
Journal of Machine Learning Research 1 (2009) 1-40 Submitted 12/07; Revised 9/08; Published 1/09

Exploring Strategies for Training Deep Neural Networks

Hugo Larochelle LAROCHEH@IRO.UMONTREAL.CA

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA

Jérôme Louradour LOURADOJ@IRO.UMONTREAL.CA

Pascal Lamblin LAMBLINP@IRO.UMONTREAL.CA

Département d’informatique et de recherche opérationnelle
Université de Montréal
2920, chemin de la Tour
Montréal, Québec, Canada, H3T 1J8

Editor: Léon Bottou

Abstract
Deep multi-layer neural networks have many levels of non-linearities allowing them to compactly
represent highly non-linear and highly-varying functions. However, until recently it was not clear
how to train such deep networks, since gradient-based optimization starting from random initial-
ization often appears to get stuck in poor solutions. Hinton et al. recently proposed a greedy
layer-wise unsupervised learning procedure relying on the training algorithm of restricted Boltz-
mann machines (RBM) to initialize the parameters of a deep belief network (DBN), a generative
model with many layers of hidden causal variables. This was followed by the proposal of another
greedy layer-wise procedure, relying on the usage of autoassociator networks. In the context of
the above optimization problem, we study these algorithms empirically to better understand their
success. Our experiments confirm the hypothesis that the greedy layer-wise unsupervised training
strategy helps the optimization by initializing weights in a region near a good local minimum, but
also implicitly acts as a sort of regularization that brings better generalization and encourages inter-
nal distributed representations that are high-level abstractions of the input. We also present a series
of experiments aimed at evaluating the link between the performance of deep neural networks and
practical aspects of their topology, for example, demonstrating cases where the addition of more
depth helps. Finally, we empirically explore simple variants of these training algorithms, such as
the use of different RBM input unit distributions, a simple way of combining gradient estimators to
improve performance, as well as on-line versions of those algorithms.
Keywords: artificial neural networks, deep belief networks, restricted Boltzmann machines, au-
toassociators, unsupervised learning

1. Introduction

Training deep multi-layered neural networks is known to be hard. The standard learning strategy—
consisting of randomly initializing the weights of the network and applying gradient descent using
backpropagation—is known empirically to find poor solutions for networks with 3 or more hidden
layers. As this is a negative result, it has not been much reported in the machine learning literature.
For that reason, artificial neural networks have been limited to one or two hidden layers.

However, complexity theory of circuits strongly suggests that deep architectures can be much
more efficient (sometimes exponentially) than shallow architectures, in terms of computational el-

c©2009 Hugo Larochelle, Yoshua Bengio, Jérôme Louradour and Pascal Lamblin.

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

ements and parameters required to represent some functions (Bengio and Le Cun, 2007; Bengio,
2007). Whereas it cannot be claimed that deep architectures are better than shallow ones on every
problem (Salakhutdinov and Murray, 2008; Larochelle and Bengio, 2008), there has been evidence
of a benefit when the task is complex enough, and there is enough data to capture that complexity
(Larochelle et al., 2007). Hence finding better learning algorithms for such deep networks could be
beneficial.

An approach that has been explored with some success in the past is based on constructively
adding layers. Each layer in a multi-layer neural network can be seen as a representation of the input
obtained through a learned transformation. What makes a good internal representation of the data?
We believe that it should disentangle the factors of variation that inherently explain the structure of
the distribution. When such a representation is going to be used for unsupervised learning, we would
like it to preserve information about the input while being easier to model than the input itself. When
a representation is going to be used in a supervised prediction or classification task, we would like it
to be such that there exists a “simple” (i.e., somehow easy to learn) mapping from the representation
to a good prediction. To constructively build such a representation, it has been proposed to use
a supervised criterion at each stage (Fahlman and Lebiere, 1990; Lengellé and Denoeux, 1996).
However, as we discuss here, the use of a supervised criterion at each stage may be too greedy and
does not yield as good generalization as using an unsupervised criterion. Aspects of the input may
be ignored in a representation tuned to be immediately useful (with a linear classifier) but these
aspects might turn out to be important when more layers are available. Combining unsupervised
(e.g., learning about p(x)) and supervised components (e.g., learning about p(y|x)) can be be helpful
when both functions p(x) and p(y|x) share some structure.

The idea of using unsupervised learning at each stage of a deep network was recently put for-
ward by Hinton et al. (2006), as part of a training procedure for the deep belief network (DBN),
a generative model with many layers of hidden stochastic variables. Upper layers of a DBN are
supposed to represent more “abstract” concepts that explain the input observation x, whereas lower
layers extract “low-level features” from x. In other words, this model first learns simple concepts,
on which it builds more abstract concepts.

This training strategy has inspired a more general approach to help address the problem of train-
ing deep networks. Hinton (2006) showed that stacking restricted Boltzmann machines (RBMs)—
that is, training upper RBMs on the distribution of activities computed by lower RBMs—provides
a good initialization strategy for the weights of a deep artificial neural network. This approach can
be extended to non-linear autoencoders or autoassociators (Saund, 1989), as shown by Bengio et al.
(2007), and is found in stacked autoassociators network (Larochelle et al., 2007), and in the deep
convolutional neural network (Ranzato et al., 2007b) derived from the convolutional neural network
(LeCun et al., 1998). Since then, deep networks have been applied with success not only in clas-
sification tasks (Bengio et al., 2007; Ranzato et al., 2007b; Larochelle et al., 2007; Ranzato et al.,
2008), but also in regression (Salakhutdinov and Hinton, 2008), dimensionality reduction (Hinton
and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007b), modeling textures (Osindero and Hin-
ton, 2008), information retrieval (Salakhutdinov and Hinton, 2007a), robotics (Hadsell et al., 2008),
natural language processing (Collobert and Weston, 2008; Weston et al., 2008), and collaborative
filtering (Salakhutdinov et al., 2007).

