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Abstract
Learning distributed representations of symbols (e.g. words) has been used in several Natural Language Processing
systems. Such representations can capture semantic or syntactic similarities between words, which permit to fight
the curse of dimensionality when considering sequences of such words. Unfortunately, because these representa-
tions are learned only for a previously determined vocabulary of words, it is not clear how to obtain representations
for new words. We present here an approach which gets around this problem by considering the distributed repre-
sentations as predictions from low-level or domain-knowledge features of words. We report experiments on a Part
Of Speech tagging task, which demonstrates the success of this approach in learning meaningful representations and
in providing improved accuracy, especially for new words.

1 Introduction
A central issue in machine learning is the curse of dimensionality, which corresponds to the difficulty of training
a model that can generalize well to unseen cases when the input space is of high dimensionality. Tackling this
problem is especially crucial when the input space corresponds to a set of symbols (e.g. words), particularly when
the set of symbols is of high cardinality. Because there is no prior notion of similarity that seems more preferable
than others, a symbol is often encoded as a “one hot vector”, i.e. a vector where the only non-zero element is
the one corresponding to that symbol. This means that all symbols have a euclidean distance of 2 from all others.
Hence the “one hot vector” representation captures well our ignorance about the similarities between symbols, but
the dimensionality of the input space is then the number of different symbols, which can be very large (e.g. order
of 10000 in NLP applications). Obviously, this becomes even worse when we consider sequences of such symbols,
since the dimensionality of the “one hot vector” space for these sequences will then scale exponentially with the
size of the symbol sequences.

A solution to this problem is to learn a vector representation x(w) ∈ RD for all symbols w in the set of possible
symbols V . These “distributed representations” (Hinton, 1986) should contain information about w that is in a
form helpful for the application considered. By having D < |V |, we effectively impose constraints on the way the
information on w is stored, forcing the learning procedure for x(w) to capture statistical similarities between the
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different symbols. By mapping symbols in this continuous space, symbols that are nearby in that space are now
more likely to have similar outputs when taken as input in a model. This implies that an algorithm that has learned
a good output for a symbol w should now also have learned a reasonable output for nearby symbols in the space of
distributed representations, hence diminishing the impact of the curse of dimensionality.

However, there is another impact of the curse of dimensionality that is not addressed by distributed represen-
tations as described above. Because x(w) is only learned for the symbols in a finite, previously determined set V ,
generalization to the representations of new or unknown symbols that are not in V is not defined. Effectively, these
symbols correspond to parts of the input space (and to dimensions of the input space with the “one hot vector”
representation) with no training data. In the context of NLP applications, this is very unfortunate, given that there
is virtually an infinite amount of new words that could be encountered because of variations in proper nouns or
typographical errors.

Here, we propose a method to tackle this problem by learning x(w) as a function of low-level or domain-
knowledge features of w. This way, even in the case where a symbol was not present in the training set, it is
possible to obtain a useful distributed representation of that symbol.

For the reminder of this paper, we are going to refer to the symbols w as words and to the symbol set V as the
vocabulary, since most of the previous work and the experiments presented here focus on NLP tasks.

2 Distributed Representations of Words
In the context of Natural Language Processing (NLP), distributed representations have been used in many different
applications, such as language modeling (Bengio et al., 2003), (Xu, Emami and Jelinek, 2003), speech recogni-
tion (Schwenk and Gauvain, 2002), information retrieval (Keller and Bengio, 2005) and PP-attachment resolution
(Takahashi et al., 2001). Though the concept of distributed representations has mostly been used in feed-forward
neural networks, it is flexible enough to be adapted to other types of models, e.g. hierarchical mixture of experts
(Blitzer et al., 2005) or any model that can be trained using a gradient-based algorithm.

We define a distributed representation x(w) of a word w simply as a vector representation in RD. Though one
might want to bound the components of x(w), e.g. by considering these components as outputs of neurons, this is
not necessary.

