
1

Tractable Multivariate Binary Density Estimation
and the Restricted Boltzmann Forest

Hugo Larochelle

larocheh@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Canada M5S 3G4

Yoshua Bengio

yoshua.bengio@umontreal.ca

Dept. IRO, Universit́e de Montŕeal, Montreal, Canada H3T 1J4

Joseph Turian

turian@iro.umontreal.ca

Dept. IRO, Universit́e de Montŕeal, Montreal, Canada H3T 1J4

Keywords: restricted Boltzmann machine, density estimation, mixturemodeling

Abstract

We investigate the problem of estimating the density function of multivari-

ate binary data. In particular, we focus on models for which computing the es-

timated probability of any data point is tractable. In such a setting, previous

work has mostly concentrated on mixture modeling approaches. We argue that,

for the problem of tractable density estimation, the Restricted Boltzmann Machine

(RBM) provides a competitive framework for multivariate binary density model-

ing. With this in mind, we also generalize the RBM framework and present the

Restricted Boltzmann Forest (RBForest), which replaces the binary variables in the

hidden layer of RBMs with groups of tree-structured binary variables. This exten-

sion allows us to obtain models that have more modeling capacity but that remain

tractable. In experiments on several datasets, we demonstrate the competitiveness

of this approach and study some of its properties.

1 Introduction

In this work, we consider the problem of learning densities for multivariate binary data.

Such data can be found in various problems of pattern recognition: character recogni-

tion (Kassel, 1995), medical diagnosis (Aitchison & Aitken, 1976) and many natural

language processing problems (Juan & Vidal, 2001). In particular, we focus on models

which give a tractable estimate of the density function, i.e. models that can compute

their estimated value ofp(x) in a reasonable, practical amount of time. This constraint

on a model is sometimes required, for instance if one wishes to use it as a module in

a larger probabilistic model (e.g. a mixture model) or in a Bayes classifier, the later

being a useful approach to classification for problems with scarce labeled data (Ng &

Jordan, 2002). So far, the dominating approach to tractabledensity estimation has been

mixture modeling, where a data point is assumed to have been generated from one out

of m hidden components

p(x) =
m∑

k=1

p(x|k)p(k) . (1)

Models falling in this category include mixtures of Bernoullis (Everitt & Hand, 1981;

Carreira-Perpĩnán & Renals, 2000; Juan & Vidal, 2001; Juan & Vidal, 2004; Lowd &

Domingos, 2005) and non-parametric kernel estimators (Aitchison & Aitken, 1976).

An alternative to mixture models are factor models, under which each data point is

generated based on the value of a combination of individual factors:

p(x) =
∑

h∈Hl

p(x|h)p(h) =
∑

h1∈H

· · ·
∑

hl∈H

p(x|h)p(h) (2)

whereh = (h1, h2, . . . hl) is structured as a tuple ofl factors. The number of dif-

ferent values it can take is exponential inl, even though the number of free param-

eters usually scales linearly inl. For example, in a logistic belief network with one

hidden layer (Neal, 1992),p(x|h) is factorized in several linear logistic regressions

2

∏d

i=1 p(xi|h) and all binary variables (units) in the hidden layer are assumed to be in-

dependent (i.e.p(h) =
∏l

j=1 p(hj)). Hence, another interpretation of a factor model is

as a mixture model with an exponential number of components,where all components

share parameters.

The computations required by Equation 2, which now involvesan exponential sum,

can be reduced ifp(x) can be factorized in a numeratorq(x) that is efficient to compute

and a normalization constantZ that is more expensive:

p(x) =
∑

h∈Hl

p(x,h) =
q(x)

Z
. (3)

This decomposition is generally not possible for directed graphical models (like a logis-

tic belief network), but it is for some undirected or energy-based graphical models. To

save computations, one can compute the normalization constantZ once, after training,

so that the marginal cost of the computation ofp(x) for any number of new data points

will depend only on the cost of computingq(x). One such energy-based model is the

Restricted Boltzmann Machine (RBM) (Smolensky, 1986), for which the computation

of q(x) is linear in the number of inputs and the number of hidden units.

Unfortunately, even with the factorization of the numerator, computing the normal-

ization constantZ of an RBM quickly becomes intractable as we increase the number

of hidden units. With only 20 hidden units, computingZ already requires a summation

over about a million (220) configurations of the hidden units. Such a number is rea-

sonable in practice, however 20 hidden units is far from the regime in which RBMs are

usually employed, e.g. to extract a new representation for the input (Hinton et al. (2006)

use RBMs with 500 and 2000 hidden units). For this reason, smallRBMs have never

been considered a good alternative to mixture models for tractable density estimation.

The first contribution of this paper is an empirical demonstration that, even in its

tractable regime, an RBM can often be a competitive tractable density estimator. How-

ever, there are some cases where the capacity of the RBM is too small in the tractable

regime.

As a second contribution, this paper addresses this situation and presents a gener-

alization of the RBM, which we call the Restricted Boltzmann Forest (RBForest). In

the RBForest, we replace the binary hidden variables of the RBM with groups of tree-

structured binary variables. By varying the size of the trees, the number of parameters

3

of the model can be increased while keeping the computationsof p(x) tractable. We

describe efficient algorithms for inference and training inthe RBForest, and we study

some of its properties.

2 Restricted Boltzmann Machines (RBMs)

An RBM defines a probability distribution over a binary input vector x and a layer of

binary hidden variablesh, through a bilinear energy function over these two vectors

E(x,h) = −b
T
x− h

T
Wx− c

T
h. (4)

The energy function is converted into a probability function as follows:

p(x,h) =
e−E(x,h)

Z
(5)

where the normalization constantZ ensures that Equation 5 defines a valid distribution.