In this paper, we discuss in detail three principles for training deep neural networks and present
experimental evidence that highlight the role of each in successfully training deep networks:

1. Pre-training one layer at a time in a greedy way;

2

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

2. using unsupervised learning at each layer in a way that preserves information from the input
and disentangles factors of variation;

3. fine-tuning the whole network with respect to the ultimate criterion of interest.

The experiments reported here suggest that this strategy improves on the traditional random
initialization of supervised multi-layer networks by providing “hints” to each intermediate layer
about the kinds of representations that it should learn, and thus initializing the supervised fine-
tuning optimization in a region of parameter space from which a better local minimum (or plateau)
can be reached. We also present a series of experiments aimed at evaluating the link between the
performance of deep neural networks and aspects of their topology such as depth and the size of
the layers. In particular, we demonstrate cases where the addition of depth helps classification
error, but too much depth hurts. Finally, we explore simple variants of the aforementioned training
algorithms, such as a simple way of combining them to improve their performance, RBM variants
for continuous-valued inputs, as well as on-line versions of those algorithms.

2. Notations and Conventions

Before describing the learning algorithms that we will study and experiment with in this paper, we
first present the mathematical notation we will use for deep networks.

A deep neural network contains an input layer and an output layer, separated by l layers of
hidden units. Given an input sample clamped to the input layer, the other units of the network
compute their values according to the activity of the units that they are connected to in the layers
below. We will consider a particular sort of topology here, where the input layer is fully connected
to the first hidden layer, which is fully connected to the second layer and so on up to the output
layer.

Given an input x, the value of the j-th unit in the i-th layer is denoted ĥi
j(x), with i = 0 referring

to the input layer, i = l + 1 referring to the output layer (the use of “ ̂ ” will become clearer in
Section 4). We refer to the size of a layer as |ĥi(x)|. The default activation level is determined by
the internal bias bi

j of that unit. The set of weights W i
jk between ĥi−1

k (x) in layer i−1 and unit ĥi
j(x)

in layer i determines the activation of unit ĥi
j(x) as follows:

ĥi
j(x) = sigm

(
ai

j

)
where ai

j(x) = bi
j +∑

k

W i
jkĥi−1

k (x) ∀i ∈ {1, . . . , l}, with ĥ0(x) = x (1)

where sigm(·) is the sigmoid squashing function: sigm(a) = 1
1+e−a (alternatively, the sigmoid could

be replaced by the hyperbolic tangent). Given the last hidden layer, the output layer is computed
similarly by

o(x) = ĥl+1(x) = f
(

al+1(x)
)

where al+1(x) = bl+1 +Wl+1ĥl(x)

where the activation function f (·) depends on the (supervised) task the network must achieve. Typ-
ically, it will be the identity function for a regression problem and the softmax function

f j(a) = softmax j(a) =
ea j

∑K
k=1 eak

(2)

for a classification problem, in order to obtain a distribution over the K classes.

3

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

Figure 1: Illustration of a deep network and its parameters.

When an input sample x is presented to the network, the application of Equation 1 at each layer
will generate a pattern of activity in the different layers of the neural network. Intuitively, we would
like the activity of the first layer neurons to correspond to low-level features of the input (e.g.,
edge orientations for natural images) and to higher level abstractions (e.g., detection of geometrical
shapes) in the last hidden layers.

3. Deep Neural Networks

It has been shown that a “shallow” neural network with only one arbitrarily large hidden layer
could approximate a function to any level of precision (Hornik et al., 1989). Similarly, any Boolean
function can be represented by a two-layer circuit of logic gates. However, most Boolean functions
require an exponential number of logic gates (with respect to the input size) to be represented by
a two-layer circuit (Wegener, 1987). For example, the parity function, which can be efficiently
represented by a circuit of depth O(logn) (for n input bits) needs O(2n) gates to be represented by
a depth two circuit (Yao, 1985). What about deeper circuits? Some families of functions which can
be represented with a depth k circuit are such that they require an exponential number of logic gates
to be represented by a depth k− 1 circuit (Håstad, 1986). Interestingly, an equivalent result has
been proved for architectures whose computational elements are not logic gates but linear threshold
units (i.e., formal neurons) (Hastad and Goldmann, 1991). The machine learning literature also
suggests that shallow architectures can be very inefficient in terms of the number of computational
units (e.g., bases, hidden units), and thus in terms of required examples (Bengio and Le Cun, 2007;
Bengio et al., 2006). On the other hand, a highly-varying function can sometimes be represented

4

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

compactly (with fewer parameters) through the composition of many non-linearities, that is, with a
deep architecture. When the representation of a concept requires an exponential number of elements
(more generally exponential capacity), for example, with a shallow circuit, the number of training
examples required to learn the concept may also be impractical. Smoothing the learned function by
regularization would not solve the problem here because in these cases the target function itself is
complicated and requires exponential capacity just to be represented.

3.1 Difficulty of Training Deep Architectures

Given a particular task, a natural way to train a deep network is to frame it as an optimization
problem by specifying a supervised cost function on the output layer with respect to the desired
target and use a gradient-based optimization algorithm in order to adjust the weights and biases
of the network so that its output has low cost on samples in the training set. Unfortunately, deep
networks trained in that manner have generally been found to perform worse than neural networks
with one or two hidden layers.

We discuss two hypotheses that may explain this difficulty. The first one is that gradient descent
can easily get stuck in poor local minima (Auer et al., 1996) or plateaus of the non-convex training
criterion. The number and quality of these local minima and plateaus (Fukumizu and Amari, 2000)
clearly also influence the chances for random initialization to be in the basin of attraction (via
gradient descent) of a poor solution. It may be that with more layers, the number or the width
of such poor basins increases. To reduce the difficulty, it has been suggested to train a neural
network in a constructive manner in order to divide the hard optimization problem into several
greedy but simpler ones, either by adding one neuron (e.g., see Fahlman and Lebiere, 1990) or one
layer (e.g., see Lengellé and Denoeux, 1996) at a time. These two approaches have demonstrated to
be very effective for learning particularly complex functions, such as a very non-linear classification
problem in 2 dimensions. However, these are exceptionally hard problems, and for learning tasks
usually found in practice, this approach commonly overfits.

