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Abstract

Perfect graphs, by definition, have a nice structure, that graph searching seems to extract in a,
often non-inexpensive, manner. We scratch the surface of this elegant research area by giving two
examples: Lexicographic Breadth Search on Chordal Graphs, and Lexicographic Depth First Search on
Cocomparability graphs.

1 Introduction

Here’s one particular way to cope with NP-hardness: Suppose we know some structure about the object we
are dealing with, can we exploit said structure to come up with simple (hmm...?), efficient algorithms to
NP-hard problems. One example of this structure is the “interval representation” most people are familiar
with, where in such a setting we were able to solve the independent set problem in linear time, whereas the
independent set problem on arbitrary graphs cannot even be approximated in polynomial time to a constant
factor (unless P = NP).

Before we delve into the topic, let’s recall some definitions.

Let G(V,E) be a finite and simple (no loops and no multiple edges) graph:

• The neighbourhood of a vertex v is the set of vertices adjacent to v. We write N(v) = {u|uv ∈ E}.
The closed neighbourhood of v is N [v] = N(v) ∪ {v}.

• The complement of G, denoted G(V,E) is the graph on the same set of vertices as G, where for all
u, v ∈ V, uv ∈ E ⇐⇒ uv /∈ E.

• A induced subgraph of G is a graph G′(V ′, E′) where V ′ ⊆ V and ∀u, v ∈ V ′, uv ∈ E′ ⇐⇒ uv ∈ E.

• A cycle Ck = v1, v2, . . . , vk in G is an induced subgraph where for i ∈ [k], vivi+1 mod k are the only
edges present in Ck.

• A clique is a set S ⊆ V where ∀u, v ∈ S, uv ∈ E.

• The clique number of G, denoted ω(G), is the size of the largest clique in G.

• An independent set is a set S ⊆ V where ∀u, v ∈ S, uv /∈ E.

• The independent set number of G, denoted α(G), is the size of the largest independent set in G.

∗These notes are of a guest lecture I gave for the Advanced Algorithm Design course.
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• A proper colouring is a function col : V → {1, 2, . . . , k} that assigns values i ∈ [k] such that ∀uv ∈
E, col(u) 6= col(v).

• The chromatic number of G, denoted χ(G), is the minimum number of colours needed to properly
colour G.

• A clique cover of G, is a partioning P1, P2, . . . , Pk of the vertices of V where
k⋃
i=1

Pi = V and ∀i ∈ [k],

Pi is a clique.

• The minimum clique number of G, denoted κ(G), is the minimum number of cliques needed to cover
G.

• A hole is an odd cycle on 5 or more vertices.

• An antihole is the complement of a hole.

• A graph G is complete if G is a clique.

• A vertex v ∈ V is simplicial if N(v) induces a clique.

• A separator of a graph G is a subset of vertices S ⊆ V whose removal from G disconnects the graph
into two or more connected components. An ab-separator is a separator of G that disconnects a from
b. A ab-separator S is minimal if no proper subset of S also separates a from b.

Some (obvious) remarks: The complement of a clique is an independent set and vice versa. The clique
number of a graph is always a lower bound to its chromatic number; and the clique cover number is always
an upper bound to the indpendent set number. To illustrate the definitions above, consider the graph below:

a b

c d

χ(G) = ω(G) = 3

α(G) = κ(G) = 2

The subgraph H(V ′, E′) where V ′ = {a, b, c} and E′ = {ab, ac} is not an induced subgraph of G, since the
edge cb /∈ E′.

The set S = {a, b, c} is a clique in G, S′ = {a, b, d} is not. The set {a, d} is an independent set, {a, d, b} is
not.

A proper colouring of G would be col(a) = col(d) = 1, col(b) = 2, col(c) = 3, therefore χ(G) ≤ 3. Since
ω(G) ≤ χ(G) and ω(G) = 3, it follows χ(G) = 3 is optimal.

Perfect Graphs: A graph family that received significant attention because of its nice structure is the
class of perfect graphs.