Also, if one is interested in a vector (e.g. sequence) of symbols ~w = (w1, w2, . . . , wn)′, the associated vector
representation is simply defined as the concatenation of the distributed representations:

x(~w) = (x(w1)
′, x(w2)

′, . . . , x(wn)′)′

Note that, if one imposes x(w) to be the “one hot vector” representation of w, then the space of ~w now only
scales linearly with the size D of V , instead of exponentially, but this is still too large if D is big. By using
distributed representations, we can control the size of x(w) and x(~w) with the value of D.

Distributed representations can be learned in two ways: unsupervised or supervised manner. Here, we review
some of the past proposals within those two frameworks.

2.1 Unsupervised Learning of Distributed Representations
Many different dimensionality reduction algorithms have been proposed in the past few years. These algorithms
necessitate to define a high dimensional representation of the words (as for Principal Component Analysis (Jolliffe,
1986) and Locally Linear Embedding (Roweis and Saul, 2000)), a graph structure between words (as for ISOMAP
(Tenenbaum, de Silva and Langford, 2000)), or simply a notion of similarity or dissimilarity between words (as for
Multidimensional Scaling (Cox and Cox, 1994)).
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A well known unsupervised method to learn distributed representations for words is Latent Semantic Analysis
(Deerwester et al., 1990), which is a particular case of MDS when the similarity between two words w1 and w2 is
defined as the number of pairs (w1, w2) that can be found within different documents.

In (Blitzer et al., 2005), the high dimensional representation of a word wi is the vector of empirical condi-
tional probabilities that word wj will follow wi, computed from a text corpus. Then, a slightly different variant of
Semidefinite Embedding (Weinberger, Sha and Saul, 2004) is applied to obtain a distance matrix between words,
which can be used by MDS to obtain a lower dimensional representation of these words. The variant of SDE is a
semidefinite program that preserves only local distances between the high dimensional representations of words,
not the angles.

The main advantage of unsupervised learning of distributed representations is that labeled text is not needed,
hence the large and publicly available unlabeled corpora can be used. On the other hand, a definition of the high
dimensional representation or similarity metric of words needs to be chosen, and the consequence of that choice
on the performance for a particular task (e.g. POS tagging, word sense disambiguation, language modeling) is not
necessarily clear. This is why it is usually used as an initialization stage before a supervised learning phase ((Bengio
et al., 2003), (Blitzer et al., 2005)).

2.2 Supervised Learning of Distributed Representations
When we know that the distributed representations are going to be used for a particular task, it is usually more
effective to learn or tune them in a supervised manner. We focus here on the case where the distributed representa-
tions are used as the input of a feed-forward neural network, since we are going to propose an extension and report
results for that case.

Imagine that we are given a training set T = {(~w1, y1), . . . , (~wn, yn)} corresponding to a particular task, where
~wt = (w1, . . . , wc)

′ is referred to as the “context” and yt, the target to be predicted. In the case of POS tagging, ~wt

would contain a word at position t in a text with its surrounding words, and yt would be the syntactic class of wt.
In the case of language modeling, ~wt would contain c words before the tth word of a text, and yt would be wt.

The idea is to learn the parameters of a neural network and the distributed representations simultaneously. The
architecture of the neural network is depicted in figure 1. We use hyperbolic tangent as the activation function of
the hidden layer nodes, and the softmax function to get a probability vector of the target items in output.

Assuming that the training cost to optimize is differentiable with respect to the output of the neural network,
it is straightforward to obtain the gradient of the cost with respect to the parameters of the neural network and the
distributed representations. We can then use a gradient-based optimization procedure (such as stochastic gradient
descent) to train the network and learn the distributed representations and the neural net parameters simultaneously.

The advantage of learning the representations that way is that we are sure that they will contain information
about words that is useful to the task considered. Of course, the drawback is that labeled data is needed, except in
the case of language modeling.

