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Abstract

We investigate the problem of estimating the density function of multivari-
ate binary data. In particular, we focus on models for which computing the es
timated probability of any data point is tractable. In such a setting, previous
work has mostly concentrated on mixture modeling approaches. We ardue tha
for the problem of tractable density estimation, the Restricted Boltzmann Machine
(RBM) provides a competitive framework for multivariate binary density nhode

ing. With this in mind, we also generalize the RBM framework and present the



Restricted Boltzmann Forest (RBForest), which replaces the binanpiesia the
hidden layer of RBMs with groups of tree-structured binary variabléss @&xten-

sion allows us to obtain models that have more modeling capacity but that remain
tractable. In experiments on several datasets, we demonstrate the coepesiiv

of this approach and study some of its properties.

1 Introduction

In this work, we consider the problem of learning densit@sfultivariate binary data.
Such data can be found in various problems of pattern rettognicharacter recogni-
tion (Kassel, 1995), medical diagnosis (Aitchison & Aitkei®76) and many natural
language processing problems (Juan & Vidal, 2001). In @aler, we focus on models
which give a tractable estimate of the density function, medels that can compute
their estimated value gf(x) in a reasonable, practical amount of time. This constraint
on a model is sometimes required, for instance if one wishese it as a module in
a larger probabilistic model (e.g. a mixture model) or in a &aglassifier, the later
being a useful approach to classification for problems witree labeled data (Ng &
Jordan, 2002). So far, the dominating approach to tractidisity estimation has been
mixture modeling, where a data point is assumed to have bemergted from one out

of m hidden components
p(x) = p(x|k)p(k) . (1)
k=1

Models falling in this category include mixtures of Bernaall[Everitt & Hand, 1981;
Carreira-Pergian & Renals, 2000; Juan & Vidal, 2001; Juan & Vidal, 2004; Lowd &
Domingos, 2005) and non-parametric kernel estimatorscfdgon & Aitken, 1976).
An alternative to mixture models are factor models, undeiclvieach data point is
generated based on the value of a combination of indivicabfs:
p(x) = p(xlh)ph) = > - > " p(xh)p(h) (2
heH! hi1€H hieH

whereh = (hy, ho,...h;) is structured as a tuple dffactors. The number of dif-
ferent values it can take is exponentiall/ineven though the number of free param-
eters usually scales linearly in For example, in a logistic belief network with one

hidden layer (Neal, 1992))(x|h) is factorized in several linear logistic regressions
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Hlep(:ci‘h) and all binary variables (units) in the hidden layer are as=iito be in-
dependent (i.ep(h) = Hézlp(hj)). Hence, another interpretation of a factor model is
as a mixture model with an exponential number of componevtisre all components
share parameters.

The computations required by Equation 2, which now involsegxponential sum,
can be reduced j(x) can be factorized in a numeratgx) that is efficient to compute

and a normalization constafstthat is more expensive:

px) = 3 ploc,h) = LX) @3)

heH! 4

This decomposition is generally not possible for directeapical models (like a logis-
tic belief network), but it is for some undirected or enetzpsed graphical models. To
save computations, one can compute the normalizationawristonce, after training,
so that the marginal cost of the computatiorp@t) for any number of new data points
will depend only on the cost of computingx). One such energy-based model is the
Restricted Boltzmann Machine (RBM) (Smolensky, 1986), for Whlte computation
of ¢(x) is linear in the number of inputs and the number of hiddersunit

Unfortunately, even with the factorization of the numeratomputing the normal-
ization constan¥ of an RBM quickly becomes intractable as we increase the number
of hidden units. With only 20 hidden units, computidgalready requires a summation
over about a million Z*°) configurations of the hidden units. Such a number is rea-
sonable in practice, however 20 hidden units is far from &ggmne in which RBMs are
usually employed, e.g. to extract a new representatio@input (Hinton et al. (2006)
use RBMs with 500 and 2000 hidden units). For this reason, SRillls have never
been considered a good alternative to mixture models fotabde density estimation.

The first contribution of this paper is an empirical demcatsdn that, even in its
tractable regime, an RBM can often be a competitive tractadasity estimator. How-
ever, there are some cases where the capacity of the RBM is t@lbisrthe tractable
regime.

As a second contribution, this paper addresses this situatd presents a gener-
alization of the RBM, which we call the Restricted Boltzmann Bo(&BForest). In
the RBForest, we replace the binary hidden variables of the RBill gvbups of tree-

structured binary variables. By varying the size of the tré&s number of parameters
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of the model can be increased while keeping the computatibpsx) tractable. We
describe efficient algorithms for inference and traininghie RBForest, and we study

some of its properties.

2 Restricted Boltzmann Machines (RBMs)

An RBM defines a probability distribution over a binary inputie x and a layer of

binary hidden variablek, through a bilinear energy function over these two vectors
E(x,h) = —b’x—h"Wx - c'h. 4)

The energy function is converted into a probability funetas follows:
efE(x,h)

pix,h) = — (5)

where the normalization constafitensures that Equation 5 defines a valid distribution.