Definition 1. A graph G(V,E) is perfect if for every induced subgraph H of G:

χ(H) = ω(H)

Perfect graphs were introduced by Claude Berge in the sixties, and have since been well studied. In fact,
many NP-hard problems can be solved efficiently on perfect graphs using the ellipsoids method, however
research is still being developed to come up with truly combinatorial algorithms.
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Many graph families belong to the class of perfect graphs; interval graphs for instance, permutation graphs
- which you may have seen in the longest subsequence problem. We will focus on a different graph class,
known as chordal graphs. First, we list two main theorems regarding perfect graphs.

Theorem 1 (The Weak Perfect Graph Theorem). A graph is perfect if and only if its complement is perfect.

Theorem 2 (The Strong Perfect Graph Theorem). A graph is perfect if and only if it does not contain an
induced hole or an induced antihole.

Graph Searching:

Definition 2. Graph searching is a mechanism to traverse the graph one vertex at a time in a specific
manner.

Classical graph searches you’ve seen before are BFS and DFS.

In the remainder of this lecture, we will look at two examples of two graph searches applied on different graph
classes. Section 2 focuses on Lexicographic Breadth First Search and Chordal graphs. Section 3 focuses on
Lexicographic Depth First Search and Cocomparability graphs.

2 Lexicographic Breadth First Search & Chordal Graphs

2.1 Chordal Graphs

Definition 3. A graph G(V,E) is chordal if the largest induced cycle in G is a triangle.

Chordal graphs are sometimes referred to as triangulated graphs as well. Convince yourself that chordality
is a hereditary property. This means if G is chordal, so is every induced subgraph of G.

Theorem 3. Chordal graphs are perfect.

Proof. By the Strong Perfect Graph Theorem, it suffices to show that if G has no hole or antihole. It is easy
to see that G has no holes since the largest cycle is a triangle. Suppose G contains an antihole C. Let C
be the complement of C in G. C is an odd cycle with 5 or more vertices. Notice first that the complement
of a C5 is a C5 and thus C 6= C5 since G is chordal. Any other odd cycle Ck≥7 in G must have two edges
ab, cd where a and b are both not adjacent to c and d. In C, abcd forms a C4, thereby contradicting G being
chordal.

Theorem 4. Every minimal separator of a chordal graph is a clique.

Proof. Let G(V,E) be a chordal graph. If G is complete, then claim clearly holds. Suppose G is not complete.
Let S be a minimal separator of G. Suppose S is not a clique. This means there exists two vertices u, v ∈ S
such that uv /∈ E. Since S is a separator, G\S has two or more connected components. Let C1, C2 be two of
these connected components. Since u ∈ S, there must exist two vertices a ∈ C1, b ∈ C2 such that u belongs
to an a, b path, for otherwise S\{u} is a smaller separator than S (a contradiction to the minimality of S).
Similarly, there must exist two vertices c ∈ C1, d ∈ C2 such that v belongs to a c, d path. Since a, c ∈ C1, let
P1 be an induced a, c path in C1 (convince yourself such a path must exist), and let P2 be an induced d, b
path in C2. Consider the subgraph induced by P1, P2, u and v. This subgraph is a cycle of length at least 4
(when a = c, b = d, we have C4 = a, u, b, v). A contradiction again to G being chordal. Therefore uv ∈ E
and S is a clique.
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Theorem 5. If G is chordal, then either G is complete or G has at least two non-adjacent simplicial vertices.

Proof. The proof is by induction on the size of the graph, i.e. the number of vertices. If |V | = 1, then G is
clearly complete. Suppose |V | > 1 and G is not complete, then G has a minimal separator S. By Thereom
4, S is a clique.

Let C1, C2 be two connected components of G\S. Consider the subgraph G1 = C1 ∪S of G, since chordality
is a hereditary property, G1 is chordal and by induction hypothesis, G1 is either complete or has at least
two non-adjacent simplicial vertices. Either way G1 has a simplicial vertex that remains simplicial in G
(why?). Similarly G2 = C2 ∪ S is chordal and has at least one simplicial vertex that remains simplicial in
G. Therefore G has two non-adjacent simplicial vertices.

Corollary 1. G is chordal iff every induced subgraph of G has a simplicial vertex.

Proof. left as an exercise.