2.3 Generalization to New Words
In the case of unsupervised methods, (Bengio et al., 2004) make some proposals for out-of-sample generalization of
the embedding learned by dimensionality reduction techniques. These proposals though don’t change the fact that
the representations may not be useful for the task considered. Also, the computations involved in these proposals
scale with the cardinality of the predefined set of words.

In the supervised case, the only proposition we are aware of was made in (Bengio et al., 2003). When a new
word wt is encountered at position t, its distributed representation becomes:
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E [C(wt)|ht] =
∑

w in short list
C(w)P (wt = w|ht)

where C(w) is the representation given by the table look-up for w, ht is the vector of words preceding wt and
P (wt = w|ht) is given by the neural network. The short list is composed of the most probable next words given ht

according to a standard smoothed trigram model. Besides the fact that this method can only be applied to language
modeling, the representations of new words won’t make much sense if the terms in the expectation with a significant
value of P (wt = w|ht) have very different values of C(w).

In general, a lot of attention in the field of NLP is dedicated to the generalization of systems to new words
(see (Toutanova and Manning, 2000), (Nakagawa, Kudoh and Matsumoto, 2001)). It is the main motivation behind
Named Entity Recognition systems (see CoNLL-2002 and CoNLL-2003 shared tasks) that permit to detect loca-
tions, persons or organizations references, which are often words or expressions that were never seen before. It then
makes sense to put some efforts in adapting supervised distributed representations to the case of new words.

3 Proposed Approach
The fact that it is not clear how to generalize supervised distributed representations to new words comes from the
choice to ignore other types of information about these words. However, there are several sources of information
that are available:

• low-level information, e.g. characters, syllables or morphological form of a word;
• domain-knowledge information, e.g. position of a word in a thesaurus, ontology or dictionary (e.g. WordNet,

FrameNet);
• statistical information, e.g. frequency counts of pairs of words in sentences, paragraphs or documents.
In order to generalize supervised distributed representations to unknown words, we propose to model the dis-

tributed representation x(w) of a word w as a function of the information available about that word. This function
will consider different types of information about w among those mentioned above, and will take the form of a
feature vector. In the case of a feed-forward neural network, the architecture of figure 1 becomes as depicted in
figure 2.

The original feed-forward neural network of figure 1 is really a particular case of our proposed approach, where
the function x(w) is simply a linear application on the “one hot vector” feature vector of w.

Note that any model that can be trained using a gradient-based algorithm and that takes a real-valued vector as
input can be easily extended to make use of our proposal.

4 Experiments
We present here experiments on a POS tagging task. The task consists of assigning the correct syntactic category
to a word, given that word and its surrounding words in the text. We used the Wall Street Journal portion of the
Penn TreeBank II corpus. Sections 19 to 21 and sections 22 to 24 were used as our validation and test corpora,
respectively. The different corpora were processed the following way:

• sentences were separated, in order to not consider surrounding words from different sentences. When the
context overlapped on a different sentence, the words out of the sentence were replaced with a pseudo word
we call “out of vocabulary”. The only exception made was for “.”, in which case all words in the sentence on
the left and on the right were included;
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• “.” is not considered as part of a sentence;
• when the target tag was ambiguous (i.e. a list of more than one tag was given as target), we only considered

the first tag in the list;
• words were not put to lower case.

We tested the three following models:

1. neural network, as depicted in figure 1, with the number of hidden units as an hyper-parameter. We defined
the case of no hidden units as a log-linear model on the distributed representations. We refer to this model as
NNet-Table;

2. neural network with distributed representations as a function of the words, as depicted in figure 2. We used
the same hyper-parameters as the first model. The function x(w) is linear in the features of w. We refer to this
model as NNet-Func;

3. log-linear model (or maximum entropy model), which is widely used in NLP systems, directly on the input
feature vector. We refer to this model as Log-Lin.