This observation leads to a second hypothesis. For high capacity and highly flexible deep net-
works, there actually exists many basins of attraction in its parameter space (i.e., yielding different
solutions with gradient descent) that can give low training error but that can have very different gen-
eralization errors. So even when gradient descent is able to find a (possibly local) good minimum
in terms of training error, there are no guarantees that the associated parameter configuration will
provide good generalization. Of course, model selection (e.g., by cross-validation) will partly cor-
rect this issue, but if the number of good generalization configurations is very small in comparison
to good training configurations, as seems to be the case in practice, then it is likely that the training
procedure will not find any of them. But, as we will see in this paper, it appears that the type of
unsupervised initialization discussed here can help to select basins of attraction (for the supervised
fine-tuning optimization phase) from which learning good solutions is easier both from the point of
view of the training set and of a test set.

3.2 Unsupervised Learning as a Promising Paradigm for Greedy Layer-Wise Training

A common approach to improve the generalization performance of a learning algorithm which is
motivated by the Occam’s razor principle is the use of regularization (such as weight decay) that
will favor “simpler” models over more complicated ones. However, using generic priors such as the
`2 norm of the parameters conveys limited information about what the solution to a particular learn-

5

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

ing task should be. This has motivated researchers to discover more meaningful, data-dependent
regularization procedures, which are usually based on unsupervised learning and normally adapted
to specific models.

For example, Ando and Zhang (2005) use “auxiliary tasks” designed from unlabelled data and
that are appropriate for a particular learning problem, to learn a better regularization term for linear
classifiers. Partial least squares (Frank and Friedman, 1993) can also be seen as combining unsuper-
vised and supervised learning in order to learn a better linear regression model when few training
data are available or when the input space is very high dimensional.

Many semi-supervised learning algorithms also involve a combination of unsupervised and su-
pervised learning, where the unsupervised component can be applied to additional unlabelled data.
This is the case for Fisher-kernels (Jaakkola and Haussler, 1999) which are based on a generative
model trained on unlabelled input data and that can be used to solve a supervised problem defined
for that input space. In all these cases, unsupervised learning can be seen as adding more constraints
on acceptable configurations for the parameters of a model, by asking that it not only describes well
the relationship between the input and the target but also contains relevant statistical information
about the structure of the input or how it was generated.

Moreover, there is a growing literature on the distinct advantages of generative and discrimi-
native learning. Ng and Jordan (2001) argue that generative versions of discriminative models can
be expected to reach their usually higher asymptotic out-of-sample classification error faster (i.e.,
with less training data), making them preferable in certain situations. Moreover, successful attempts
at exploring the space between discriminative and generative learning have been studied (Lasserre
et al., 2006; Jebara, 2003; Bouchard and Triggs, 2004; Holub and Perona, 2005).

The deep network learning algorithms that have been proposed recently and that we study in
this paper can be seen as combining the ideas of greedily learning the network to break down
the learning problem into easier steps, using unsupervised learning to provide an effective hint
about what hidden units should learn, bringing along the way a form of regularization that prevents
overfitting even in deep networks with many degrees of freedom (which could otherwise overfit).
In addition, one should consider the supervised task the network has to solve. The greedy layer-
wise unsupervised strategy provides an initialization procedure, after which the neural network is
fine-tuned to the global supervised objective. The general paradigm followed by these algorithms
(illustrated in Figure 2 and detailed in Appendix A) can be decomposed in two phases:

1. In the first phase, greedily train subsets of the parameters of the network using a layer-
wise and unsupervised learning criterion, by repeating the following steps for each layer
(i ∈ {1, . . . , l})

Until a stopping criteria is met, iterate through training database by

(a) mapping input training sample xt to representation ĥi−1(xt) (if i > 1) and hidden
representation ĥi(xt),

(b) updating parameters bi−1, bi and Wi of layer i using some unsupervised learning
algorithm.

Also, initialize (e.g., randomly) the output layer parameters bl+1,Wl+1.

6

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(a) First hidden layer pre-
training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(b) Second hidden layer
pre-training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(c) Third hidden layer pre-
training

o(x)

W 4

h (x)3 b3
j

x

h (x)

h (x)

1

2

W

W

W

1

2

3

b1
j

b2
j

b0
j

b4
j

^

^

^

(d) Fine-tuning of whole
network

Figure 2: Unsupervised greedy layer-wise training procedure.

2. In the second and final phase, fine-tune all the parameters θ of the network using backpropa-
gation and gradient descent on a global supervised cost function C(xt ,yt ,θ), with input xt and

label yt , that is, trying to make steps in the direction E
[

∂C(xt ,yt ,θ)
∂θ

]
.

Regularization is not explicit in this procedure, as it does not come from a weighted term that
depends on the complexity of the network and that is added to the global supervised objective.
Instead, it is implicit, as the first phase that initializes the parameters of the whole network will
ultimately have an impact on the solution found in the second phase (the fine-tuning phase). Indeed,
by using an iterative gradual optimization algorithm such as stochastic gradient descent with early-
stopping (i.e., training until the error on a validation set reaches a clear minimum), the extent to
which the configuration of the network’s parameters can be different from the initial configuration
given by the first phase is limited. Hence, similarly to using a regularization term on the parameters
of the model that constrains them to be close to a particular value (e.g., 0 for weight decay), the first
phase here will ensure that the parameter solution for each layer found by fine-tuning will not be
far from the solution found by the unsupervised learning algorithm. In addition, the non-convexity
of the supervised training criterion means that the choice of initial parameter values can greatly
influence the quality of the solution obtained by gradient descent.

In the next two sections, we present a review of the two training algorithms that fall in paradigm
presented above and which are empirically studied in this paper, in Section 6.