It is straightforward to show that

p(x|h) =
∏

i

p(xi|h), p(xi = 1|h) = sigm(bi +
∑

j

Wjihj) (6)

wheresigm(a) = 1/(1 + e−a). p(h|x) also has a similar form:

p(h|x) =
∏

j

p(hj|x), p(hj = 1|x) = sigm(cj +
∑

i

Wjixi). (7)

Equation 7 implies that inference over the hidden variablesgiven an input pattern is

easy and simple to compute, as it can proceed independently for each hidden variable

hj. Consider the computation of the likelihood of an inputx:

p(x) =

∑
h∈{0,1}l e−E(x,h)

Z
. (8)

Computing the numerator is not a problem. Because of the factorial aspect of the nu-

merator, it can be computed inO(dl):
∑

h∈{0,1}l

e−E(x,h) =
∑

h1∈{0,1}

· · ·
∑

hl∈{0,1}

eb
T
x+h

T
Wx+c

T
h

= eb
T
x




∑

h1∈{0,1}

eh1W1,:x+c1h1



 . . .




∑

hl∈{0,1}

ehlWl,:x+clhl





= eb
T
x

l∏

i=1

(
1 + eWi,:x+ci

)
(9)

4

whereWi,: is the ith row of W. However, computing the normalization constant is

exponentially expensive, either inl ord, depending on whether the factorization is made

according to the input or the hidden variables, respectively. Factorizing according to the

inputs, we get:

Z =
∑

h{0,1}l

∑

x∈{0,1}d

eb
T
x+h

T
Wx+c

T
h =

∑

h{0,1}l

ec
T
h

d∏

i=1

(
1 + eW

T
:,ih+bi

)
(10)

whereW:,i is theith column ofW. Z does not depend onx and has to be computed

only once. So one option to make the computation ofp(x) tractable is to limit the

number of hidden unitsl enough to make the exponential summation required by Z

computationally feasible. Doing so however also limits thenumber of parameters and

the capacity of the RBM. Yet it is unclear how important the impact is on the general

performance of the RBM. Indeed, while being certainly less powerful than a bigger

RBM, an RBM with only 20 hidden variables is still an implicit mixture over a million

components (with shared parameters). So even if only a smallfraction of those were

effectively used and had a significant probability of being picked, it might be sufficient

to be competitive with standard mixture models.

3 Tractable RBMs with larger hidden layers

Instead of limiting the number of hidden variables of the RBM, another approach for

makingp(x) tractable would be to directly limit the number of possible configurations

of the elements ofh, by introducing structural constraints on allowable configurations.

Perhaps the simplest such constraint we could impose corresponds to having multino-

mial groups of units, that is subsets of hidden units within which only one unit can be

active at a time. The hidden layer of the RBM could then contain several multinomial

groups and it would be possible to have many more hidden unitsthan in a standard

binary layer for the same total number of possible configurations for the hidden layer

h.

Unfortunately, in practice, using such units can be difficult. Indeed, because the

units within each group essentially compete with each otherto explain the input, we of-

ten observe that several hidden variables take a while (if ever) to overcome the influence

of other hidden variables and can remain essentially untrained for several iterations.

5

For this reason, we propose instead to introduce tree constraints in the hidden layer

of the RBM. As we will see (see Section 5.1), this constraint will make learning much

easier than with multinomial groups. These constraints arealso applied to groups of

hidden variables, yielding a hidden layer acting as a set of trees (forest). For this reason,

we dub this new model the Restricted Boltzmann Forest.

3.1 Restricted Boltzmann Forests (RBForests)

The general idea is depicted in Figure 1. Hidden variables are grouped inT perfect (i.e.

full and complete) binary trees of depthD. In a tree, hidden variables must respect the

following constraints. When a hidden variable is inactive (hi = 0) all hidden variables

in its left subtree must be inactive. Likewise, if a hidden variable is active (hi = 1),

its right subtree variables must be inactive. So the activity of hidden variables defines a

path in the tree from the root to one of the leaves, which we will refer to as the active

path1.

It should be noticed that the RBForest can be seen as a generalization of the standard

RBM. Indeed, an RBM is simply an RBForest with trees of depth 0. So, with the

RBForest, we effectively add an additional degree of freedom in the architecture design

(the tree depth) over which it can be advantageous to do modelselection. Note also that

both the RBM and the RBForest use exactly the same energy function. However, in the

RBForest, we don’t allow configurations ofh that do not respect the tree constraints

(which would be equivalent to assigning an infinite energy tothose configurations).

3.2 Inference in the RBForest

Let us first define some notation. LetN(t) be the set of indices of the hidden variables

in thetth tree,A(i) be the indices of the ancestors of the nodehi andP (i) be the index

of the parent ofhi. C(i) will be the vector of valuesC(i)k that hk must take for the

activation of nodehi to be allowed, fork ∈ A(i). Also, for notational convenience, if

M is a set of indices of hidden variables (as areN(t) andA(i)), we consider thathM

refers to the sub-vector ofh containing the hidden variables inM . Finally, S(t) will

refer to the set of all configurations of variableshN(t) in thetth tree that respect the tree

1Notice that for a path to be active, all hidden variables in the path need not be active.

6

h

x

W

Active paths

Figure 1: Illustration of a Restricted Boltzmann Forest for binary input vectors, where

binary variables in the hidden layer are grouped in trees. When a hidden variable is

inactive (white) or active (black), all hidden variables will accordingly be inactive in its

left or right subtree. On the right (zoomed-in box), the variables in the active paths of

two of the trees are identified.

constraints.

In an RBForest, the conditional distributionp(x|h) is unchanged and is as given

in Equation 6. However,p(h|x) is slightly more complex than in Equation 7. Since

the tree constraints apply only within single trees, we obtain that p(h|x) factorizes

as p(h|x) =
∏

t p(hN(t)|x). We can then develop thep(hN(t)|x) factors by taking

advantage of the tree structure ofhN(t).