For the first model, we constructed the predefined set of words (or dictionary) V by taking the words in the
training set that appeared at least three times. In the validation and test corpora, we replaced words that were not in
V with the “out of vocabulary” pseudo word, for which NNet-Table also learns a distributed representation.

The second and third models used the common word features for NLP systems, that is a set of features for the
“whole word” (not lower cased), and for 4-character prefixes and suffixes. Also, four binary features indicating if
a word starts with a capital letter, only contains capital letters, contains only digits or contains only digits and the
characters “.” and “,”. The first three set of features were filtered so that only the features activated at least three
times in the training set were considered. We did not use information about the previous tags, mostly because we
want to compare the generalization for new words based only on information about these words, not based on the
information about surrounding tags.
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Table 1: Test error percentages on the POS tagging task. The training set contains
the sections 00 to 18 of the Wall Street Journal portion of Penn TreeBank II. The
differences between the test errors are all statistically significant under a T-test.

Algorithm Global Test Error Test Error on New Words
NNet-Table 4.49% 35.53%
Log-Lin 3.47% 14.80%
NNet-Func 3.32% 14.21%

The distributed representation dimensionality D was set to 20 in all experiments. We used stochastic gradient
descent on the negative log-likelihood of the targets to train all models, using early stopping on a validation set.
The learning rate and decrease constant were also chosen so to optimize the error rate on the validation set, as were
the number of surrounding words considered at the left and right of a word to tag.

To improve generalization performance, we also used an L2-norm penalization on the activated weights for the
3 models.

The results are reported in table 1. We can see that NNet-Func obtains the best performance, both in global
and “new words” test error. The “new words” include all words for which no features of type “whole word” in the
feature set is activated. It also correspond to the words for which NNet-Table The closest model to NNet-Func in
terms of test error is the Log-Lin model. As expected, the NNet-Table model does a lot worse, especially for new
words, since NNet-Table does not exploit the prior similarity induced by our word features set.

For both NNet-Table and NNet-Func, adding neurons did not provide any improvement in error. This makes the
improvement on Log-Lin even more surprising, since a log-linear model already has low capacity. In order to try
to explain this, we looked at the training errors obtained by NNet-Func and Log-Lin. NNet-Func has much higher
training error (2.52%) than Log-Lin (1.85%), which indicates that Log-Lin might have too much capacity for the
input space considered. This also supports the claim that learning distributed representations corresponds to a better
model of language, even in the log-linear case. Also, with distributed representations of size 20, the optimal number
of words on the left and right of the word to tag is respectively 5 and 2 for NNet-Func, and 2 and 1 for Log-Lin.
This indicates that NNet-Func is able to make use of more context words than Log-Lin, which is a property that
may be very useful for other applications.

Also, we varied the size of the training set in order to observe its impact on the relative performances of the
different models. The results are showed in figure 3. We did not include the test errors for new words under the
NNet-table model simply because they are very much higher than those of the other models. Besides the difference
on the test errors for new words with the 00-14 training set sections, the differences between the test errors are all
statistically significant under a T-test. It should noted that the context of words was limited to a maximum of three
words to the left or to the right of the word to tag, simply to reduce the number of possible configurations of the
context to test. It is hence very much likely that better results could be obtained with NNet-Func by allowing the
context to go up to five words around the word to tag.

Finally, in order to gain more insight into what information was captured by our proposed model, we show in
table 2 different words with their five nearest neighbors in the space of distributed representations.

We can see that the distributed representations captured many different types of information, mostly syntactic
information (see neighbors of “will”, “and” and “make” for example) but also semantic information (see neighbors
of “researchers”, “Friday”, “December” and “Italian” for example). There are some nearest neighbors that can
seem odd, e.g. “Chamber” is a nearest neighbor of “December”, but note that the representations should contain
information that is useful for POS tagging and that is biased by the choice of word features (“December” and
“Chamber” both end in “mber”).
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Figure 3: Relationship between the size of the training set and the test performance of
the compared models.