2.2 Perfect Elimination Orders

Given a graph G(V,E), and a total ordering σ = v1, . . . , vn of V . Let N−(vi) denote the neighbours of vi
that appear to the left of vi in σ. Define N+(vi) analogously.

N−(vi) = {vj : vjvi ∈ E and j < i}
N+(vi) = {vj : vjvi ∈ E and i < j}

For two vertices vi, vj such that i < j, we write vi ≺σ vj to denote that vi is the left of vj in σ. We drop the
subscript if σ is clear in the context, and write vi ≺ vj .

Definition 4. A vertex ordering σ = v1, v2, . . . , vn is a perfect elimination order - or PEO - if for all
i ∈ [n], vi is simplicial to the left in σ, i.e. N−(vi) is a clique.

a

b c

d e f

σ = b, e, c, d, a, f

Figure 1: Example of a PEO ordering on a graph G

Surprisingly, one can use PEO to characterize chordal graphs.

Theorem 6. G is chordal if and only if G has a perfect elimination order.

Proof. Suppose G has a PEO σ but is not chordal. Let C be an induced cycle in G on 4 or more vertices.
Let w be the vertex of C that appears last in σ. Then w must have at least two predecessors in σ (namely
its neighbours in C), call them u, v. Then u, v ≺σ w and uv /∈ E. A contradiction to w being simplicial to
the left in σ.
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Conversely, let G be a chordal graph. By Theorem 5, G has a simplicial vertex. Call it vn. Since chordality
is a hereditary property, G− vn is also chordal. An induction on the size of G now concludes the proof. In
particular, let σ′ = v1, v2, . . . , vn−1 be a PEO of G−vn, then σ = σ′ ·vn1 is a PEO of G since vn is simplicial
in G.

Applications: One of the main problems in structural graph theory is graph recognition: Given a class of
graphs G that satisfies some sort of structure, and a graph G, is it easy/hard to check if G ∈ G ? Since PEOs
fully characterize chordal graphs (Theorem 6), chordal graph recognition reduces to computing a PEO (or at
least one way to recognize this graph family would be to compute a PEO). Before looking at the complexity
of computing such orderings, let’s see what else we can use them for.

Consider the following algorithm:

Algorithm 1 GreedyCOL

Input: An arbitrary graph G(V,E) and an ordering σ of V .
Output: A proper colouring of the vertices of G.
1: for i = 1 . . . n do
2: assign vi the smallest colour not used among N−(vi).
3: end for

Running GreedyCOL on the ordering below produces a 3-colouring where a 2-colouring exists. It’s in fact
easy to construct graphs where this algorithm behaves arbitrarily bad. Surprisingly, if GreedyCOL is given
a “good” ordering, it produces an optimal colouring for certain graph families, chordal being one of them,
as shown in Theorem 7 below.

σ

col(·) 1 1 2 3

a b c d

Theorem 7. If σ is a PEO, algorithm GreedyCOL gives an optimal colouring.

Proof. Consider a vertex vi in σ. Since vi has |N−(vi)| left neighbours, at least one of the colours 1, . . . , |N−(vi)|+
1 is not used amongN−(vi). Therefore the maximum number of colours used by GreedyCOL is max

i
|N−(vi)|+

1.

Let v∗i be the vertex that achieves max
i
|N−(vi)|+ 1 = |N−(v∗i )|+ 1. We therefore have

χ(G) ≤ |N−(v∗i )|+ 1 (1)

Since σ is a PEO, v∗i is simplicial to its left in σ and so N−(v∗i ) forms a clique, and thus

ω(G) ≥ |N−(v∗i )|+ 1 (2)

We know that
ω(G) ≤ χ(G) (3)

Combining (1), (2), and (3) we get

χ(G) ≤ |N−(v∗i )|+ 1 ≤ ω(G) ≤ χ(G)

χ(G) = ω(G) = |N−(v∗i )|+ 1

1The concatenation of σ′ and vn
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Therefore algorithm GreedyCOL produces an optimal colouring on G.

Corollary 2. Algorithm GreedyCOL can be tweaked to compute a maximum clique on G if σ is a PEO.