In particular, let us define the sums of exponentiated energies over all configurations

compatible withhi being active asL (i, N(t)); similarly defineR (i, N(t)) for inactive

ones:

L (i, N(t)) =
∑

hN(t)|hi=1,hN(t)∈S(t)

e−E(x,hN(t)) (11)

R (i, N(t)) =
∑

hN(t)|hi=0,hN(t)∈S(t)

e−E(x,hN(t)) (12)

whereE(x,hN(t)) is the energy associated to thetth tree for hidden variableshN(t) and

input x, i.e.,E(x,hN(t)) contains the terms ofE(x,h) in Equation 4 that are specific

to x andhN(t).

Forhi in hN(t), we have that thetree-local distributionp(hi = 1|hA(i),x) is simply:

p(hi = 1|hA(i),x) =
L (i, N(t))

L (i, N(t)) + R (i, N(t))
(13)

whenhA(i) = C(i)A(i) and 0 otherwise. Then, using this tree-local distribution we can

7

write

p(hN(t)|x) =
∏

i∈path(hN(t))

p(hi|hA(i),x) (14)

whenhN(t) respects the tree constraints (otherwisep(hN(t)|x) = 0). Here,path(hN(t))

is the set of hidden variables in the active path of thetth tree with valuehN(t). To

sample fromp(hN(t)|x), we first sample the root variablehroot(t) from p(hroot(t)|x)

(A(root(t)) is empty). We then move to the left or right subtree accordingly. We

repeat this sampling procedure by using the tree-local distribution of Equation 13 until

a leaf has been sampled. The marginal probability of each hidden variable being active,

p(hi = 1|x), can be computed as follows:

p
(
hi = 1|hA(i) = C(i)A(i),x

) ∏

j∈A(i)

p
(
hj = C(i)j|hA(j) = C(i)A(j),x

)
(15)

or in a recursive form as follows:

p
(
hi = 1|hA(i) = C(i)A(i),x

)
p
(
hP (i) = C(i)P (i)|x

)
. (16)

Let’s now consider computing the termsL (i, N(t)) andR (i, N(t)) of Equation 11

and 12. These terms are required to compute the tree-local distributions. A naive com-

putation of all these terms would be linear in the number of hidden variables (nodes in

all trees)and in the depth of that tree. However, using the tree constraints, we have that

for a non-leafhi and its two childrenhj andhk, the following holds:

L (i, N(t)) = eWi,:x (L (j,N(t)) + R (j,N(t))) (17)

R (i, N(t)) = L (k,N(t)) + R (k,N(t)) (18)

and for a leafhi we haveL (i, N(t)) = eWi,:x andR (i, N(t)) = 1. We can hence

obtain allL (i, N(t)) andR (i, N(t)) terms by proceeding level-wise, first assigning the

value of these terms for the leaves and going upwards to compute all other terms. This

bottom-up pass is then linear only in the number of hidden variables. The pseudocode

for this procedure is given in the Appendix.

Once all terms have been computed, and using Equation 13 to rewrite Equation 16

as follows

p(hi = 1|x) =
L (i, N(t)) p(hP (i) = C(i)P (i)|x)

L (i, N(t)) + R (i, N(t))
, (19)

8

we see that a top-down pass starting at the root with

p(hroot(t) = 1|x) =
L (root(t), N(t))

L (root(t), N(t)) + R (root(t), N(t))
(20)

can be used to compute all marginal probabilities of the hidden variables. This compu-

tation is also linear in the number of hidden variables in thetree. Pseudocodes of the

sampling and inference procedures for the RBForest are given in the Appendix.

3.3 Learning in the RBForest

To train an RBForest, Contrastive Divergence (CD) (Hinton, 2000) can be used just

as in a regular RBM. CD provides an efficient approximation for the gradient of the

negative log-likelihood (NLL) of some inputxt with respect to any parameterθ

∂ −log p(xt)

∂θ
= EEh|xt

[
∂

∂θ
E(xt,h)

]
− EEx,h

[
∂

∂θ
E(x,h)

]
. (21)

CD uses a short Gibbs chain ofk steps starting atxt to obtain an approximate sample

x
neg from the model’s distribution and uses this sample to get a point estimate of the

second expectation overx. The conditional expectation overh given x
neg can then

be done exactly and involves computing the conditional probabilities p(hi = 1|x) of

individual hidden variables being active. To train the model, one can then use this

estimate of the gradient on the parameters to perform stochastic gradient descent. For

more details, see the pseudocode in the Appendix. The only two differences between

CD in a regular RBM and in an RBForest are: (1) in the sampling procedure of the

hidden layer given a value for the input layer and (2) in the computation ofp(hk = 1|x)

for the positive and negative phase updates. Development ofbetter learning algorithms

for RBMs is currently an active area of research (see Tieleman (2008); Tieleman and

Hinton (2009)) from which RBForests should also benefit.

3.4 Computing p(x)

There remains the question of how to computep(x) in an RBForest. The formula is

similar to that of Equation 8, with the sum overh ∈ {0, 1}l being replaced with a

sum over values ofh that respect the tree constraints. More specifically, usingEqua-

9

tions 11 and 12 and the linearity ofE(x,h) in h, we have:

∑

h|hN(t)∈S(t) ∀t

e−E(x,h) =




∑

hN(1)∈S(1)

e−E(x,hN(1))



 . . .




