Y )
f(Y )

g(Y )

)2
]

− p2

=

∫

∞

−∞

(

H10(y)
f(y)

g(y)

)2

g(y) dy − p2

=

∫

∞

−∞

(H10(y))
2 f(y)

g(y)
f(y) dy − p2

=

∫

∞

−∞

H10(y)
f(y)

g(y)
f(y) dy − p2

=

∫

∞

10

f(y)

g(y)
f(y) dy − p2

=

∫

∞

10

e(−y2/2+(y−10)2/2)f(y) dy − p2

=

∫

∞

10

e(−10y+50)f(y) dy − p2

≤
∫

∞

10

e−50f(y) dy − p2

= e−50

∫

∞

10

f(y) dy − p2

= e−50p− p2

Therefore,

Varg

[

H10(Y )
f(Y )

g(Y )

]

≤ e−50p− p2

whence (21) is true.

Let

σ2
g = Varg

[

H10(Y )
f(Y )

g(Y )

]

and note that σ2
g ≤ e−50p − p2 ≈ e−50p, since p ≈ 10−23 and e−50 ≈ 2 × 10−22. (Note that the

approximation, e−50p− p2 ≈ e−50p, used here is not as tight as the ones used above, but it is still
“good enough” for our purposes.)
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Following a similar argument as in part (a), we get that

N ≈
104 z2δ/2 σ

2
g

p̂2

.
104 z2δ/2 e

−50 p

p2

≈ 104 × 4× e−50

p

≈ 104 × 4× 2× 10−22

10−23

≈ 8× 105

Therefore, if we take N = 8× 105, we should meet the accuracy requirement.

Marking:

• give them 3 marks showing that (21) is true,

• give them 2 mark for using some “reasonable” confidence interval to compute an approxima-
tion to N .
If you took off marks in part (a) for not including p or p̂ on the right side of (22)), don’t take
off marks again here for not including p or p̂ properly in the computation of N .
That is, just take off marks in part (a) for this error.

Of course, you can give them part marks for each of the points above if their answer is on the
right track, but not completely correct.
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