It is straightforward to show that
p(x|h) = Hp z;|h), p(z; = 1jh) = sigm(b; + Z Wiih;) (6)
j

wheresigm(a) = 1/(1 4 e~ *). p(h|x) also has a similar form:
p(hlx) = Hp (hj|x), p(h; =1|x) = sigm(c; + ZVVﬂxl (7)

Equation 7 implies that inference over the hidden variabigen an input pattern is
easy and simple to compute, as it can proceed independentiath hidden variable

h;. Consider the computation of the likelihood of an ingut

Zh . e—E(x,h)
p(x) = =R . ®)

Computing the numerator is not a problem. Because of the fataspect of the nu-

merator, it can be computed @(dl):

T T T
§ : e E(x,h) — § E eb x+h* Wx+c* h

he{0,1}¢ h1€{0,1} hi€{0,1}
— ebTX § eh1W1,;x+c1h1 o § ethl,:x+clhl
h1€{0,1} he{0,1}
l
T ) )
= bx H (1 + ew“xﬂl) (9)

i=1



where W, . is the i’ row of W. However, computing the normalization constant is
exponentially expensive, eitherior d, depending on whether the factorization is made
according to the input or the hidden variables, respegtictorizing according to the
inputs, we get:

7 Z Z PTx+hTWxteTh _ Z <h ﬁ <1 i eWTih—&-bi) (10)

h{0,1}! x€{0,1}4 h{0,1}! i=1

whereW. ; is thei’" column of W. Z does not depend ax and has to be computed
only once. So one option to make the computatiorp(©f) tractable is to limit the
number of hidden unité enough to make the exponential summation required by Z
computationally feasible. Doing so however also limits mioenber of parameters and
the capacity of the RBM. Yet it is unclear how important the ictga on the general
performance of the RBM. Indeed, while being certainly less gréwl than a bigger
RBM, an RBM with only 20 hidden variables is still an implicit mixe over a million
components (with shared parameters). So even if only a $raation of those were
effectively used and had a significant probability of beimzked, it might be sufficient

to be competitive with standard mixture models.

3 Tractable RBMswith larger hidden layers

Instead of limiting the number of hidden variables of the RBMother approach for
makingp(x) tractable would be to directly limit the number of possibiefigurations
of the elements ok, by introducing structural constraints on allowable camfagions.
Perhaps the simplest such constraint we could impose pamds to having multino-
mial groups of units, that is subsets of hidden units withimal only one unit can be
active at a time. The hidden layer of the RBM could then contaugesal multinomial
groups and it would be possible to have many more hidden timats in a standard
binary layer for the same total number of possible configongtfor the hidden layer
h.

Unfortunately, in practice, using such units can be difficdhdeed, because the
units within each group essentially compete with each dthekplain the input, we of-
ten observe that several hidden variables take a whiledif)y@ég overcome the influence

of other hidden variables and can remain essentially urgdaior several iterations.
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For this reason, we propose instead to introduce tree @nistin the hidden layer
of the RBM. As we will see (see Section 5.1), this constraink méke learning much
easier than with multinomial groups. These constraintsaése applied to groups of
hidden variables, yielding a hidden layer acting as a setebtfores). For this reason,

we dub this new model the Restricted Boltzmann Forest.

3.1 Restricted Boltzmann Forests (RBForests)

The general idea is depicted in Figure 1. Hidden variablegeouped irf” perfect (i.e.
full and complete) binary trees of depih In a tree, hidden variables must respect the
following constraints. When a hidden variable is inactike € 0) all hidden variables

in its left subtree must be inactive. Likewise, if a hiddemiable is active f; = 1),

its right subtree variables must be inactive. So the agtofihidden variables defines a
path in the tree from the root to one of the leaves, which wérefer to as the active
path'.

It should be noticed that the RBForest can be seen as a geagaaliaf the standard
RBM. Indeed, an RBM is simply an RBForest with trees of depth 0. S&h thie
RBForest, we effectively add an additional degree of freedothe architecture design
(the tree depth) over which it can be advantageous to do nsetksition. Note also that
both the RBM and the RBForest use exactly the same energy funttawever, in the
RBForest, we don't allow configurations afthat do not respect the tree constraints

(which would be equivalent to assigning an infinite energthtise configurations).

3.2 Inferencein the RBForest

Let us first define some notation. L&t(¢) be the set of indices of the hidden variables
in thet'™™ tree, A(7) be the indices of the ancestors of the nagand P (i) be the index
of the parent of;. C(7) will be the vector of value€’(i), thath; must take for the
activation of nodé:; to be allowed, fork € A(i). Also, for notational convenience, if
M is a set of indices of hidden variables (as af¢) and A(i)), we consider thah ,
refers to the sub-vector df containing the hidden variables 1. Finally, S(¢) will

refer to the set of all configurations of variables in thet"” tree that respect the tree

INotice that for a path to be active, all hidden variables shath need not be active.
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Figure 1: lllustration of a Restricted Boltzmann Forest fardsy input vectors, where
binary variables in the hidden layer are grouped in trees. NMAéhbidden variable is
inactive (white) or active (black), all hidden variabledhaccordingly be inactive in its
left or right subtree. On the right (zoomed-in box), the &hles in the active paths of

two of the trees are identified.

constraints.