∑

hN(T)∈S(T)

e−E(x,hN(T))





=
T∏

t=1

(L(root(t), N(t)) + R(root(t), N(t)))

where each of theL(root(t), N(t)) andR(root(t), N(t)) can efficiently be computed,

as described previously. As for the computation of Z, its formula is that of Equation 10

where the sum overh ∈ {0, 1}l is replaced with a sum overh|hN(t) ∈ S(t) ∀t ∈

{1, . . . , T}. This exponential sum must be done explicitly. However, it is still possible

to keep it reasonably small while increasing the number of units l, by choosing appro-

priate values for the number of treesT and their depthD. For instance, an RBForest

with T = 5 trees of depthD = 3 will also have2(D+1)T = 220 terms in the sum over

h, just like in an RBM with 20 hidden variables. However, that RBForest will have 75

hidden variables (and their corresponding parameters, weights and biases), more than

three times as many. See the Appendix for pseudocodes computing Z andp(x).

4 Related Work

Salakhutdinov and Murray (2008) have proposed a technique to approximate the value

of the normalization constantZ for larger RBMs, making it possible to get an approxi-

mate estimate of the value ofp(x). We emphasize that this work and ours have different

goals. Indeed, they were interested in evaluating the generative modeling capacity of

large RBMs (i.e. in the regime they are usually used in), so having only an approximate

estimate ofp(x) was sufficient. Here, we specifically focus on the case wherep(x) is

tractable and exact (which is useful for using an RBM in a largerprobabilistic model

or in a Bayes classifier) and argue that even in that regime the RBMframework and its

RBForest generalization are competitive when compared to other tractable approaches.

5 Experiment: density estimation

We present here an experimental comparison of the RBM and the RBForest with a stan-

dard mixture of Bernoullis (MoB). Just like RBMs and RBForest, the “emission” prob-

10

ability distribution given the hidden state is also a product of independent Bernoullis.

Hence, the only difference between the MoB, RBM and RBForest lies in the nature of

the prior distribution over the hidden state. In the MoB, thisprior is explicit, and corre-

sponds to a multinomial over theM possible mixture components, whereas in the RBM

and RBForest, the prior is implicit and more complex. This makes the MoB a perfect

choice for experimental comparisons, which in essence willspecifically evaluate the

impact of changing the nature of the prior over the hidden state. Moreover, it has been

argued previously that the MoB is a competitive density estimator in general (Lowd &

Domingos, 2005).

The experiment evaluation was conducted on several datasets of multivariate bi-

nary data. These datasets vary in nature (text, image, biological and game related data)

and in size (from a few hundred to many thousands of examples), while all being of

relatively high dimensionality (between 100 and 500 inputs). The majority of these

datasets were taken from the LIBSVM datasets web page2, with the exception of the

ocr-letter dataset3 and thenips-0-12dataset4. All datasets were divided in training,

validation, and test sets. The validation set NLL was used asa criteria to select good

values for the hyper-parameters, among combinations of values for the learning rateη

(in {0.005, 0.0005, 0.00005}), the number of CD steps5 (in {10, 25}) and the number

of iterations over the training set (in{100, 500, 1000})6. The RBM had 23 hidden vari-

ables, and we considered RBForests with 3, 4, 5, 7 and 11 trees ofdepth 5, 4, 3, 2 and 1

respectively, so that the total number of hidden layer configurations would be less than

10 million. The mixtures of multivariate Bernoullis were trained with the EM algo-

rithm, using the number of components (in{32, 64, 128, 256, 512, 1024}) chosen based

on the validation set NLL7. Early stopping based on the average NLL of the validation

set was also used, with a look ahead of 5 iterations, and 2 random initializations of EM

were always tested.

2See http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
3See http://ai.stanford.edu/∼btaskar/ocr/.
4See http://www.cs.toronto.edu/∼roweis/data.html.
5For themushroomsandnips-0-12datasets, which are smaller, we also considered 50 steps of CD
6No weight decay was used, since choosing an appropriate number of iterations seemed sufficient to

avoid overfitting.
7In our experiments, it turns out that 1024 was never chosen asthe best number of components.

Hence, bigger mixtures would certainly have led to overfitting.

11

Table 1: Density estimation experiment results, with details about the different datasets.

The comparison is made by looking at the difference between the test set average NLL

of the MoB with that of the standard RBM, the RBM with multinomial groups and

RBForest (i.e. the RBM, RBM mult. and/or RBForest outperform the MoB if this

difference is positive). The 95% confidence intervals were estimated based on a two-

sample t-test statistic.

Dataset
Nb. Set sizes Diff. NLL Diff. NLL Diff. NLL

inputs (Train,Valid,Test) RBM RBM mult. RBForest

adult 123 5000,1414,26147 4.18 ± 0.11 4.15 ± 0.11 4.12 ± 0.11

connect-4 126 16000,4000,47557 0.75 ± 0.04 -1.72± 0.05 0.59 ± 0.04

dna 180 1400,600,1186 1.29 ± 0.72 1.45 ± 0.67 1.39 ± 0.73

mushrooms 112 2000,500,5624 -0.69± 0.13 -0.69± 0.11 0.042± 0.12

nips-0-12 500 400,100,1240 12.65 ± 1.55 11.25 ± 1.55 12.61 ± 1.55

ocr-letter 128 32152,10000,10000 -2.49± 0.44 0.99 ± 0.43 3.78 ± 0.43

rcv1 150 40000,10000,150000 -1.29± 0.16 -0.044± 0.16 0.56 ± 0.16

web 300 14000,3188,32561 0.78 ± 0.30 0.018± 0.31 -0.15± 0.31

The results are displayed in Table 1, where the difference between the NLL achieved

by the MoB and the other models are given. Confidence intervalsat 95% confidence

level are also given, based on the independent two-sample t-test statistic for equal sam-

ple sizes and equal variance8.