4. Stacked Restricted Boltzmann Machine Network

Intuitively, a successful learning algorithm for deep networks should be one that discovers a mean-
ingful and possibly complex hidden representation of the data at its top hidden layer. However,
learning such non-linear representations is a hard problem. A solution, proposed by Hinton (2006),
is based on the learning algorithm of the restricted Boltzmann machine (RBM) (Smolensky, 1986),
a generative model that uses a layer of binary variables to explain its input data. In an RBM (see

7

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

W

b j

c k x

Figure 3: Illustration of a restricted Boltzmann machine and its parameters. W is a weight matrix,
b is a vector of hidden unit biases, and c a vector of visible unit biases.

Figure 3 for an illustration), given an input x, it is easy to obtain a hidden representation for that
input by computing the posterior ĥ(x) over the layer of binary hidden variables h (we use the “̂”
symbol to emphasize that ĥ(x) is not a random variable but a deterministic representation of x).

Hinton (2006) argues that this representation can be improved by giving it as input to another
RBM, whose posterior over its hidden layer will then provide a more complex representation of
the input. This process can be repeated an arbitrary number of times in order to obtain ever more
non-linear representations of the input. Finally, the parameters of the RBMs that compute these rep-
resentations can be used to initialize the parameters of a deep network, which can then be fine-tuned
to a particular supervised task. This learning algorithm clearly falls in the paradigm of Section 3.2,
where the unsupervised part of the learning algorithm is that of an RBM. We will refer to deep
networks trained using this algorithm as stacked restricted Boltzmann machine (SRBM) networks.
For more technical details about the SRBM network, and how to train an RBM using the contrastive
divergence algorithm (CD-k), see Appendix B.

5. Stacked Autoassociators Network

There are theoretical results about the advantage of stacking many RBMs into a DBN: Hinton et al.
(2006) show that this procedure optimizes a bound on the likelihood of the input data when all
layers have the same size. An additional hypothesis to explain why this process provides a good
initialization for the network is that it makes each hidden layer compute a different, possibly more
abstract representation of the input. This is done implicitly, by asking that each layer captures fea-
tures of the input that help characterize the distribution of values at the layer below. By transitivity,
each layer contains some information about the input. However, stacking any unsupervised learning
model does not guarantee that the representations learned get increasingly complex or appropriate
as we stack more layers. For instance, many layers of linear PCA models could be summarized by
only one layer. However, there may be other non-linear, unsupervised learning models that, when
stacked, are able to improve the learned representation at the last layer added.

An example of such a non-linear unsupervised learning model is the autoassociator or autoen-
coder network (Cottrell et al., 1987; Saund, 1989; Hinton, 1989; Baldi and Hornik, 1989; DeMers
and Cottrell, 1993). Autoassociators are neural networks that are trained to compute a represen-
tation of the input from which it can be reconstructed with as much accuracy as possible. In this
paper, we will consider autoassociator networks of only one hidden layer, meaning that the hidden

8

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

x

c k

b j

x

W

W *

^

h(x)
^

Figure 4: Illustration of an autoassociator and its parameters. W is the matrix of encoder weights
and W∗ the matrix of decoder weights. ĥ(x) is the code or representation of x.

representation of x is a code ĥ(x) obtained from the encoding function

ĥ j(x) = f (a j) where a j(x) = b j +∑
k

Wjkxk . (3)

The input’s reconstruction is obtained from a decoding function, here a linear transformation
of the hidden representation with weight matrix W∗, possibly followed by a non-linear activation
function:

x̂k = g(âk) where âk = ck +∑
j

W ∗jkĥ j(x) .

In this work, we used the sigmoid activation function for both f (·) and g(·). Figure 4 shows an
illustration of this model.

By noticing the similarity between Equations 3 and 1, we are then able to use the training
algorithm for autoassociators as the unsupervised learning algorithm for the greedy layer-wise ini-
tialization phase of deep networks. In this paper, stacked autoassociators (SAA) networks will
refer to deep networks trained using the procedure of Section 3.2 and the learning algorithm of an
autoassociator for each layer, as described in Section 5.1.

Though these neural networks were designed with the goal of dimensionality reduction in mind,
the new representation’s dimensionality does not necessarily need to be lower than the input’s in
practice. However, in that particular case, some care must be taken so that the network does not
learn a trivial identity function, that is, finds weights that simply “copy” the whole input vector in
the hidden layer and then copy it again at the output. For example, a network with small weights W jk

between the input and hidden layers (maintaining activations in the linear regime of the activation
function f) and large weights W ∗jk between the hidden and output layers could encode such an
uninteresting identity function. An easy way to avoid such a pathological behavior in the case
of continuous inputs is to set the weight matrices WT and W∗ to be the same. This adjustment
is motivated by its similarity with the parametrization of the RBM model and by an empirical
observation that WT and W∗ tend to be similar up to a multiplicative factor after training. In

9

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

the case of binary inputs, if the weights are large, the input vector can still be copied (up to a
permutation of the elements) to the hidden units, and in turn these used to perfectly reconstruct the
input. Weight decay can be useful to prevent such a trivial and uninteresting mapping to be learned,
when the inputs are binary. We set WT = W∗ in all of our experiments. Vincent et al. (2008) have
an improved way of training autoassociators in order to produce interesting, non-trivial features in
the hidden layer, by partially corrupting the network’s inputs.

The reconstruction error of an autoassociator can be connected to the log-likelihood of an RBM
in several ways. Ranzato et al. (2008) connect the log of the numerator of the input likelihood with
a form of reconstruction error (where one replaces the sum over hidden unit configurations by a
maximization). The denominator is the normalization constant summing over all input configura-
tions the same expression as in the numerator. So whereas maximizing the numerator is similar to
minimizing reconstruction error for the training examples, minimizing the denominator means that
most input configurations should not be reconstructed well. This can be achieved if the autoassoci-
ator is constrained in such a way that it cannot compute the identity function, but only minimizes
the reconstruction for training examples.

Another connection between reconstruction error and log-likelihood of the RBM was made in
Bengio and Delalleau (2007). They consider a converging series expansion of the log-likelihood
gradient and show that whereas CD-k truncates the series by keeping the first 2k terms and then
approximates expectations by a single sample, reconstruction error is a mean-field approximation
of the first term in that series.