Proof. The proof follows from perfection.

Exercise: Prove that the following algorithm computes a maximum independent set if G is chordal and σ
a PEO.

Algorithm 2 GreedyIS

Input: An arbitrary graph G(V,E) and an ordering σ of V .
Output: An independent set S
1: S = ∅
2: for i = n . . . 1 do . Notice we’re scanning σ in reverse order.
3: Add vi to S if none of its neighbours appear in S already.
4: end for

The question remains then: How do we come up with a PEO? Is it NP-hard to compute such an ordering?
No! In fact there is a simple elegant algorithm to compute such an ordering in *drum roll* linear time
*drum roll* !

2.3 Lexicographic Breadth First Search

Lexicographic breadth first search (LexBFS) is a variant of BFS, that assigns lexicographic labels to vertices,
and uses said labels to break any ties that might occur. Consider the graph below for instance.

a

b d

e

c
σ = a, d, b, c, e σ is a BFS, vertices b, c, d tied.

π = a, d, c, b, e π is a LexBFS, vertices c and d are not tied any more.

Figure 2: BFS vs. LexBFS

LexBFS would modify BFS to visit vertices with “stronger previous pull” first. In the example above for
instance, once a, d were visited, we have N−(b) ⊂ N−(c), and thus we’re forced to visit c before b because
vertex c is “pulled” by d. This condition alone - on the size of left neighbourhoods - does not actually
characterize LexBFS. In addition to left neighbourhoods, LexBFS takes into account the ordering of the
vertices in σ. In particular, every LexBFS is first a BFS, and thus must respect the “breadth first” condition
before checking the size of left neighbourhoods. Algorithm 3 below formally describes this graph search.

6



Algorithm 3 LexBFS

Input: A graph G(V,E) and a start vertex s
Output: An ordering σ of V
1: assign the label ε to all vertices, and label(s)← {n+ 1}
2: for i← 1 to n do
3: pick an unnumbered vertex v with lexicographically largest label
4: σ(i)← v . v is assigned the number i
5: foreach unnumbered vertex w adjacent to v do
6: append(n− i) to label(w)
7: end for
8: end for

a

b

c

d

e f

σ(i) Affected Vertices σ

σ(1) = d label(b) = label(c) = label(f) =
5

d

σ(2) = c label(b) = 54 and label(a) = 4 d, c
σ(3) = b label(a) = 43 and label(e) = 3 d, c, b
σ(4) = f label(e) = 32 d, c, b, f
σ(5) = a d, c, b, f, a
σ(6) = e d, c, b, f, a, e

Figure 3: A step by step computation of a LexBFS ordering on G starting at vertex d.

LexBFS was introduced by Rose, Tarjan and Lueker [6] to recognize chordal graphs. In particular they
proved the following theorem:

Theorem 8. Let G(V,E) be a chordal grpah, then LexbFS(G) is a PEO.

In order to prove Theorem 8, we use the following characterization of LexBFS orderings given by Dragan,
Falk and Brandstädt [3]:

Theorem 9. [The LexBFS 4 Point Condition] Let G(V,E) be an arbitrary graph, and σ an ordering of V .
σ is a LexBFS ordering if and only if for every triple a ≺ b ≺ c, if ac ∈ E, ab /∈ E, then there exists a vertex
d such that d ≺ a and db ∈ E, dc /∈ E.

The triple abc as defined above is called a bad (needy? :) LexBFS triple, and vertex d a private neighbour
of b with respect to c. It is easy to see that such a vertex d must exist and be a neighbour of b since σ is a
BFS. The fact that dc /∈ E, ensures that b must indeed be pulled first before c, despite the pull of a on c.
Intuitively, this just captures the lexicographic variant.