The first surprising observation is that, even with only 23 hidden units, the RBM

8While the assumption of equal variance is reasonable, the assumption of independence is of course

clearly wrong. However, because we expect the correlation between the NLL of two models on the

same example to be positive (e.g. the easy examples tend to bethe same across models), this correlation

would actually decrease the variance of the differences in average NLL. In other words, the assumption

of independence actually makes the confidence intervals of Table 1 more conservative (i.e. wider) than

they could be. Our approximation is better, but similar in the sense of being overconservative, to the

common practice of computing NLLs and confidence intervals individually for each model and putting

those in a table instead (hence ignoring correlations between individual example errors across models).

12

outperforms the MoB in more than half of the cases. Hence, while experiments in

previous work on such small RBMs (Tieleman, 2008; Tieleman & Hinton, 2009) might

have seemed of limited relevance to a practical application, it appears that this regime

can still be competitive when compared to a standard mixturemodeling approach.

Moreover, in the three cases where the RBM performs less well, its RBForest gener-

alization allows us to reach and/or outperform the MoB. Notice that this experiment was

designed to distinguish the performance of a standard RBM withthe performance that

is achievable when using the additional modeling degrees offreedom that the RBForest

provides (i.e. the depth of a tree). In other words, in a case where the RBM performed

better than the RBForest (e.g. on thewebdataset), the RBForest would have reached

the same performance if we had allowed the trees to be of depth0.

We have found that for all datasets exceptocr-letterandrcv1 , the performance was

worse when using only 3 trees (the smallest number of trees considered by RBForest).

For ocr-letterandrcv1 , we ran experiments with RBForests containing only one large

tree (depth 8, i.e. 511 hidden units), but the performance was much worse and did not

even reach that of the MoB. So it appears that the use of many trees is important.

In general, we expect that the RBM and RBForest should be particularly appropri-

ate for datasets where the data is thought to have been generated from a combination

of many individual factors that are not mutually exclusive.In the standard RBM, these

factors are assumed to be binary, while in the RBForest each factor is assumed to take

one value out of possibly many more (one for each tree path). Alternatively, these mod-

els can be viewed as mixture models with a large (exponential) number of components,

but where the components share parameters. Theocr-letterdataset is a good example.

While all 26 characters are different, they each can be decomposed into smaller patterns

or pen strokes (i.e. the factors) and different characters can share some of those patterns

(for instance, ’i’ and ’l’ both share a vertical center line in their bottom half). On the

other hand, not all combinations of those smaller patterns make sense. In particular, we

could easily define small sets of pen strokes (i.e. the possible values of the factors) such

that only one of them can be found in any given character. The RBForest can capture

both of these characteristics (composition of factors, where each factor can take only

one of many different values). This might explain why RBForestis the best performing

method on theocr-letterdataset.

13

5.1 Comparison with groups of multinomial hidden variables

As previously mentioned, one could have used multinomial groups to make the compu-

tation ofZ tractable, instead of tree-structured groups of hidden variables. Actually, it

is possible to show that for any RBForest, there exists an equivalent energy-based model

with multinomial groups of hidden variables that computes exactly the same distribu-

tion (but with a different parametrization). We sketch the construction here: consider

the case of an RBForest with only one tree and with parametersW, b andc. Then, con-

sider a multinomial group version of that RBForest (with parametersW∗, b∗ andc
∗) by

associating each bith∗
i of a multinomial variable with a pathpath(h) in the RBForest

tree and setting its weight vector toW∗
i,: = h

T
W and its bias toc∗i = h

T
c. Finally, use

the same input bias vectorb∗ = b. Such a construction implies that each of these pairs

of h in the RBForest andh∗ in the multinomial group version assign the same energy

for anyx. So, these two models necessarily define the same distribution.

However, we motivate the use of trees by the empirical observation that hidden units

in multinomial groups are often hard to train. Indeed, we observe that optimization is

much easier with the RBForest than with multinomial units. In the case of the RBForest,

we observe in practice that training progresses smoothly byfirst finding good values for

the root node’s weights and then slowly moving towards optimizing the weights at the

first level, and so forth. This is due mainly to the level-wiserecursive nature of the value

of p(hk = 1|x) (see Equation 16), which is involved in the CD update of the weights

W. In the case of the multinomial groups, all the hidden variables are competing with

each other to explain the input. So we observe that several hidden variables take a

while (if ever) to overcome the influence of other hidden variables and can remain

essentially untrained for several iterations. We illustrate this in Figure 2, where we

show the weights of an RBForest with one tree of depth 3 (i.e. 16 possible paths) and

the weights of a model with one multinomial group of 16 (mutually exclusive) binary

variables9.

We also designed an experiment in order to verify quantitatively that optimization

is indeed easier when training the RBForest. The idea is simple: we generated large

9Both models were trained on theocr-letter training set for 10 iterations, with a learning rate of

η = 0.005 and using CD-10. We chose 10 iterations only to show the state of both models some way

through training.

14

Dataset

Test NLL

difference

syn-3 6.61 ± 0.36

syn-4 7.72 ± 0.33

syn-5 7.29 ± 0.29

syn-7 4.35 ± 0.23

syn-11 6.26 ± 0.24
(a)

(b)

Figure 2: (Left) Comparison between using trees vs multinomial groups, on fivesyn-

thetic datasets (referred to assyn-T , whereT ∈ {3, 4, 5, 7, 11} is the number of multi-

nomial groups used to generate the datasets). The NLL difference is the NLL obtained

using multinomial groups minus the NLL obtained using trees. (Right) Illustration of

training optimization for a tree of hidden variables and a multinomial group.(a) On top,

illustration for a single-tree RBForest of the weightsWi,: for each hidden variable, and

at bottom, illustration of the summed weightsW
T
h for all possible configurations of

the hidden layer (i.e. the equivalent multinomial group weights). On the left of the tree

root, weights captured different amounts of horizontal white backgrounds. On the right

of the root, weights captured the structure of more vertically elongated characters.(b)

Illustration of the weights learned using binary hidden variables forming a multinomial

group. Most of them are still close to their initial near-zero value.

