
CSC 446/2310 S Assignment #2 Due: 15 March 2019.

This assignment is due at the start of our lecture on Friday, 15 March 2019.

The main part of this assignment consists of questions 1 to 5, which are out of a total
of 45 marks. Question 6 is a bonus question, which is optional. If you do any or all of the
bonus question, you can earn back marks that you lost on questions 1 to 5. However, the
maximum mark that you can earn on this assignment is 45.

For the questions that require you to write a MatLab program, hand in the program and
its output as well as any written answers requested in the question. Your program should
conform to the usual CS standards for comments, good programming style, etc. Try to
format your output from your program so that it is easy for your TA to read your results.

Before writing your MatLab programs, you might find it useful to read the MatLab docu-
mentation on our course webpage http://www.cs.toronto.edu/~krj/courses/446-2310/.
You should use sparse matrices as much as possible. Read help in MatLab on sparfun, sparse
and spdiags. After you have initialized a matrix using the MatLab sparse matrix routines,
you can solve a system Ax = b in MatLab by x = A \ b. MatLab will use an efficient sparse
matrix factorization to solve the system.

Everyone who has registered for this course should have an account on CS Teaching Labs
Computer System (i.e., formerly called the CDF System). You should be able to access the
system remotely over the internet. There is more information about accessing your account
at the start of Assignment 1. If you have any trouble with this, let me know and I will try
to help.

Throughout this assignment, I refer to MatLab, but you can use Octave or one of the
other MatLab clones instead. (See “MatLab Clones” on the course webpage.) However,
MatLab clones are not 100% compatible with MatLab. So, run each of your final programs
through MatLab to make sure that your program really runs under MatLab, since, when
your TA marks your program, he will want to see a working MatLab program.

1. [5 marks]

Do question 9.2 on page 202 of your textbook.

2. [10 marks]

Use our corrected version of the Geršgorin criterion (Lemma 8.3 on page 157 of your
textbook) to solve question 9.3 on page 202 of your textbook.

State any additional assumptions that you need to ensure that the system is nonsin-
gular.

Recall that we already proved in class that this system is nonsingular by showing that
the associated matrix is symmetric positive-definite, hence nonsingular. The point of
this question is to use the Geršgorin criterion to give an alternative proof of this result.
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3. [5 marks]

Do question 9.4 on page 202 of your textbook.

The definition of positive definite is given on page 185 of your textbook.

In this case, if the domain associated with the differential operator L is [c, d], then a
function v(x) satisfies the Dirichlet boundary conditions if

v(c) = v′(c) = v(d) = v′(d) = 0

That is, both the function and its first derivative are zero at the two endpoints of the
domain of L.

4. [15 marks]

Do question 9.7 on pages 202 and 203 of your textbook.

This question proves the remark following equation (9.12) on page 179 of your textbook
that infv∈H J (v) > −∞.

Note that all functions v ∈ H satisfy the boundary conditions v(0) = α and v(1) = β
as well as

∫

1

0

[v(x)]2 dx < ∞ and

∫

1

0

[v′(x)]2 dx < ∞

Moreover,

ã(v, v) =

∫

1

0

{

a(x)[v′(x)]2 + b(x)[v(x)]2
}

dx

where a(x) > 0 and b(x) ≥ 0 for all x ∈ [0, 1]. In addition,

〈f, v〉 =
∫

1

0

f(x) v(x) dx

and
‖v‖ =

√

〈v, v〉
where

〈v, v〉 =
∫

1

0

[v(x)]2 dx

Moreover, you can assume that a(x), b(x) and f(x) are “well-behaved” functions and
that all the integrals that you need in this problem are well-defined and finite.
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5. [10 marks]

Consider the two-point boundary value problem

−y′′(x) + λ2y(x) = x, for x ∈ (0, 1),

y(0) = y(1) = 1
(1)

It is easy to verify that the solution to this problem is

y(x) = c1e
λx + c2e

−λx + x/λ2

where

c2 =
eλ + 1/λ2 − 1

eλ − e−λ

c1 = 1− c2

In this assignment, use λ =
√
10 (i.e., λ2 = 10).

Write a MatLab program that uses the Ritz-Galerkin method with piecewise linear
chapeau (i.e., hat) basis functions (defined on page 176 of your textbook) on an equally
spaced grid to solve the two-point boundary value problem (1) with λ2 = 10. That is,
let the gridpoints be xi = ih for i = 0, 1, . . . ,m+ 1 and h = 1/(m+ 1), where m is an
integer. (See below for the choices of m.)

The approximate solution generated by the Ritz-Galerkin method has the form

ym(x) = ϕ0(x) +
m
∑

k=1

γkϕk(x)

where ϕ0(x) is any simple function that satisfies the boundary conditions associated
with the problem (1) (i.e., ϕ0(0) = ϕ0(1) = 1), ϕk(x) is the chapeau basis function
defined on page 176 of your textbook and the γk are determined by solving the Galerkin
equations (see (9.7) on page 174 of your textbook).

For each of m = 9, 19, 39, 79, 159, 319, 639, use your program to compute the Ritz-
Galerkin solution ym(x) to the two-point boundary value problem (1) with λ2 = 10.

The maximum error in the numerical solution at the gridpoints {xi : i = 1, . . . ,m},
max {|y(xi)− ym(xi)| : i = 1, . . . ,m} (2)

is a good approximation to the infinity norm of the error in the numerical solution

‖y − ym‖∞ = max {|y(x)− ym(x)| : x ∈ [0, 1]}

Compute and print the maximum error in the numerical solution at the gridpoints (2)
for m = 9, 19, 39, 79, 159, 319, 639.

How does this error decrease with h = 1/(m+ 1)?

(Note that, for m = 9, 19, 39, 79, 159, 319, 639, m+ 1 = 10, 20, 40, 80, 160, 320, 640 and
h = 1/(m + 1) = 1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640. So, h is halved for each
successive m.)
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6. Bonus Question

[10 marks if you solve this problem yourself; 5 marks if you can find a published solution
in English1]

One CSC 446/2310 student found a very nice solution to Problems 7 and 8 on Assign-
ment 1. I’ll email the source to you. However, the solution depends on the following
definition and theorem.

(I changed the wording just slightly from the version I’ll send you.)

Definition 1 An n×n matrix A is said to be an M-matrix, if each off-diagonal element
of the matrix A is non-positive (aij ≤ 0 for all i 6= j) and there exists a positive vector
r (i.e., ri > 0 for all i = 1, 2, . . . , n) such that Ar > 0 (i.e., if Ar = s, then si > 0 for
all i = 1, 2, . . . , n).

Theorem 2 (This is Theorem 1.2.2 in the source I’ll send you.)

If A ∈ R
n×n is an M-matrix, then

P1: A is nonsingular (i.e., A−1 exists),

P2: A−1 is non-negative (i.e., if a−1

ij ≥ 0, where a−1

ij is the (i, j) element of A−1),

P3: ‖A−1‖∞ ≤ ‖r‖∞
min

i=1,2,...,n
(Ar)i

Prove Theorem 2 above.

This result is proved in
https://www.tankonyvtar.hu/hu/tartalom/tkt/numerikus-modszerek-1/ch02s03.

html#ssec-1-3-4

However, this article in Hungarian (I think), but you can read the math equations.
You can use this Hungarian paper as a starting point to prove Theorem 2 above. Of
course, your proof must be in English.

1Note that it is plagiarism if you find a published solution (whether in a book or in a paper or online)
and present the work as your own.
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