ad b c

Figure 4: The LexBFS 4 Point Condition

Using the LexBFS 4 Point Condition, it is now easy to prove Theorem 8.
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Proof of Theorem 8. Let G be a chordal graph, and σ = LexBFS(G). Suppose σ is a not a PEO. Choose a
vertex x to be the left most (the first) vertex in σ where N−(x) is not simplicial. In particular, let y, z ≺ x
be two neighbours of x such that yz /∈ E. Without loss of generality, suppose z ≺ y. By Theorem 9, there
must exist a vertex w such that w ≺ z and wy ∈ E,wx /∈ E. If wz ∈ E, the quadruple wzyx forms a C4, a
contradiction to G being chordal. Therefore wz /∈ E, in which case w ≺ z ≺ y forms a needy/bad LexBFS
triple. Again by Theorem 9, there must exist a private neighbour q of z with respect to y, and q ≺ w. Using
the chordality of G, it is easy to see that qw /∈ E, thus creating yet another bad triple. We repeat the same
argument over and over again, thereby contradicting the finiteness of G. Therefore x is simplicial, and σ a
PEO.

In the remainder of this section, we briefly discuss one way to implement LexBFS in linear time.

2.4 Partition Refinement

Definition 5. Let S = {u1, u2, . . . , uk} be a set of elements. A collection P = {P1, P2, . . . , Pk} is a partition

of S if for all i 6= j ∈ [k], Pi ∩ Pj = ∅ and
k⋃
i=1

Pi = S. The Pis are called partition classes.

Definition 6. Given a set S, a partition P = {P1, . . . , Pk} of S, and a subset T ⊆ S, we say that T refines
P if ∀i ∈ [k], Pi is replaced with sub-partitions Ai, Bi in this order, where Ai = Pi ∩ T,Bi = Pi\T .

This is known as partition refinement, where T is used to refine the partitions of S.

One elegant and efficient way to implement LexBFS in linear time for arbitrary graphs (linear in the size
of the graph, so O(m + n) time where m = |E|, n = |V |) is by means of partition refinement [4]. The set
S is V , and T is the neighbourhood of a vertex p, called a pivot. The algorithm goes as follows: Initially
σ is empty. We start by letting P = {P1 = V }. We choose an arbitrary start vertex s ∈ V as a pivot, and
use N(s) to refine P. We append s to σ. Initially, we replace V with A1 = V ∩ N(s), B1 = V \N(s). The
new partition now looks like P = {A1, B1}. Every time a pivot p is selected to refine, it is appended to the
ordering.

In general, given a partition P = {P1, P2, . . . , Pk}, and a pivot p, we use N(p) to refine P by creat-
ing the following new partition {P1 ∩N(p), P1\N(p), P2 ∩N(p), P2\N(p), . . . , Pi ∩N(p), Pi\N(p), . . . , Pk ∩
N(p), Pk\N(p)}, while maintaining the order of the partition classes, and append p to σ. A vertex is eligible
to be a pivot if and only if it belongs to the first partition class. The algorithm stops when all the partition
classes are either empty or contain a single vertex.

Example: Consider the graph in Figure 3, we will use partition refinement to produce the same LexBFS
ordering in the table of the same figure.

Initially we start with one partition class, V = {a, b, c, d, e, f}. We choose an arbitrary start vertex, d and
refine as follows:

P1 = V ∩N(d) = {b, c, f}
P2 = V \N(d) = {a, e}

σ = d so far. Vertices in P1 are all eligible to be pivots, we choose vertex c as the next pivot and refine
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P = {P1, P2} as follows:

P1 ∩N(c) = {b}
P1\N(c) = {f}
P2 ∩N(c) = {a}
P2\N(c) = {e}

σ = d, c. The new partition now is P = {{b}, {f}, {a}, {e}} in this order. Since all the partition classes are
singletons, the refinement is done, and σ is d, c, b, f, a, e, the same LexBFS ordering produced in Figure 3. Try
to convince yourself (prove) that every ordering produced by this refinement is indeed a LexBFS ordering of
an (arbitrary) graph, in particular notice the parallelism of maintaining the ordering of the partition classes
and appending lexicographic labels.

3 Lexicographic Depth First Search & Cocomparability Graphs

Next, we’ll look at another example of a different graph search used on a different graph class.

3.1 Cocomparability Graphs

Cocomparability graphs are a large, well studied, graph family. It strictly contains a number of graph classes
including interval graphs and permutation graphs. In fact, a classical characterization of interval graph is
the following:

Theorem 10. A graph G(V,E) is an interval graph if and only if G is chordal and cocomparability.