15

datasets from distributions that fall in the family of both the RBForest and the RBM with

multinomial groups, and quantitatively measured which of the two models achieved

the best performance in terms of NLL. Because the generated training sets were large

(50 000 examples), overfitting was not an issue and the best performing model was also

the one which was most able to minimize its training error10. The distributions used to

generate the datasets were obtained by randomly initializing the weights of RBMs with

multinomial groups of equivalent sizes to the RBForests considered in the experiment

of Table 1 (i.e. equivalent to RBForests with 3, 4, 5, 7 and 11 trees of depth 5, 4, 3, 2

and 1 respectively). Each connection weight was sampled from a Normal distribution

with mean 0 and a standard deviation of 10 (i.e. large enough to obtain a distribution

with interesting structure). To ensure that there is an equivalent RBForest corresponding

to the same distribution, the connections to one hidden unitof each multinomial group

was set to 0 (such a unit of a multinomial group would correspond to a right-most tree

path in an RBForest). While we could have instead initialized RBForests and generated

the datasets from them, we chose RBMs with multinomial groups instead to ensure that

we were not favouring the RBForest in any way. Training, validation and test sets of

50 000, 10 000 and 50 000 examples of dimensionality 200 were generated by sam-

pling from those five RBMs with multinomial groups. The sampling procedure started

at a vector sampled uniformly over all possible binary vectors, and used 500 steps of

annealed Gibbs sampling11 followed by 500 steps of normal Gibbs sampling. Finally,

RBForests and RBMs with multinomial groups were trained on each dataset, and the

same values of learning hyper-parameters (i.e. learning rates, number of CD steps and

number of iterations) as in the experiments of Table 1 were compared, with the best

combination chosen based on the associated NLL error on the generated validation set.

Before training, both the RBForest and the RBM with multinomial groups had their

connection weights initialized to small random values close to 0. For a given dataset,

the number of multinomial groups and the size of the groups for the trained RBM as

well as the number of trees and the size of the trees of the trained RBForest were set
10This was verified empirically. In general, there were almostno difference between the training and

test NLL errors for all synthetic datasets.
11By annealed Gibbs sampling, we mean Gibbs sampling where theconditional distributions used are

those of the RBM but with its energy function divided by a temperature parameter. The temperature

parameter was set at 100 for the first step and was linearly decreased to 1 until step 500.

16

to match (or, for the RBForest, be equivalent to) those of the RBM that generated the

dataset. Figure 2 shows the results. On all synthetic datasets, RBForest clearly outper-

forms the RBM with multinomial groups, in agreement with the hypothesis of an easier

optimization problem associated with RBForests. Figure 3 also shows the progression

of the test NLL errors for both the RBForest and RBM with multinomial groups on

one of the synthetic dataset (with the hyper-parameters chosen based on the validation

error). We see that the superior performance of RBForest is notdue to a faster con-

vergence and that it is indeed finding a better minima than theRBM with multinomial

groups.

Table 1 also shows the performance of the RBM with multinomial groups on the

8 real world datasets. On half of the datasets, the RBForest is found to be statisti-

cally better. On the others, no significant difference was detected. More importantly,

improvements are found on the datasets where the RBM performs worse than the MoB.

So it appears that the contributions of RBForests are two-fold. First, they extend the

family of distributions that can be modeled in the energy-based framework relatively to

standard RBMs (which are a particular case of RBForests with trees of depth 0), while

also improving the tractability of learning compared to structurally equivalent RBMs

extended to have multinomial hidden units.

5.2 Training a mixture of RBForests

We mentioned previously that one advantage of having a tractable density estimator is

that it can be used in a larger probabilistic model. For instance, consider a mixture of

M RBForest components

p(x) =
M∑

m=1

p(x|C = m)p(C = m)

wherep(x|C = m) is given by the distribution of an RBForest with parametersW
m,

b
m andc

m (the different RBForest components have different parameters). Such a mix-

ture can be trained using the Generalized EM algorithm. During the E step, we simply

compute the posterior probabilities (or responsibilities) of each RBForest components

having generated each training example

q(C = m|x) =
p(x|C = m)p(C = m)

∑M

m=1 p(x|C = m)p(C = m)

17

Figure 3: Learning curves for the RBForest and the RBM with multinomial groups, on

syn-11dataset. To normalize the curves, the value of the test NLL atthe end of the

curve for the RBM with multinomial groups was subtracted to alltest NLL errors. We

see that RBForest is not simply converging faster, but is actually finding a better minima

than RBM mult. The learning curve for RBM mult. is also much less stable. Using a

smaller learning rate (not shown here) gives a more stable behavior for RBM mult., but

worse performance.

18

which can be computed exactly sincep(x|C = m) is tractable in the RBForest.

In the M step, we fix the values of the posterior probabilitiescomputed in the E

step and we minimize according top(x|C = m) andp(C = m) the following expected

negative log-likelihood:

−
∑

xt∈D

M∑

m=1

q(C = m|xt) log (p(xt|C = m)p(C = m)) (22)

= −
∑

xt∈D

(
M∑

m=1

q(C = m|xt) log p(xt|C = m)−
M∑

m=1

q(C = m|xt) log p(C = m)

)

whereD is the training set. The prior distributionp(C = m) minimizing Equation 22

is simply

p(C = m) =

∑
xt∈D

q(C = m|xt)

|D|
.

As for the RBForest components, optimizing Equation 22 is equivalent to training each

RBForest components on a weighted version of the training set.The weight of example

xt for themth RBForest component is simplyq(C = m|xt), meaning that the learning

rate is multiplied byq(C = m|xt) when updating themth RBForest’s parameters given

examplext.