In an RBForest, the conditional distributigrix|h) is unchanged and is as given
in Equation 6. Howeverp(h|x) is slightly more complex than in Equation 7. Since
the tree constraints apply only within single trees, we iobthat p(h|x) factorizes
asp(h|x) = [[,p(hyw|x). We can then develop the(hy|x) factors by taking
advantage of the tree structurelo ;)

In particular, let us define the sums of exponentiated eesrer all configurations
compatible withi; being active ag. (i, N(t)); similarly defineR (i, N(t)) for inactive

ones:
L(i,N(t) = > e B0 ) (11)
hylhi=Lhy ) €S(Y)
R(i,N(t)) = > e~ Flehn ) (12)

hy ) |hi=0h ) €S(t)

whereE(x, hy) is the energy associated to thetree for hidden variablelsy ;) and
inputx, i.e., £(x, hy()) contains the terms af(x, h) in Equation 4 that are specific
to x andh

For h; in hy ), we have that theee-local distributionp(h; = 1/hy;), x) is simply:

L(i N())
L (i, N(t)) + R (i, N(t))

p(h; = 1lhyey, x) = (13)
whenh;) = C(i) 4 and 0 otherwise. Then, using this tree-local distributi@aan
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write
p(hyg|x) = H p(hilhag, x) (14)

i€path(hy(y))
whenh ) respects the tree constraints (otherwifey ;) |x) = 0). Here,path(hy))
is the set of hidden variables in the active path of thetree with valuehy ). To
sample fromp(hy|x), we first sample the root variablg ooy from p(hreot(r)|x)
(A(root(t)) is empty). We then move to the left or right subtree accoigingVe
repeat this sampling procedure by using the tree-localiloigion of Equation 13 until
a leaf has been sampled. The marginal probability of eadatehidariable being active,

p(h; = 1]x), can be computed as follows:

p (hi = 1hag) = C(i)ap,x) [[ (= Cli);/hag) = C()ag,x)  (15)

JEA(D)

or in a recursive form as follows:
p (hi = 1hae) = C0) agy, x) p (heey = C0) pa)lx) - (16)

Let's now consider computing the termgi, N(¢)) and R (i, N(¢)) of Equation 11
and 12. These terms are required to compute the tree-lastabditions. A naive com-
putation of all these terms would be linear in the number dflan variables (nodes in
all trees)andin the depth of that tree. However, using the tree conssam have that

for a non-leaf:; and its two childrerh; andh, the following holds:

L(i,N(t)) = ™ (L(j,N(t)+R(j,N(1)) (17)
R(i,N(t)) = L(k N(t)+R(k N(t)) (18)

and for a leafh; we haveL (i, N(t)) = eWi* and R (i, N(t)) = 1. We can hence
obtain allL (i, N(t)) andR (i, N(t)) terms by proceeding level-wise, first assigning the
value of these terms for the leaves and going upwards to ctengtiother terms. This
bottom-up pass is then linear only in the number of hidderat#es. The pseudocode
for this procedure is given in the Appendix.

Once all terms have been computed, and using Equation 18 taed-quation 16

as follows

p(hi:”X):L. : ) = CWrelx) (19)



we see that a top-down pass starting at the root with

L (root(t), N(t))
L (root(t), N(t)) + R (root(t), N(t))

p(hroot(t) - 1|X) - (20)

can be used to compute all marginal probabilities of the émdeariables. This compu-
tation is also linear in the number of hidden variables inttke. Pseudocodes of the

sampling and inference procedures for the RBForest are givireiAppendix.

3.3 Learninginthe RBForest

To train an RBForest, Contrastive Divergence (CD) (Hinton, 202 be used just
as in a regular RBM. CD provides an efficient approximation fer ginadient of the

negative log-likelihood (NLL) of some inpui; with respect to any parameter

0 -1 Xy 9 0
%() = Eh\Xt [%E(Xt,h)] - Ex7h {%E(th)} : (21)

CD uses a short Gibbs chain bfsteps starting at; to obtain an approximate sample
x"¢ from the model’s distribution and uses this sample to getiatmstimate of the
second expectation over. The conditional expectation ovér given x"°¢ can then
be done exactly and involves computing the conditional abdtiies p(h; = 1|x) of
individual hidden variables being active. To train the mpd®e can then use this
estimate of the gradient on the parameters to perform sstichgradient descent. For
more details, see the pseudocode in the Appendix. The om\diffierences between
CD in a regular RBM and in an RBForest are: (1) in the sampling praeedf the
hidden layer given a value for the input layer and (2) in theapotation ofp(h;, = 1|x)
for the positive and negative phase updates. Developmédadttdr learning algorithms
for RBMs is currently an active area of research (see Tielerd@@8); Tieleman and
Hinton (2009)) from which RBForests should also benefit.