Cocomparability graphs are the complement of comparability graphs. A graph G(V,E) is comparability
graph if its edge set admits a transitive orientation. That is, there is a way to orient (single direction) the
edges in E, such that for every triple a, b, c oriented a→ b, b→ c, there must exist an edge oriented a→ c.
Cocomparability graphs are perfect, and thus by the Weak Perfect Graph Theorem, so are comparability
graphs. Figure 5 below gives an example of a comparability and a non-comparability graph. Convince yourself
that the graph on the left is indeed a comparability graph, by coming up with a transitive orientation of the
its edges; whereas the graph on the right is not.

b

c

d

a e

b

c

d

a e

Figure 5: A comparability graph (to the left) and a non-comparability graph (to the right).

Cocomparability graphs can be characterized by cocomparability orderings, also known as umbrella-free
orderings. In particular, a graph G(V,E) is a cocomparability graph if and only if there exists an ordering
σ of V such that for every triple a ≺σ b ≺σ c, if ac ∈ E then either ab ∈ E or bc ∈ E or both. It is easy to
see that umbrella free orderings are precisely transitive orientations of the comparability graph.
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Side note: There is a close relationship between cocomparability/comparability graphs and partially ordered
sets. A partially ordered set, or poset, P (V,≺) is an irreflexive, antisymmetric and transitive relation on the
set V. In particular, two elements a, b ∈ V are comparable if a ≺ b or b ≺ a, otherwise they are incomparable,
we write a‖b. because of transitivity, if three elements are comparable a ≺ b, b ≺ c then a ≺ c. This is
precisely what a transitive orientation is on a comparability graph. In fact, if G(V,E) is a comparability
graph, then G together with a transitive orientation of E can equivalently be represented by a poset P (V,≺)
where ab ∈ E if and only if a and b are comparable in P . And thus umbrella-free orderings can too be
represented by posets. This equivalence gives another way to solve problems for these graph families. For
more on posets and order theory in general, check Tom Trotter’s course [lecture 13 and beyond]. The Wiki
page is a good start too.

3.2 Lexicographic Depth First Search

One can extend DFS to a lexicographic version as well, known as lexicographic depth first search. LexDFS
(for short) was introduced in [2], and has since led to a number of efficient algorithms, especially on cocom-
parability graphs. We begin by looking at properties of this graph search, then give an example of its use;
namely a certifying algorithm to compute a maximum independent set (MIS) on cocomparability graphs.

Formally, LexDFS assigns labels to vertices as they are being processed, ties are broken using the labels,
where vertices with the highest label are chosen first. A similar idea to what LexBFS does, but as we will
see, the labeling takes into account the “depth” aspect of the search as well. Algorithm 4 below is a formal
description of this process.

Algorithm 4 LexDFS

Input: A graph G(V,E) and a start vertex s
Output: An ordering σ of V
1: assign the label ε to all vertices, and label(s)← {0}
2: for i← 1 to n do
3: pick an unnumbered vertex v with lexicographically largest label
4: σ(i)← v . v is assigned the number i
5: foreach unnumbered vertex w adjacent to v do
6: prepend i to label(w)
7: end for
8: end for

Running the algorithm on the graph in Figure 2, gives the following ordering

LexDFS(G) = σ = a, b, c, e, d. (4)

Notice in particular how we are forced to visit vertex e before vertex d. LexDFS can too be characterized
by a 4 Point Condition, given by [2], which says:

Theorem 11. [The LexDFS 4 Point Condition] Let G(V,E) be an arbitrary graph, and σ an ordering of
V . σ is a LexDFS ordering if and only if for every triple a ≺ b ≺ c, if ac ∈ E, ab /∈ E, then there exists a
vertex d such that a ≺ d ≺ b and db ∈ E, dc /∈ E.