5.1 Learning in an Autoassociator Network

Training an autoassociator network is almost identical to training a standard artificial neural net-
work. Given a cost function, backpropagation is used to compute gradients and perform gradient
descent. However, autoassociators are “self-supervised”, meaning that the target to which the output
of the autoassociator is compared is the input that it was fed.

Previous work on autoassociators minimized the squared reconstruction error:

C(x̂,x) = ∑
k

(x̂k− xk)
2 .

However, with squared reconstruction error and linear decoder, the “optimal codes” (the implicit
target for the encoder, irrespective of the encoder) are in the span of the principal eigenvectors of
the input covariance matrix. When we introduce a saturating non-linearity such as the sigmoid,
and we want to reconstruct values [0,1], the binomial KL divergence (also known as cross-entropy)
seems more appropriate:

C(x̂,x) =−∑
k

(xk log(x̂k)+(1− xk) log(1− x̂k)) . (4)

It corresponds to the assumption that x̂ and x can be interpreted as factorized distributions over
binary units. It is well known that the cross-entropy −p log(q)− (1− p) log(1− q) between two
binary distributions parametrized by p and q is minimized when q = p (for a fixed p), making it
an appropriate cost function to evaluate the quality of a reconstruction. We used this cost function
in all the experiments with SAA networks. Appendix C details the corresponding autoassociator
training update.

10

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

6. Experiments

In this section, we present several experiments set up to evaluate the deep network learning algo-
rithms that fall in the paradigm presented in the Section 3.2 and highlight some of their properties.
Unless otherwise stated, stochastic gradient descent was used for layer-wise unsupervised learning
(first phase of the algorithm) and global supervised fine-tuning (second phase of the algorithm).
The data sets were separated in disjoint training, validation and testing subsets. Model selection
consisted of finding the best values for the learning rates of layer-wise unsupervised and global su-
pervised learning as well as the number of unsupervised updates preceding the fine-tuning phase.
The number of epochs of fine-tuning was chosen using early-stopping based on the progression
of classification error on the validation set. All experiments correspond to classification problems.
Hence, to fine-tune the deep networks, we optimized the negative conditional log-likelihood of the
training samples’ target class (as given by the softmax output of the neural network).

The experiments are based on the MNIST data set1 (see Figure 5), a benchmark for handwritten
digit recognition, as well as variants of this problem where the input distribution has been made more
complex by inserting additional factors of variations, such as rotations and background images. The
input images are made of 28×28 pixels giving an input dimensionality of 784, the number of classes
is 10 (corresponding to the digits from 0 to 9) and the inputs were scaled between 0 and 1.

Successful applications of deep networks have already been presented on a large variety of
data, such as images of faces (Salakhutdinov and Hinton, 2008), real-world objects (Ranzato et al.,
2007a) as well as text data (Hinton and Salakhutdinov, 2006; Salakhutdinov and Hinton, 2007a;
Collobert and Weston, 2008; Weston et al., 2008), and on different types of problems such as regres-
sion (Salakhutdinov and Hinton, 2008), information retrieval (Salakhutdinov and Hinton, 2007a),
robotics Hadsell et al. (2008), and collaborative filtering (Salakhutdinov et al., 2007).

In Bengio et al. (2007), we performed experiments on two regression data sets, with non-image
continuous inputs (UCI Abalone, and a financial data set), demonstrating the use of unsupervised
(or partially supervised) pre-training of deep networks on these tasks. In Larochelle et al. (2007), we
studied the performance of several architectures on various data sets, including variations of MNIST
(with rotations, random background, and image background), and discrimination tasks between
wide and tall rectangles, and between convex and non-convex images. On these tasks, deep networks
compared favorably to shallow architectures.

Our focus is hence not on demonstrating their usefulness on a wide range of tasks, but on ex-
ploring their properties empirically. Such experimental work required several weeks of cumulative
CPU time, which restricted the number of data sets we could explore. However, by concentrat-
ing on the original MNIST data set and harder versions of it, we were able not only to confirm
the good performance of deep networks, but also to study practical variations, to help understand
the algorithms, and to discuss the impact on a deep network’s performance of stepping to a more
complicated problem.

6.1 Validating the Unsupervised Layer-Wise Strategy for Deep Networks

In this section, we evaluate the advantages brought by the unsupervised layer-wise strategy of Sec-
tion 3.2. We want to separate the different algorithmic concepts behind it, in order to understand
their contribution to the whole strategy. In particular, we pursue the following two questions:

1. This data set can be downloaded from http://yann.lecun.com/expdb/mnist/.

11

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Samples from the MNIST digit recognition data set. Here, a black pixel corresponds to
an input value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0
and 1).

1. To what extent does initializing greedily the parameters of the different layers help?

2. How important is unsupervised learning for this procedure?

To address these two questions, we will compare the learning algorithms for deep networks of
Sections 4 and 5 with the following algorithms.

6.1.1 DEEP NETWORK WITHOUT PRE-TRAINING

To address the first question above, we compare the greedy layer-wise algorithm with a more stan-
dard way to train neural networks: using standard backpropagation and stochastic gradient descent,
and starting at a randomly initialized configuration of the parameters. In other words, this variant
simply puts away the pre-training phase of the other deep network learning algorithms.

6.1.2 DEEP NETWORK WITH SUPERVISED PRE-TRAINING

To address the second question, we run an experiment with the following algorithm. We greedily
pre-train the layers using a supervised criterion (instead of the unsupervised one), before performing
as before a final supervised fine-tuning phase. Specifically, when greedily pre-training the param-
eters Wi and bi, we also train another set of weights Vi and biases ci which connect hidden layer
ĥi(x) to a temporary output layer as follows:

oi(x) = f
(

ci +Viĥi(x)
)

12

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

where f (·) is the softmax function of Equation 2. This output layer can be trained using the same
cost as the global supervised cost. However, as this is a greedy procedure, only the parameters
Wi, bi, Vi and ci are updated, that is, the gradient is not propagated to the layers below. When
the training of a layer is finished, we can simply discard the parameters Vi and ci and move to
pre-training the next hidden layer, having initialized Wi and bi.