3.4 Computing p(x)

There remains the question of how to comppite) in an RBForest. The formula is
similar to that of Equation 8, with the sum ovir € {0, 1} being replaced with a

sum over values oh that respect the tree constraints. More specifically, uEigga-



tions 11 and 12 and the linearity éf(x, h) in h, we have:

Z e~ Exh) Z e~ Exhyw) | Z e~ Exhym)

h|hN(t)€S(t) Vit hN(l)GS(l) hN(T)ES(T)

= [ (Z(xoot(t), N(#)) + R(root(t), N(t)))

where each of thé (root(t), N(t)) and R(root(t), N(t)) can efficiently be computed,
as described previously. As for the computation of Z, itsrfola is that of Equation 10
where the sum oveh € {0,1}' is replaced with a sum ovdilhy, € S(t) Vi €
{1,...,T}. This exponential sum must be done explicitly. Howevers #till possible
to keep it reasonably small while increasing the number @sunby choosing appro-
priate values for the number of treésand their depthD. For instance, an RBForest
with 7' = 5 trees of depthD = 3 will also have2P*+DT = 2% terms in the sum over
h, just like in an RBM with 20 hidden variables. However, that RBfspwill have 75
hidden variables (and their corresponding parameterghigiand biases), more than

three times as many. See the Appendix for pseudocodes compuandp(x).

4 Related Work

Salakhutdinov and Murray (2008) have proposed a technimagproximate the value
of the normalization constaut for larger RBMs, making it possible to get an approxi-
mate estimate of the value pfx). We emphasize that this work and ours have different
goals. Indeed, they were interested in evaluating the géaermodeling capacity of
large RBMs (i.e. in the regime they are usually used in), sorftaenly an approximate
estimate ofp(x) was sufficient. Here, we specifically focus on the case whete is
tractable and exact (which is useful for using an RBM in a laggebabilistic model

or in a Bayes classifier) and argue that even in that regime the R&kework and its

RBForest generalization are competitive when compared t&r atactable approaches.

5 Experiment: density estimation

We present here an experimental comparison of the RBM and therl@8hRuith a stan-

dard mixture of Bernoullis (MoB). Just like RBMs and RBForest, temission” prob-
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ability distribution given the hidden state is also a prddafcdndependent Bernoullis.
Hence, the only difference between the MoB, RBM and RBForestriésd nature of
the prior distribution over the hidden state. In the MoB, thi®r is explicit, and corre-
sponds to a multinomial over the possible mixture components, whereas in the RBM
and RBForest, the prior is implicit and more complex. This nsatke MoB a perfect
choice for experimental comparisons, which in essencespiicifically evaluate the
impact of changing the nature of the prior over the hiddetestsloreover, it has been
argued previously that the MoB is a competitive densitynestor in general (Lowd &
Domingos, 2005).

The experiment evaluation was conducted on several dataenultivariate bi-
nary data. These datasets vary in nature (text, image,dwalband game related data)
and in size (from a few hundred to many thousands of exampids)e all being of
relatively high dimensionality (between 100 and 500 inpufShe majority of these
datasets were taken from the LIBSVM datasets web fagigh the exception of the
ocr-letter dataset and thenips-0-12dataset All datasets were divided in training,
validation, and test sets. The validation set NLL was used asteria to select good
values for the hyper-parameters, among combinations aksgdbor the learning rate
(in {0.005,0.0005, 0.00005}), the number of CD stepgin {10,25}) and the number
of iterations over the training set ({00, 500, 1000})®. The RBM had 23 hidden vari-
ables, and we considered RBForests with 3, 4, 5, 7 and 11 treleptf 5, 4, 3, 2and 1
respectively, so that the total number of hidden layer cam&gions would be less than
10 million. The mixtures of multivariate Bernoullis were itrad with the EM algo-
rithm, using the number of components {82, 64, 128,256, 512, 1024}) chosen based
on the validation set NLL Early stopping based on the average NLL of the validation
set was also used, with a look ahead of 5 iterations, and Dramgitializations of EM

were always tested.

2See http://www.csie.ntu.edu.twtjlin/libsvmtools/datasets/.

3See http://ai.stanford.edubtaskar/ocr/.

4See http://www.cs.toronto.edufoweis/data.html.

SFor themushroom&ndnips-0-12datasets, which are smaller, we also considered 50 stepd of C
5No weight decay was used, since choosing an appropriate enhiierations seemed sufficient to

avoid overfitting.
“In our experiments, it turns out that 1024 was never chosehebest number of components.

Hence, bigger mixtures would certainly have led to ovenfitti
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Table 1: Density estimation experiment results, with detbout the different datasets.

The comparison is made by looking at the difference betwieenest set average NLL
of the MoB with that of the standard RBM, the RBM with multinomiabgps and
RBForest (i.e. the RBM, RBM mult. and/or RBForest outperform the MbBis

difference is positive). The 95% confidence intervals westereated based on a two-

sample t-test statistic.

Dataset Nb. Set size Diff. NLL Diff. NLL Diff. NLL
inputs (Train,Valid, Test) RBM RBM mult. RBForest
adult 123 5000,1414,26147 418+ 011 | 415+011| 412+0.11
connect-4 126 16000,4000,47557 0.75+0.04 | -1.72+0.05| 0.59 + 0.04
dna 180 1400,600,1186 129+ 0.72| 145+067 | 1.39+0.73
mushrooms 112 2000,500,5624 -0.69+ 0.13| -0.69+ 0.11| 0.042+ 0.12
nips-0-12 500 400,100,124Q0 1265+ 155 | 11.25+ 155 | 12.61 + 1.55
ocr-letter 128 | 32152,10000,10000 -2.49+ 0.44| 0.99+ 043 | 3.78 +0.43
rcvl 150 | 40000,10000,150000 -1.294+ 0.16 | -0.044+ 0.16| 0.56 + 0.16
web 300| 14000,3188,32561 0.78 +0.30 | 0.018+0.31| -0.15+0.31