We trained a mixture of 8 RBForest using the Generalized EM algorithm, on theocr-

letter dataset. The parameters of each RBForest are initialized randomly. However, to

break the initial symmetry, we also performK-means on the training set (withK = M)

and perform 10 000 training updates for each RBForest on different subsets of data as

given byK-means. Then we proceed with the Generalized EM algorithm onthe full

training set. This larger model reached a test NLL difference of 6.27 with the MoB,

improving on a single RBForest (3.78).

Another approach to training mixtures of RBM-inspired modelswas also presented

by Nair and Hinton (2009). Their framework for so-called implicit mixtures of RBMs

is directly applicable to RBForests, and the resulting density estimator would also be

tractable, as long as each individual RBForest is also tractable. In this work, the choice

of training an explicit mixture (derived from a directed graphical model) instead of

an implicit mixture (derived from an undirected graphical model) was made in order

to show that the larger probabilistic system in which the RBForest is used need not

correspond to an undirected graphical model (like the RBForest).

19

On a different but related topic, we also mention that the implicit mixtures of Nair

and Hinton (2009) use multinomial units to index the mixturecomponents and, as we

have seen in Section 5.1, using such units can create difficulties during training. Nair

and Hinton (2009) actually mention such difficulties, whichforced them to introduce

a temperature parameter when sampling the multinomial units. This parameter can be

fixed to some tuned value, and can vary during training using some annealing schedule.

The experiment of Figure 2 suggests that using tree-structured units might be another

way to facilitate training in such implicit mixtures, maybeavoiding the need for tuning

a temperature parameter.

5.3 Visualizing the implicit mixture components

A possible explanation for why the RBM and the RBForest are able toperform well

with relatively few parameters is that, because of their factorial nature, they implicitly

learn a mixture of exponentially many components (see Equation 2). However, it is not

necessarily clear whether they actually take advantage of this situation (for instance,

only a handful of those components could end up having a significant probability of

being picked). To verify this, we took the best RBForest trained on theocr-letterdataset

(3 trees of depth 5) and grouped the test samples into different groups based on which

implicit mixture components had the highest posterior probability (or responsibility).

More precisely, for each test examplext, we found which of the643 = 262144 implicit

mixture component (i.e. which value ofh) had the largest probability givenxt:

ĥ(xt) = arg max
h|hN(t)∈S(t) ∀t∈{1,...,T}

p(h|xt) = arg max
h|hN(t)∈S(t) ∀t∈{1,...,T}

T∏

t=1

p(hN(t)|xt)

Sincep(h|xt) factorizes according to each tree, findingh with the largest probability

simply requires finding the configurationhN(t) of each tree that maximizesp(hN(t)|xt)

separately. Since each tree only has2D+1 = 26 = 64 possible configurations of its units,

finding the configuration with maximum probability can be done with an exhaustive

search. Having found̂h(xt) for each test examplext, we then grouped together test

examples sharing the same value forĥ(xt).

Among the643 = 262144 implicit mixture components, about 4000 were “respon-

sible” for at least one test sample, hence much more than the63 × 3 = 189 hidden

20

Figure 4: Visualization of 375 of the implicit mixture components (one per column)

learned by the RBForest on theocr-letterdataset.

units the RBForest has. Figure 4 illustrates a small subset of all groups of test samples

sharing the same implicit component. We see that many implicit components captured

some meaningful structure from the data, with groups often being class-specific, but

with data from the same class being also split across different groups that capture spe-

cific variations on a character’s size or angle.

Conclusion

We presented experimental evidence that, even in its tractable regime, the RBM is often

a competitive model for multivariate binary density modeling. For cases where it lacks

capacity, we proposed the Restricted Boltzmann Forest, a generalization of the RBM.

Efficient inference and training algorithms were proposed for the RBForest, and the ad-

21

vantage of using trees was emphasized using a comparison with groups of multinomial

units.

Acknowledgments

We thank James Bergstra and anonymous reviewers for their helpful comments.

Appendix

Pseudocode for Inference and Sampling in the RBF

To do inference, we first need a function which computes the sum of exponentiated

energiesL(i, N(t)) andR(i, N(t)), with a bottom-up pass.

Algorithm: SUM-EXP-ENERGIES-RBF(x)

Input: inputx

Output: all sums of exponentiated energiesL(i, N(t)) andR(i, N(t))

for t = 1 to T do

Initialize energies

for i such thathi is a leaf in treet do

L(i, N(t))← eWi,:x

R(i, N(t))← 1

end for

Bottom-up pass

for δ = D − 1 to 0 do

for i such thathi is a node at levelδ of treet do

j ← index of left children ofhi

k ← index of right children ofhi

L(i, N(t))← eWi,:x (L (j,N(t)) + R (j,N(t)))

R(i, N(t))← L (k,N(t)) + R (k,N(t))

end for

end for

22

end for

From the values ofL(i, N(t)) and R(i, N(t)), we can then infer all the hidden

variables’ marginal probabilities given some inputp(hi = 1|x) with a top-down pass.

Algorithm: INFERENCE-RBF(x)

Input: inputx

Output: marginal probabilitiesp(hi = 1|x)

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

for t = 1 to T do

Initialize top-down pass

p(hroot(t) = 1|x)← L(root(t),N(t))
L(root(t),N(t))+R(root(t),N(t))

for δ = 1 to D do

for i such thathi is a node at levelδ of treet do

p(hi = 1|x) =
L(i,N(t))p(hP (i)=C(i)P (i)|x)

L(i,N(t))+R(i,N(t))

end for

end for

end for

As for sampling hidden layer variables given some input, theprocedure is very

similar.