6.1.3 STACKED LOGISTIC AUTOREGRESSION NETWORK

The second question aims at evaluating to what extent any unsupervised learning can help. We
already know that stacking linear PCA models is not expected to help improve generalization. A
slightly more complex yet very simple unsupervised model for data in [0,1] is the logistic autore-
gression model (see also Frey, 1998)

x̂k = sigm

(
bk + ∑

j 6=k

Wk jx j

)
(5)

where the reconstruction x̂ is log-linear in the input x. The parameters W and b can be trained
using the same cost used for the autoassociators in Equation 4. This model can be used to initialize
the weights Wi and biases bi of the i-th hidden layer of a deep network. However, because W in
Equation 5 is square, the deep network will need to have hidden layers with the same size as the
input layer. Also, the weights on the diagonal of W are not trained in this model, so we initialize
them to zero. The stacked logistic autoregression network will refer to deep networks using this
unsupervised layer-wise learning algorithm.

6.1.4 RESULTS

The results for all these deep networks are given in Table 1. We also give results for a “shallow”,
one hidden layer neural network, to validate the utility of deep architectures. Instead of the sigmoid,
this network uses hyperbolic tangent squashing functions, which are usually found to work better
for one hidden layer neural networks. The MNIST training set was separated into training (50,000)
and validation (10,000) sets. The test set has size 10,000. In addition to the hyperparameters
mentioned at the beginning of this section, the validation set was used also to select appropriate
decrease constants2 for the learning rates of the greedy and fine-tuning phases. The SRBM and
SAA networks had 500, 500 and 2000 hidden units in the first, second and third layers respectively,
as in Hinton et al. (2006) and Hinton (2006). In the pre-training phase of the SRBM and SAA
networks, when training the parameters of the i-th layer, the down-biases ck where set to be equal to
bi−1

k (although similar results were obtained by using a separate set of biases ci−1
k when the i−1-th

layer is the down-layer). For the deep networks with supervised or no pre-training, different sizes of
hidden layers were compared, including sizes similar to the stacked logistic autoregression network,
and to the SRBM and SAA networks. All deep networks had 3 hidden layers.

Overall, the models that use the unsupervised layer-wise procedure of Section 3.2 outperform
those that do not. We also observe a slight advantage in the performance of the SRBM network over
that of the SAA network (on the MNIST test set, differences of more than 0.1% are statistically
significant). The performance difference between the stacked logistic autoregressions network and

2. When using a decrease constant β, the learning rate for the t th update becomes ε0
1+tβ , where ε0 is the initial learning

rate.

13

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Models Train. Valid. Test

SRBM (stacked restricted Boltzmann machines) network 0% 1.20% 1.20%
SAA (stacked autoassociators) network 0% 1.31% 1.41%
Stacked logistic autoregressions network 0% 1.65% 1.85%
Deep network with supervised pre-training 0% 1.74% 2.04%
Deep network, no pre-training 0.004% 2.07% 2.40%
Shallow network, no pre-training 0% 1.91% 1.93%

Table 1: Classification error on MNIST training, validation, and test sets, with the best hyperpa-
rameters according to validation error.

the deep network with supervised layer-wise pre-training particularly highlights the importance of
unsupervised learning. Indeed, even though supervised layer-wise pre-training explicitly trains the
hidden layers to capture non-linear information about the input, the overall procedure seems to be
too greedy with respect to the supervised task to be learned. On the other hand, even though logistic
autoregressions are simple log-linear models and their optimization is blind with respect to the
future usage of the weights W as connections into non-linear hidden layers, the unsupervised nature
of training makes them still useful for improving generalization. As a point of comparison, besides
the deep networks, the best result on this data set reported for a learning algorithm that does not use
any prior knowledge about the task (e.g., image pre-processing like deskewing or subsampling) is
that of a support vector machine with a Gaussian kernel,3 with 1.4% classification error on the test
set.

At this point, it is clear that unsupervised layer-wise pre-training improves generalization. How-
ever, we could wonder whether it also facilitates the optimization problem of the global fine-tuning.
The results of Table 1 do not shed any light on this aspect. Indeed, all the networks, even those
without greedy layer-wise pre-training, perform almost perfectly on the training set. The explana-
tory hypothesis we evaluate here is that, without pre-training, the lower layers are initialized poorly,
but still allow the top two layers to learn the training set almost perfectly because the output layer
and the last hidden layer form a standard shallow but fat neural network. Consider the top two
layers of the deep network with pre-training: it presumably takes as input a better representation,
one that allows for better generalization. Instead, the network without pre-training sees a “random”
transformation of the input, one that preserves enough information about the input to fit the training
set, but that does not help to generalize. To test this hypothesis, we performed a second series of
experiments in which we constrain the top hidden layer to be small (20 hidden units).

The results (Table 2) clearly suggest that optimization of the global supervised objective is
made easier by greedy layer-wise pre-training. This result for supervised greedy pre-training is also
coherent with past experiments on similar greedy strategies (Fahlman and Lebiere, 1990; Lengellé
and Denoeux, 1996). Here, we have thus confirmed that it also applies to unsupervised greedy
pre-training. With no pre-training, training error degrades significantly when there are only 20
hidden units in the top hidden layer. In addition, the results obtained without pre-training were
found to have much larger variance than those with pre-training, indicating high sensitivity to initial

3. See http://yann.lecun.com/exdb/mnist/ for more details.

14

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

Models Train. Valid. Test

SRBM network 0% 1.5% 1.5%
SAA network 0% 1.38% 1.65%
Deep network with supervised pre-training 0% 1.77% 1.89%
Deep network, no pre-training 0.59% 2.10% 2.20%
Shallow network, no pre-training 3.6% 4.77% 5.00%

Table 2: Classification error on MNIST training, validation, and test sets, with the best hyperpa-
rameters according to validation error, when the last hidden layer only contains 20 hidden
units

conditions: the unsupervised pre-training more consistently puts the parameters in a “good” basin
of attraction for the supervised gradient descent procedure.