The results are displayed in Table 1, where the differentiedsn the NLL achieved
by the MoB and the other models are given. Confidence inteate®% confidence
level are also given, based on the independent two-samest statistic for equal sam-
ple sizes and equal variarfce

The first surprising observation is that, even with only 28den units, the RBM

8While the assumption of equal variance is reasonable, thergesn of independence is of course
clearly wrong. However, because we expect the correlat&iwéden the NLL of two models on the
same example to be positive (e.g. the easy examples tendhe lsame across models), this correlation
would actually decrease the variance of the differencesénage NLL. In other words, the assumption
of independence actually makes the confidence intervalsioieTL more conservative (i.e. wider) than
they could be. Our approximation is better, but similar ia #ense of being overconservative, to the
common practice of computing NLLs and confidence intervadividually for each model and putting

those in a table instead (hence ignoring correlations batiredividual example errors across models).
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outperforms the MoB in more than half of the cases. Hencelewdxperiments in
previous work on such small RBMs (Tieleman, 2008; Tieleman &tét, 2009) might
have seemed of limited relevance to a practical applicati@ppears that this regime
can still be competitive when compared to a standard mixtwdeling approach.

Moreover, in the three cases where the RBM performs less weRBForest gener-
alization allows us to reach and/or outperform the MoB. Notitat this experiment was
designed to distinguish the performance of a standard RBMthélperformance that
is achievable when using the additional modeling degreégeflom that the RBForest
provides (i.e. the depth of a tree). In other words, in a caseraithe RBM performed
better than the RBForest (e.g. on thebdataset), the RBForest would have reached
the same performance if we had allowed the trees to be of depth

We have found that for all datasets excepit-letterandrcvl, the performance was
worse when using only 3 trees (the smallest number of treesidered by RBForest).
For ocr-letterandrcvl, we ran experiments with RBForests containing only one large
tree (depth 8, i.e. 511 hidden units), but the performancemach worse and did not
even reach that of the MoB. So it appears that the use of magy isemportant.

In general, we expect that the RBM and RBForest should be patigwppropri-
ate for datasets where the data is thought to have been ¢ethém@m a combination
of many individual factors that are not mutually exclusiirethe standard RBM, these
factors are assumed to be binary, while in the RBForest eatdr fiscassumed to take
one value out of possibly many more (one for each tree patkgrmatively, these mod-
els can be viewed as mixture models with a large (expongmntimhber of components,
but where the components share parameters.oChéetter dataset is a good example.
While all 26 characters are different, they each can be deosethinto smaller patterns
or pen strokes (i.e. the factors) and different charactansbare some of those patterns
(for instance, '’ and 'I' both share a vertical center linetheir bottom half). On the
other hand, not all combinations of those smaller patterssensense. In particular, we
could easily define small sets of pen strokes (i.e. the plesgitues of the factors) such
that only one of them can be found in any given character. ThedR&¥ can capture
both of these characteristics (composition of factors, r@leach factor can take only
one of many different values). This might explain why RBForesthe best performing

method on th@cr-letterdataset.
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5.1 Comparison with groups of multinomial hidden variables

As previously mentioned, one could have used multinomialigs to make the compu-
tation of Z tractable, instead of tree-structured groups of hiddeiabkas. Actually, it
is possible to show that for any RBForest, there exists an alguntenergy-based model
with multinomial groups of hidden variables that computeaatly the same distribu-
tion (but with a different parametrization). We sketch tlo@struction here: consider
the case of an RBForest with only one tree and with param®&ns andc. Then, con-
sider a multinomial group version of that RBForest (with paggearsW*, b* andc*) by
associating each bit: of a multinomial variable with a patpath(h) in the RBForest
tree and setting its weight vectorW;, = h”W and its bias te; = h”c. Finally, use
the same input bias vectbr = b. Such a construction implies that each of these pairs
of h in the RBForest anti* in the multinomial group version assign the same energy
for anyx. So, these two models necessarily define the same distributi

However, we motivate the use of trees by the empirical olagienvthat hidden units
in multinomial groups are often hard to train. Indeed, weeobs that optimization is
much easier with the RBForest than with multinomial units hiem¢ase of the RBForest,
we observe in practice that training progresses smoothfyiyfinding good values for
the root node’s weights and then slowly moving towards ogziimy the weights at the
firstlevel, and so forth. This is due mainly to the level-wiseursive nature of the value
of p(hy = 1|x) (see Equation 16), which is involved in the CD update of theghsi
W. In the case of the multinomial groups, all the hidden vdeéglare competing with
each other to explain the input. So we observe that seveddehivariables take a
while (if ever) to overcome the influence of other hidden ables and can remain
essentially untrained for several iterations. We illustrdnis in Figure 2, where we
show the weights of an RBForest with one tree of depth 3 (i.e.ds8iple paths) and
the weights of a model with one multinomial group of 16 (muljuaexclusive) binary
variables.