We believe that NNet-Table would have learned similar distributed representations. But, because it is not using
the low-level word features, it would probably not have grouped words that start with a capital letter together (see
“Eight” and its neighbors). Also, as noted earlier, NNet-Table has considerably higher test errors.

Encouraged by these results, we decided to add more low-level features in input in order to enrich the distributed
representations. We added features for prefix and suffix of length 1 to 3 and 5. We used the hyper-parameters chosen
in the preceeding experiments of table 1, but we allowed the distributed representations to be of size 30 instead of 20,
which gave better validation error. On the test set, NNet-Func now obtains 3.296% global error and an impressive
11.82% error on new words, compared to 3.42% global error and only 12.49% error on new words for Log-Lin
with these new features.

Usually, a different definition of “new word” is used, that is words which have been cut off the vocabulary V

because they did not appear at least 3 times in the training corpora is not considered as a “new word”, contrary to
the results reported so far. We computed the test error for new words under this new definition for NNet-Func and
Log-Lin, and we obtained respectively 13.23% and 13.43%.

5 Conclusion and Future Work
We have presented an extension of supervised distributed representations learning which permits generalization to
new words and provides significant improvement in accuracy over a state of the art log-linear model in the context of
a POS tagging system. Hence, we have proposed a model which combines the capacity of neural networks to learn
representations of words (which could be used in other contexts, such as language modeling) and the discriminative
power of log-linear models in NLP.

Though POS tagging systems usually optimize the whole sequence of POS tags, e.g. with dynamic program-
ming, the model we tested only considered the word to tag and its surrounding words in its prediction and made
the predictions of the POS tags independently. Hence, we believe that an extension of Conditional Random Fields
(Lafferty, McCallum and Pereira, 2001) that would use distributed representations would be a natural next step. The
implementation should not be problematic, since the training of CRFs can be done with gradient-based algorithms.
Then, distributed representations would also be needed for POS tags, and we might expect that it will be possible
to introduce higher order dependance in the POS tags and obtain better accuracy, as it has been observed here with
word distributed representations.
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Table 2: Nearest neighbors in the space of distributed representations for words in V .
The neighbors are in decreasing order of distance.

Word Nearest Neighbors Word Nearest Neighbors
will could should would might must Consolidated Integrated Illustrated Automated Associated Federated

the any an The a An once meanwhile afterward desperately beforehand afterwards

a an any no all the caused allowed received requested pushed determined

and but or nor & yet researchers brothers scientists teachers philosophers adjusters

1/2 1/4 3/4 7/8 5/8 3/8 more closer earlier higher faster tougher

was got had did ran met Eight Seven Twenty Four Nine Three

it he she him us me make want take give allow reduce

30 44 65 61 900 55 than because after about from without

. ? ! ’ve our my with from between without against over

– ; : ... - ’n’ latest fastest greatest smartest hottest brightest

Mr. Ms. Co. J. Fed Dow England Scotland Lilly Minneapolis Georgia Milton

The An All Any A No company inflation syndication competence market recession

up off out down on over Italian Brazilian Jovian Secret Argentine Nicaraguan

its his our my her your Wednesday Thursday Sunday Holiday Monday Paul

new old big few hot bad Friday Thursday Holiday Wednesday Monday Solidarity

This Each Every Another Some These first-half half-hour one-half half-dozen second middle

We You He She It I eight-year five-year 30-year seven-year three-year 30-share

1950s 1960s 1980s 1990s 1930s ’80s second third fifth guilty one-fifth fourth

seven four five nine eight three December November September October Chamber April

Ohio-based Minneapolis-based Calgary-based Denver-based
Miami-based Chicago-based

Another interesting extension would consist of initializing the distributed representations by first training a
neural network language model on large unlabeled corpora. By doing this, the distributed representation predictor
can be trained on some words which would have been unknown otherwise. Preliminary results seem to indicate that
a POS tagger performance can be increased that way, which encourages us to pursue this avenue.
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