Figures 6 and 7 show the sorts of first hidden layer features (weights going into different hidden
neurons) that are learned by the first (bottom) RBM and autoassociator respectively, before fine-
tuning. Both models were trained on the MNIST training set of Section 6.1 for 40 epochs, with 250
hidden units and a learning rate of 0.005. We see that they both learn visual features characterized
by local receptive fields, which ought to be useful to recognize more global shapes (though the
autoassociator also learns high frequency receptive fields that are spread over the whole image).
This is another account of how unsupervised greedy pre-training is able to help the optimization of
the network. Even if the supervised fine-tuning gradient at the first hidden layer is weak, we can see
that the first hidden layer appears to learn a relevant representation.

6.2 Exploring the Space of Network Architectures

An important practical aspect in using deep network is the choice the architecture or topology of
the network. Once we allow ourselves to consider an arbitrary number of hidden layers of arbitrary
sizes, some questions naturally arise. First, we would like to know how deep a neural network can
be made while still obtaining generalization gains, given a strategy for initializing its parameters
(randomly or with unsupervised greedy pre-training). We would also like to know, for a determined
depth, what type of architecture is more appropriate. Should the hidden layer’s size increase, de-
crease or stay the same from the first to the last? In this section, we explore those two questions
with experiments on the MNIST data set as well as a variant, taken from Larochelle et al. (2007),
where the digit images have been randomly rotated. This last data set, noted MNIST-rotation4 (see
Figure 8), contains much more intraclass variability, is much less well described by relatively well
separated class-specific clusters and corresponds to a much harder classification problem. The train-
ing, validation and test sets contain 10 000, 2 000 and 50 000 examples each. We also generated
sets of the same size for the MNIST data set. We refer to this version with a smaller training set by
MNIST-small.

4. This data set has been regenerated since Larochelle et al. (2007) and is available here: http://www.iro.umontreal.
ca/˜lisa/icml2007.

15

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Display of the input weights of a random subset of the hidden units, learned by an RBM
when trained on samples from the MNIST data set. The activation of units of the first
hidden layer is obtained by a dot product of such a weight “image” with the input image.
In these images, a black pixel corresponds to a weight smaller than −3 and a white pixel
to a weight larger than 3, with the different shades of gray corresponding to different
weight values uniformly between −3 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Input weights of a random subset of the hidden units, learned by an autoassociator when
trained on samples from the MNIST data set. The display setting is the same as for
Figure 6.

16

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: Samples from the MNIST-rotation data set. Here, a black pixel corresponds to an input
value of 0 and a white pixel corresponds to 1 (the inputs are scaled between 0 and 1).

6.2.1 NETWORK DEPTH

One can wonder whether a neural network can be made too deep, that is, whether having too many
hidden layers can worsen the generalization performance. Of course there are many reasons why this
may happen. When a neuron is added, more parameters are inserted in the mathematical formulation
of the model, giving it more degrees of freedom to fit the model and hence possibly making it able to
overfit. On the other hand, it is less clear to what extent the performance can worsen, since a neuron
added at the top layer of a neural network does not increase the capacity the same way a neuron
added “in parallel” in a given hidden layer. Also, in the case of an SRBM network, we can imagine
that as we stack RBMs, the representation at a hidden layer contains units that correspond to more
and more disentangled concepts of the input. Now, consider a hypothetical deep network where
the top-level stacked RBM has learned a representation made of units that are mostly independent.
An additional RBM stacked on this representation would have no statistical structure to learn. This
would initialize the weights of that new RBM to zero, which is particularly troublesome as the
representation at this level would then contain no information about the input. It is not clear if this
scenario is plausible, unlike in the case of independent component analysis, but if it were approached
the result would be detrimental to supervised classification performance. This particular situation is
not expected with stacked autoassociators, as it will always learn a representation from which the
previous layer can be reconstructed. Another reason why a deeper architecture could produce worse
results is simply that our algorithms for training a deep architecture can probably be improved. In
particular, note that the only joint training of all layers that we have done in our experiments, if any,
is at the supervised fine-tuning stage.

17

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Network MNIST-small MNIST-rotation
Type Depth classif. test error classif. test error

Neural network 1 4.14 % ± 0.17 15.22 % ± 0.31

(random initialization, 2 4.03 % ± 0.17 10.63 % ± 0.27

+ fine-tuning) 3 4.24 % ± 0.18 11.98 % ± 0.28

4 4.47 % ± 0.18 11.73 % ± 0.29

SAA network 1 3.87 % ± 0.17 11.43% ± 0.28

(autoassociator learning 2 3.38 % ± 0.16 9.88 % ± 0.26

+ fine-tuning) 3 3.37 % ± 0.16 9.22 % ± 0.25

4 3.39 % ± 0.16 9.20 % ± 0.25

SRBM network 1 3.17 % ± 0.15 10.47 % ± 0.27

(CD-1 learning 2 2.74 % ± 0.14 9.54 % ± 0.26

+ fine-tuning) 3 2.71 % ± 0.14 8.80 % ± 0.25

4 2.72 % ± 0.14 8.83 % ± 0.24

Table 3: Classification performance on MNIST-small and MNIST-rotation of different networks for
different strategies to initialize parameters, and different depths (number of layers).

Table 3 presents the classification performance obtained by the different deep networks with up
to 4 hidden layers on MNIST-small and MNIST-rotation. The hyperparameters of each layer were
separately selected with the validation set for all hidden layers, using the following greedy strategy:
for a network with l hidden layers, only the hyperparameters for the top layer were optimized,
the hyperparameters for the layers below being set to those of the best l− 1 layers deep network
according to the validation performance. We settled for this strategy because of the exponential
number of possible configurations of hyperparameters. For standard neural networks, we also tested
several random initializations of the weights. For SRBM as well as SAA networks, we tuned the
unsupervised learning rates and the number of updates. For MNIST-small, we used hidden layers
of 500 neurons, since the experiments by Hinton (2006) suggest that it is an appropriate choice. As
for MNIST-rotation, the size of each hidden layer had to be validated separately for each layer, and
we tested values among 500, 1000, 2000 and 4000.