We also designed an experiment in order to verify quantggtithat optimization

is indeed easier when training the RBForest. The idea is simpdegenerated large

9Both models were trained on theer-letter training set for 10 iterations, with a learning rate of
17 = 0.005 and using CDI0. We chose 10 iterations only to show the state of both modetsesvay

through training.
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Test NLL
Dataset
difference

syn-3 6.61 + 0.36
syn-4 7.72 + 0.33
syn-5 7.29 +0.29
syn-7 | 4.35 £ 0.23
syn-11 | 6.26 + 0.24

(b)

Figure 2: (Left) Comparison between using trees vs multinomial groups, orsfime
thetic datasets (referred to sgn<’, whereT’ € {3,4,5,7,11} is the number of multi-
nomial groups used to generate the datasets). The NLL eliféeris the NLL obtained
using multinomial groups minus the NLL obtained using trg@dght) lllustration of
training optimization for a tree of hidden variables and dtmamial group.(a) On top,
illustration for a single-tree RBForest of the weight§ . for each hidden variable, and
at bottom, illustration of the summed weigh€” h for all possible configurations of
the hidden layer (i.e. the equivalent multinomial groupgids). On the left of the tree
root, weights captured different amounts of horizontaltesbiackgrounds. On the right
of the root, weights captured the structure of more vetficabngated charactergb)
lllustration of the weights learned using binary hiddenaales forming a multinomial

group. Most of them are still close to their initial nearaealue.
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datasets from distributions that fall in the family of badtle iRBForest and the RBM with
multinomial groups, and quantitatively measured whichhaf two models achieved
the best performance in terms of NLL. Because the generaedry sets were large
(50 000 examples), overfitting was not an issue and the besirpgng model was also
the one which was most able to minimize its training eftofhe distributions used to
generate the datasets were obtained by randomly initiglitie weights of RBMs with
multinomial groups of equivalent sizes to the RBForests dmmsd in the experiment
of Table 1 (i.e. equivalent to RBForests with 3, 4, 5, 7 and 14st&f depth 5, 4, 3, 2
and 1 respectively). Each connection weight was sampled &dNormal distribution
with mean 0 and a standard deviation of 10 (i.e. large enoogibtain a distribution
with interesting structure). To ensure that there is anvedemt RBForest corresponding
to the same distribution, the connections to one hiddenaimaich multinomial group
was set to 0 (such a unit of a multinomial group would corresito a right-most tree
path in an RBForest). While we could have instead initialized RB§ts and generated
the datasets from them, we chose RBMs with multinomial grongiead to ensure that
we were not favouring the RBForest in any way. Training, vdiaaand test sets of
50 000, 10 000 and 50 000 examples of dimensionality 200 wenergted by sam-
pling from those five RBMs with multinomial groups. The samglprocedure started
at a vector sampled uniformly over all possible binary vesstand used 500 steps of
annealed Gibbs samplitigfollowed by 500 steps of normal Gibbs sampling. Finally,
RBForests and RBMs with multinomial groups were trained on eataset, and the
same values of learning hyper-parameters (i.e. learniteg,raumber of CD steps and
number of iterations) as in the experiments of Table 1 weraparyed, with the best
combination chosen based on the associated NLL error oretiergted validation set.
Before training, both the RBForest and the RBM with multinomiaugps had their
connection weights initialized to small random values elas0. For a given dataset,
the number of multinomial groups and the size of the groupdhe trained RBM as

well as the number of trees and the size of the trees of thectuldRBForest were set

1°This was verified empirically. In general, there were alnmastlifference between the training and

test NLL errors for all synthetic datasets.
1By annealed Gibbs sampling, we mean Gibbs sampling whereottditional distributions used are

those of the RBM but with its energy function divided by a temrgiure parameter. The temperature

parameter was set at 100 for the first step and was linearhgdsed to 1 until step 500.
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to match (or, for the RBForest, be equivalent to) those of the RBM generated the
dataset. Figure 2 shows the results. On all synthetic datdRBForest clearly outper-
forms the RBM with multinomial groups, in agreement with th@bihesis of an easier
optimization problem associated with RBForests. Figure 8 sit®ws the progression
of the test NLL errors for both the RBForest and RBM with multinahgroups on
one of the synthetic dataset (with the hyper-parametersecthbased on the validation
error). We see that the superior performance of RBForest islmetto a faster con-
vergence and that it is indeed finding a better minima tharRBl with multinomial
groups.

Table 1 also shows the performance of the RBM with multinomialugs on the
8 real world datasets. On half of the datasets, the RBForeswisdfto be statisti-
cally better. On the others, no significant difference waected. More importantly,
improvements are found on the datasets where the RBM perfoarsewhan the MoB.

So it appears that the contributions of RBForests are twa-faldt, they extend the
family of distributions that can be modeled in the energgdabframework relatively to
standard RBMs (which are a particular case of RBForests witks trtedepth 0), while
also improving the tractability of learning compared taisturally equivalent RBMs

extended to have multinomial hidden units.