Vertex d is a private neighbour of b with respect to c. Intuitively, the theorem shows that despite vertex
c having a pull from vertex a that b does not have, since σ is a LexDFS, there must exist a vertex later
(deeper?) in the ordering that pulled b first. This vertex is d. The formal proof of the statement of the
theorem is left as an exercise.
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a d b c

Figure 6: The LexDFS 4 Point Condition

Unfortunately LexDFS cannot be implemented in linear time - yet - for arbitrary graphs; partition refinement
is indeed one way to do so, but it requires the reshuffling/sorting of the partitions, and this sorting is the bot-
tleneck to a linear time algorithm. However, linearity is achieved for specific graph families, cocomparability
being one of them [5].

Multi-Sweep Algorithms: For the purpose of this (MIS) problem, we need to introduce what we call
multi-sweep algorithms. These are algorithms that compute a sequence of orderings2 σ1, σ2, . . . where σi is
used to compute σi+1. This means, that if there are additional ties between vertices when computing σi+1,
the algorithm uses σi to break them using some specific rule. We will focus on the so called + rule; where
ties are broken by choosing the right most vertex in σi. Formally, we write τ =LexDFS+(G, σ), where σ is
some ordering of G, and τ is a LexDFS ordering of G that uses σ to break ties by always choosing the right
most vertex in σ. Consider for instance, the graph in Figure 2. Let σ = a, b, c, e, d be the ordering computed
earlier in (4). A LexDFS+(G, σ) of G is the unique ordering τ = d, c, a, b, e: vertex d was chosen first because
it was the right most vertex in σ, c was second because it was the right most eligible vertex in σ, etc.

One nice property of + sweeps is the preservation of umbrella-free orderings; this means:

Theorem 12. Let G(V,E) be a cocomparability graph, and σ an arbitrary umbrella-free ordering.
The ordering τ =LexDFS+(G, σ) is an umbrella-free ordering. We call τ a LexDFS umbrella-free ordering.

For a proof of this result, see [1]. In fact, the authors characterize all the graph searches that preserve
umbrella-free orderings.

Combining Theorems 11 and 12, one can deduce the LexDFS C4 property of cocomparability graphs (Figure
7). Let τ be an umbrella-free ordering. Let abc be a bad triple in τ . This means a ≺τ b ≺τ c, where
ac ∈ E, ab /∈ E. Since τ is an umbrella-free ordering, it follows that bc ∈ E. Since abc is a bad LexDFS
triple, there must exist a private neighbour d of b with respect to c, such that a ≺τ d ≺τ b and db ∈ E, dc /∈ E.
The edge ad ∈ E is now forced, for otherwise, we would have a ≺τ d ≺τ c and ac ∈ E and both ad, dc /∈ E.
A contradiction to τ being umbrella-free.

τ :
a d b c

Figure 7: The LexDFS C4 Property of cocomparability graphs.

3.3 Maximum Independent Set on Cocomparability Graphs

We now present a certifying algorithm to compute a maximum independent set (MIS) on cocomparability
graphs. A certifying algorithm is an algorithm that, along with a solution, produces a certificate to check if
said solution is indeed optimal. First, let’s come up with a natural certificate for this problem.

2Either LexBFS, LexDFS or any other type of orderings
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We note that computing a maximum independent set on cocomparability graphs is equivalent to computing
a maximum clique in the corresponding comparability graph. Since both graph families are perfect, the
clique number is the chromatic number in the comparability graph. So one way to certify maximality of the
clique is to give a proper colouring that matches the size of the clique.

Let’s look at the following example. LetG(V,E) be a comparability graph, andH(V,E′) = G the complement
of G.

a

b

c

d

e f

a

b

c

d

e f

Figure 8: G a comparability graph on the left, and H the complement of G on the right

The graph in Figure 8 is a comparability graph, as witnessed by the following transitive order τ = b, a, f, c, e, d.
Since the largest clique in G is of size 3, namely {b, c, d}, it follows that the chromatic number of G, χ(G) = 3,
and a proper colouring is given by the coloured vertices above.

Every colour class (the set of vertices that received the same colour) forms an independent set in G. Therefore
the colour classes of G form cliques in H. In fact, they form a clique cover of H. Since χ(G) is minimum,
the number of colour classes in minimum and thus the clique cover in H is minimum. We thus have:

χ(G) = ω(G)

α(H) = κ(H)

The clique cover number for any graph is always an upper bound on the independent set - since one can
collect at most one vertex from each clique to place in the independent set, and these collected vertices are
not necessarily pairwise independent. Therefore one way to certify the optimality of the MIS algorithm is to
produce an independent set and a clique cover of equal size. We can do this because cocomparability graphs
are perfect. This is precisely what we will do.