Algorithm: SAMPLE-HIDDEN-RBF(x)

Input: inputx

Output: a sampleh from p(h|x)

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

for t = 1 to T do

Get root probability

p(hroot(t) = 1|x)← L(root(t),N(t))
L(root(t),N(t))+R(root(t),N(t))

hroot(t) ← sample from Bernoulli distribution with parameterp(hroot(t) = 1|x)

23

i← root(t)

for δ = 1 to D do

if hi = 1 then

i← index of left child ofhi

else

i← index of right child ofhi

end if

Get tree local probability

p(hi = 1|hA(i) = C(i)A(i),x)← L(i,N(t))
L(i,N(t))+R(i,N(t))

hi ← sample from Bernoulli distribution with

parameterp(hi = 1|hA(i) = C(i)A(i),x)

end for

end for

Sampling the input (visible) units is exactly the same as in astandard RBM.

Algorithm: SAMPLE-V ISIBLE-RBF(h)

Input: value of the hidden unitsh

Output: a samplex from p(x|h)

for i = 1 to l do

p(xi = 1|h)← sigm(bi +
∑

j Wjihj)

xi ← sample from Bernoulli distribution with parameterp(xi = 1|h)

end for

Pseudocode Contrastive Divergence training of the RBF

Training in an RBF is based on stochastic gradient descent. Whencycling over training

examples, the parameters of the RBF are updated for a given example xt according to

the following algorithm:

Algorithm: TRAIN-RBF-CD(xt,η,k)

Input: training examplext, learning rateη, number of Gibbs stepsk

24

Positive phase

x
pos ← xt

Set positive hidden statistics to the vector of probabilitiesp(hi = 1|xpos)

ĥpos ← INFERENCE-RBF(xpos)

Negative phase

x
neg ← x

pos

while k > 0 do

h
neg ← SAMPLE-HIDDEN-RBF(xneg)

x
neg ← SAMPLE-V ISIBLE-RBF(hneg)

k ← k − 1

end while

Set negative hidden statistics to the vector of probabilitiesp(hi = 1|xneg)

ĥneg ← INFERENCE-RBF(xneg)

Update parameters

b← b + η (xpos − x
neg)

c← c + η
(
ĥ

pos − ĥ
neg
)

W←W + η
(
ĥ

pos
x

posT

− ĥ
neg

x
negT

)

Computing p(x)

To computep(x), we first need to compute the normalization constantZ, with the

following procedure:

Algorithm: COMPUTE-Z-RBF()

Output: normalization constantZ of the RBF

InitializeZ

Z ← 0

Sum over all possible values ofh, compatible with the tree constraints

for h such thathN(1) ∈ S(1), . . . ,hN(T) ∈ S(T) do

25

Z ← Z +
∏d

j=1

(
1 + eW

T
:,jh+bj

)

end for

With a procedure to computeZ, we can then computep(x) as follows:

Algorithm: COMPUTE-PROB-RBF(x)

Input: inputx

Output: probabilityp(x) under the RBF

GetZ

Z ← COMPUTE-Z-RBF()

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

Get numerator ofp(x)

num←
∏T

t=1 (L(root(t), N(t) + R(root(t), N(t)))

p(x)← num/Z

References

Aitchison, J., & Aitken, C. (1976). Multivariate binary discrimination by the kernel

method.Biometrika, 63, 413–420.

Carreira-Perpĩnán, M. A., & Renals, S. A. (2000). Practical identifiability offinite

mixtures of multivariate bernoulli distributions.Neural Computation, 12, 141–152.

Everitt, B. S., & Hand, D. J. (1981).Finite mixture distributions. Monographs on

Statistics and Applied Probability. London: Chapman and Hall.

Hinton, G. E. (2000).Training products of experts by minimizing contrastive divergence

(Technical Report GCNU TR 2000-004). Gatsby Unit, UniversityCollege London.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learningalgorithm for deep belief

nets.Neural Computation, 18, 1527–1554.

26

Juan, A., & Vidal, E. (2001). On the use of bernoulli mixture models for text classifica-

tion. PRIS ’01: Proceedings of the 1st International Workshop on Pattern Recognition

in Information Systems(pp. 118–126). ICEIS Press.

Juan, A., & Vidal, E. (2004). Bernoulli mixture models for binary images.ICPR ’04:

Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04)

Volume 3(pp. 367–370). Washington, DC, USA: IEEE Computer Society.

Kassel, R. (1995).A comparison of approaches to on-line handwritten characterrecog-

nition. Doctoral dissertation, MIT Spoken Language Systems Group.

Lowd, D., & Domingos, P. (2005). Naive bayes models for probability estimation.

Proceedings of the Twenty-second International Conference on Machine Learning

(ICML’05) (pp. 529–536). New York, NY, USA: ACM.

Nair, V., & Hinton, G. E. (2009). Implicit mixtures of restricted boltzmann machines.

In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou (Eds.),Advances in neural

information processing systems 21 (nips’08), 1145–1152.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,

56, 71–113.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes.Advances in Neural Information

Processing Systems 14 (NIPS’01)(pp. 841–848).

Salakhutdinov, R., & Murray, I. (2008). On the quantitative analysis of deep belief net-

works. Proceedings of the Twenty-fifth International Conference on Machine Learn-

ing (ICML’08) (pp. 872–879). ACM.

Smolensky, P. (1986). Information processing in dynamicalsystems: Foundations of

harmony theory. In D. E. Rumelhart and J. L. McClelland (Eds.),Parallel distributed

processing, vol. 1, chapter 6, 194–281. Cambridge: MIT Press.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to

the likelihood gradient.Proceedings of the Twenty-fifth International Conference on

Machine Learning (ICML’08)(pp. 1064–1071). Helsinki, Finland: ACM.

27

Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive

divergence.Proceedings of the Twenty-sixth International Conference onMachine

Learning (ICML’09)(pp. 1033–1040). New York, NY, USA: ACM.

28