5.2 Training a mixture of RBForests

We mentioned previously that one advantage of having aatéetensity estimator is
that it can be used in a larger probabilistic model. For imsta consider a mixture of

M RBForest components

M

p(x) =Y p(x|C = m)p(C = m)

m=1

wherep(x|C' = m) is given by the distribution of an RBForest with paramef&rg’,
b™ andc™ (the different RBForest components have different parammet8uch a mix-
ture can be trained using the Generalized EM algorithm. mautte E step, we simply
compute the posterior probabilities (or responsibiljtieseach RBForest components
having generated each training example

p(x|C = m)p(C =m)
3t P(XIC = m)p(C = m)
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25

— RBForest
-~ RBM mulit. |

201

15}

10 |

Test NLL difference

20 100 200 300 400 500

Nb. of iterations

Figure 3: Learning curves for the RBForest and the RBM with maitiral groups, on
syn-1ldataset. To normalize the curves, the value of the test NLitheend of the
curve for the RBM with multinomial groups was subtracted taeskt NLL errors. We
see that RBForest is not simply converging faster, but is dgtiiieding a better minima
than RBM mult. The learning curve for RBM mult. is also much lesdbk. Using a
smaller learning rate (not shown here) gives a more stalblavier for RBM mult., but

worse performance.
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which can be computed exactly sineex|C' = m) is tractable in the RBForest.
In the M step, we fix the values of the posterior probabilitesnputed in the E
step and we minimize according #x|C' = m) andp(C = m) the following expected

negative log-likelihood:

_ Z Z q(C = m|x;) log (p(x;|C = m)p(C = m)) (22)

whereD is the training set. The prior distributigiC' = m) minimizing Equation 22

is simply
theD q(C - m|Xt)
D]

As for the RBForest components, optimizing Equation 22 is\edent to training each

p(C=m) =

RBForest components on a weighted version of the trainingréetweight of example
x; for them'™ RBForest component is simplfC = m|x;), meaning that the learning
rate is multiplied by;(C' = m|x;) when updating the:' RBForest's parameters given
examplex;.

We trained a mixture of 8 RBForest using the Generalized EMrdlgo, on theocr-
letter dataset. The parameters of each RBForest are initializedmnalgd However, to
break the initial symmetry, we also perforiirmeans on the training set (witki = M)
and perform 10 000 training updates for each RBForest on diffesubsets of data as
given by K-means. Then we proceed with the Generalized EM algorithrtherull
training set. This larger model reached a test NLL diffeeen€6.27 with the MoB,
improving on a single RBForest (3.78).

Another approach to training mixtures of RBM-inspired modeds also presented
by Nair and Hinton (2009). Their framework for so-called i mixtures of RBMs
is directly applicable to RBForests, and the resulting dgrestimator would also be
tractable, as long as each individual RBForest is also trectébthis work, the choice
of training an explicit mixture (derived from a directed ghical model) instead of
an implicit mixture (derived from an undirected graphicabarl) was made in order
to show that the larger probabilistic system in which the RBBEbis used need not

correspond to an undirected graphical model (like the RBFEpres
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On a different but related topic, we also mention that theliciipmixtures of Nair
and Hinton (2009) use multinomial units to index the mixtacenponents and, as we
have seen in Section 5.1, using such units can create disuwluring training. Nair
and Hinton (2009) actually mention such difficulties, whfolnced them to introduce
a temperature parameter when sampling the multinomia$ uiithis parameter can be
fixed to some tuned value, and can vary during training usingesannealing schedule.
The experiment of Figure 2 suggests that using tree-streattunits might be another
way to facilitate training in such implicit mixtures, mayheoiding the need for tuning

a temperature parameter.

5.3 Visualizing theimplicit mixture components

A possible explanation for why the RBM and the RBForest are abfgetéorm well
with relatively few parameters is that, because of theitdiaal nature, they implicitly
learn a mixture of exponentially many components (see Egua). However, it is not
necessarily clear whether they actually take advantaghisfsituation (for instance,
only a handful of those components could end up having afsigni probability of
being picked). To verify this, we took the best RBForest trdioe theocr-letterdataset
(3 trees of depth 5) and grouped the test samples into diffgr@ups based on which
implicit mixture components had the highest posterior plolity (or responsibility).
More precisely, for each test examplg we found which of th&4? = 262144 implicit

mixture component (i.e. which value hj had the largest probability given:

T
h(x;) = arg max p(h|x;) = arg max Hp(hN(t) |x¢)
h‘hN(t>ES(t) vte{l,...,T} h‘hN(t)ES(t) vte{l,...,T} =1

Sincep(h|x;) factorizes according to each tree, findhgvith the largest probability
simply requires finding the configuratidry ) of each tree that maximizegh y)|x;)
separately. Since each tree only h8s! = 2¢ = 64 possible configurations of its units,
finding the configuration with maximum probability can be domith an exhaustive
search. Having fountfh(xt) for each test example,, we then grouped together test
examples sharing the same valueﬁbkt).

Among the643 = 262144 implicit mixture components, about 4000 were “respon-

sible” for at least one test sample, hence much more that3he3 = 189 hidden
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Figure 4: Visualization of 375 of the implicit mixture compents (one per column)

learned by the RBForest on tber-letterdataset.

units the RBForest has. Figure 4 illustrates a small subsét gfaups of test samples
sharing the same implicit component. We see that many impbenponents captured
some meaningful structure from the data, with groups ofteind class-specific, but
with data from the same class being also split across difteyeups that capture spe-

cific variations on a character’s size or angle.