Algorithm 5 Maximum Independent Set in Cocomparability Graphs

Input: A cocomparability graph G(V,E) and an umbrella-free ordering σ.
Output: An independent set S of G.
1: τ = LexDFS+(G, σ)
2: Scan τ right to left and greedily add vertices to S that do not already have neighbours in S.

Recall that a greedy collection of an independent set is the process of scanning the ordering -in this case right
to left- and placing a vertex in S as long as none of its neighbours are already in S. We illustrate Algorithm
5 on the graph H in Figure 8 (redrawn differently) below (Figure 9). Notice (or check for yourself) that σ is
indeed an umbrella-free ordering, but not a LexDFS ordering (doesn’t need to be) - in particular b ≺σ a ≺σ f
is a bad LexDFS triple. The algorithm begins by placing b (right most in τ) in S, this “removes” f and a,
the right most available vertex in τ is c. Thus c ∈ S, this removes e, then the right most eligible vertex is d.
Thus S = {b, c, d}.

12



a

b f c e d

σ = b, a, f, c, e, d

τ = LexDFS+(H,σ) = d, e, a, c, f, b

S = {b, c, d}

Figure 9: An illustration of the algorithm.

Theorem 13. Algorithm 5 produces a maximum independent set of G.

Proof. Let τ = u1, u2, . . . , un, and let S = v1, v2, . . . , vk be the vertices in the independent set where
vk ≺τ vk−1 ≺τ . . . ≺τ v2 ≺τ v1 = un. For every i ∈ [k], let Ti be the set of vertices in τ from vi (included)
up to but not including vi+1; Ti = {uj |vi+1 ≺τ uj ≺τ vi} ∪ {vi}.

Clearly S is an independent set. Instead of proving the optimality of the S, i.e. that it is of maximum size,
we’ll produce a clique cover of equal cardinality. In particular, we claim that for any vi ∈ S, Ti forms a
clique. If this is true, then each vi belongs to a clique in G, the Ti’s form a clique cover, and thus |S| = κ(G).
Thereby completing the proof.

Suppose there exists a vertex vi such Ti is not a clique. Let a, b ∈ Ti be two vertices such that a ≺τ b ≺τ vi
and ab /∈ E. Notice that vi is different than both a and b, otherwise we contradict the choice of vi+1.

This triple abvi forms a bad LexDFS triple in τ where ab /∈ E, avi, bvi ∈ E. By the LexDFS 4 Point
Condition, there must exist a vertex d such that a ≺τ d ≺τ b and db ∈ E, dvi /∈ E. However a ≺τ d
and dvi /∈ E contradicts the construction of Ti and thus the choice of vi+1. Therefore ab ∈ E and Ti is a
clique.

An algorithm from the book. A proof from the book. :)

To go back to the example in Figure 9, the clique cover we get is {b, f}, {c, a, e}, {d}.

For the curious mind: Multi-sweep algorithms have led to a number of elegant results in algorithmic
and structural graph theory. Below is a list of some other problems solved using graph searching on various
graph classes - email me for references.

• Graph recognition for a number of graph families.

• Colouring, independent set, clique, clique cover.

• Longest path, Hamilton path, and minimum path cover (this latter is an generalization of the Hamilton
path problem: What is the minimum number (k) of paths necessary to cover all vertices in G? For
k = 1, we have a Hamilton path.)

• “Weighted Hamilton path”, i.e. TSP path version, on proper interval graphs.

• Maximum matching in linear time.

• Domination - various type of domination problems. One example is the dominating pair problem:
Given a graph G(V,E), does there exist a pair u, v ∈ V , such that every uv−path dominates G? A
path P dominates a graph, if every vertex in G is either on P or has a neighbour on P .

• Minimal/minimum triangulations: Given an arbitrary graph G(V,E), what is the minimum number
of edges one can add to turn G into a chordal graph?
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