Conclusion

We presented experimental evidence that, even in its blectagime, the RBM is often
a competitive model for multivariate binary density modgli For cases where it lacks
capacity, we proposed the Restricted Boltzmann Forest, ag@eation of the RBM.

Efficient inference and training algorithms were propos®dtie RBForest, and the ad-
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vantage of using trees was emphasized using a comparisogrips of multinomial

units.
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Appendix

Pseudocode for Inference and Sampling in the RBF

To do inference, we first need a function which computes time stiexponentiated
energied.(:, N(t)) andR(i, N (t)), with a bottom-up pass.

Algorithm: SumM-EXP-ENERGIES RBF(x)
Input: inputx

Output: all sums of exponentiated energie&, N (t)) andR(i, N(t))

fort =1to7T do
# Initialize energies
for 7 such thath; is a leaf in treg do
L(i, N(t)) « e"ix
R(i,N(t)) «— 1
end for
# Bottom-up pass
for6 =D —1to0do
for ¢ such thaty; is a node at levef of treet do
j < index of left children ofh;
k < index of right children of;
L(i, N(t)) < "> (L (j, N(t)) + R(j, N(t)))
R(i,N(t)) <« L(k,N(t))+ R(k,N(t))
end for

end for
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end for

From the values of.(i, N(¢)) and R(i, N(t)), we can then infer all the hidden

variables’ marginal probabilities given some inp@k; = 1|x) with a top-down pass.

Algorithm: INFERENCERBF(x)
Input: inputx

Output: marginal probabilitie®(h; = 1|x)

# Get sum of exponentiated energies
L(-,+), R(-,) +SUM-EXP-ENERGIESRBF(x)
for ¢ =1to7 do

# Initialize top-down pass

)L(root (t),N(t))

P(hroot(y = 1[x) — L(root(t),N (1)) + R(root(t),N (%))

for 0 =1toDdo

for i such thath; is a node at level of treet do

_ L3N @®)p(hpy=C () ps)|x)
plhi = 11%) = =76 NG RGN )

end for
end for

end for

As for sampling hidden layer variables given some input, ghecedure is very

similar.

Algorithm: SAMPLE-HIDDEN-RBF(x)
Input: inputx

Output: a sampléh from p(h|x)

# Get sum of exponentiated energies
L(-,+), R(-,) +SUM-EXP-ENERGIESRBF(x)
for ¢t =1to T do

# Get root probability

o L(root(t),N(t))
P(Proot(ry = 1[x) — L(root(t),N(£))+ R(root(£),N (1))

ooty <— Sample from Bernoulli distribution with parametgii, o) = 1/x)
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i «— root(t)
for6 =1toDdo
if h; =1then
1 « index of left child ofh;
else
i < index of right child ofh;
end if
# Get tree local probability
p(hi = 1hag = C(i)aw, X) — Trmes )
h; < sample from Bernoulli distribution with

parametep(h; = 1|hau) = C(i) @), X)
end for

end for
Sampling the input (visible) units is exactly the same asstaadard RBM.

Algorithm: SAMPLE-VISIBLE-RBF(h)
Input: value of the hidden unite

Output: a samplex from p(x|h)

fori=1toldo
x; < sample from Bernoulli distribution with parametgrr; = 1|h)

end for

Pseudocode Contrastive Divergence training of the RBF

Training in an RBF is based on stochastic gradient descent. \&ffading over training

examples, the parameters of the RBF are updated for a givernpéxapaccording to

the following algorithm:

Algorithm: TRAIN-RBF-CD(x;,n,k)
Input: training examplex,, learning rate), number of Gibbs step's
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# Positive phase
xP% — x,
# Set positive hidden statistics to the vector of probaedip(h; = 1|xP°%)

hPos INFERENCERBF(xP%)

# Negative phase
K1e8 3PS
while k£ > 0 do
h"*¢ « SAMPLE-HIDDEN-RBF(x"°¢)
x"¢ «— SAMPLE-VISIBLE-RBF(h"®)
k—k—1
end while
# Set negative hidden statistics to the vector of prob#slit(h; = 1|x"°¢)
hnes INFERENCERBF(x"¢)

# Update parameters

b « b + 7 (xP% — x"°8)

¢+ (f - )

W — W +1 (ﬂpOSXPOST — ﬁnegxnegT>

Computing p(x)
To computep(x), we first need to compute the normalization consténtwith the

following procedure:

Algorithm: CoMPUTE-Z-RBF()

Output: normalization constart of the RBF

# Initialize Z

Z +—0

# Sum over all possible values hf compatible with the tree constraints
for h such thatyy € S(1),..., hye) € S(T) do
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Z— Z+11%, (1 " 6WT;—h+bj>
end for

With a procedure to computg, we can then compuigx) as follows:

Algorithm: CoMPUTE-PROB-RBF(x)
Input: inputx
Output: probabilityp(x) under the RBF

# GetZ

7 «— COMPUTE-Z-RBF()

# Get sum of exponentiated energies

L(-,-), R(-,-) <—SUM-EXP-ENERGIESRBF(x)

# Get numerator of(x)

num «— [[_, (L(root(t), N(t) + R(root(t), N(t)))
p(x) < num/Z
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