Table 3 show that there is indeed an optimal number of hidden layers for the deep networks, and
that this optimum tends to be larger when unsupervised greedy layer-wise learning is used. For the
MNIST-small data set (Table 3), the gain in performance between 2 and 3 hidden layers for SRBM
and SAA networks is not statistically significant. However, for the MNIST-rotation data set, the
improvement from 2 to 3 hidden layers is clear. This observation is consistent with the increased
complexity of the input distribution and classification problem of MNIST-rotation, which should
require a more complex model. The improvement remains significant when fixing the network’s
hidden layers to the same size as in the experiments on MNIST-small, as showed in the results
of Table 4 where the number of units per hidden layer was set to 1000. We also compared the
performance of shallow and deep SRBM networks with roughly the same number of parameters.
With a shallow SRBM network, the best classification error achieved was 10.47%, with 4000 hidden
units (around 3.2×106 free parameters). With a 3-layers deep SRBM network, we reached 9.38%

18

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

Network MNIST-rotation
Type Depth Layers width classif. test error

SRBM network 1 1k 12.44 % ± 0.29

(CD-1 learning 2 1k, 1k 9.98 % ± 0.26

+ fine-tuning) 3 1k, 1k, 1k 9.38 % ± 0.25

Table 4: Classification performance on MNIST-rotation of different networks for different strate-
gies to initialize parameters, and different depths (number of layers). All hidden layers
have 1000 units.

classification error with 1000 units in each layer (around 2.8×106 parameters): better generalization
was achieved with deeper nets having less parameters.

6.2.2 TYPE OF NETWORK ARCHITECTURE

The model selection procedure of Section 6.2.1 works well, but is rather expensive. Every time one
wants to train a 4 hidden layer network, networks with 1, 2 and 3 hidden layers effectively have to
be trained as well, in order to determine appropriate hyperparameters for the lower hidden layers.
These networks can’t even be trained in parallel, adding to the computational burden of this model
selection procedure. Moreover, the optimal hidden layer size for a 1-hidden layer network could be
much bigger than necessary for a 4 hidden layer network, since a shallow network cannot rely on
other upper layers to increase its capacity.

Let us consider the situation where the number of hidden layers of a deep network has already
been chosen and good sizes of the different layers must be found. Because the space of such possible
choices is exponential in the number of layers, we consider here only three general cases where,
as the layer index increases, their sizes either increases (doubles), decreases (halves) or does not
change. We conducted experiments for all three cases and varied the total number of hidden neurons
in the network. The same hyperparameters as in the experiment of Table 3 had to be selected for
each network topologies, however a single unsupervised learning rate and number of updates were
chosen for all layers.5

We observe in Figures 9 and 10 that the architecture that most often is among the best performing
ones across the different sizes of network is the one with equal sizes of hidden layers. It should be
noted that this might be a consequence of using the same unsupervised learning hyperparameters
for each layer. It might be that the size of a hidden layer has a significant influence on the optimum
value for these hyperparameters, and that tying them for all hidden layers induces a bias towards
networks with equally-sized hidden layers. However, having untied hyperparameters would make
model selection too computationally demanding. Actually, even with tied unsupervised learning
hyperparameters, the model selection problem is already complex enough (and prone to overfitting
with small data sets), as is indicated by the differences in the validation and test classification errors
of Table 3.

5. We imposed this restriction because of the large number of experiments that would otherwise had been required.

19

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

����� ������� ��� 	��

��� ����������������������� ������������� �

 �! ��"

� "

� ! ��"

#�"

$% &
''
())
*)

+-,/.-0
1�2�3�4 265�7�8 9�:<;=8 1�> ?
3�@69�7�> 569�>A;B8 1�> ?
8 9�3�4 265�7�8 9�:<;B8 1�> ?

(a) SRBM network.

C�D�D E�F�D�D G�H I�H
J�K�L M�N�O�P�Q�R�S�T�K�U6V�W X�X�S�O�P�O�W L Y

Z�[F�\

G \

G [F�\

]�\

^_ `aa
b ccd
c

e�f-f
g6h�i�j h�k�l�m n�o<pBm g�q r
i�stn�l�q k6n�qupBm g�q r
m n�i�j h6k�l�m n�o<p=m g�qvr

(b) SAA network.

Figure 9: Classification performance on MNIST-small of 3-layer deep networks for three kinds of
architectures, as a function of the total number of hidden units. The three architectures
have increasing / constant / decreasing layer sizes from the bottom to the top layers.
Error-bars represent 95% confidence intervals.

w�x�x y�z�x�x {�| }�|
~���� �������������������6��� ������������� � �

w��

w�� z��

y�x��

y�x�� z��

y�y��

y�y�� z��

y����

y���� z��

�� ���
� ���
�

�t�/�-�
�6����� �6 �¡�¢ £�¤<¥B¢ ��¦ §
��¨6£�¡�¦ �£�¦u¥=¢ ��¦ §
¢ £���� �� �¡�¢ £�¤<¥B¢ ��¦ §

(a) SRBM network.

©�ª�ª «�¬�ª�ª �® ¯�®
°�±�² ³�´�µ�¶�·�¸�¹�º�±�»6¼�½ ¾�¾�¹�µ�¶�µ�½ ² ¿

©�À ¬�Á

«�ª�Á

«�ª�À ¬�Á

«�«�Á

«�«�À ¬�Á

«�Â�Á

«�Â�À ¬�Á

« Á

ÃÄ ÅÆÆ
Ç ÈÈÉ
È

Ê�Ë-Ë
Ì�Í�Î�Ï Í6Ð�Ñ�Ò Ó�ÔÖÕBÒ Ì�× Ø
Î�Ù6Ó�Ñ�× Ð6Ó�×AÕBÒ Ì�× Ø
Ò Ó�Î�Ï Í6Ð�Ñ�Ò Ó�Ô<ÕBÒ Ì�× Ø

(b) SAA network.

Figure 10: Classification performance on MNIST-rotation of 3-layer deep networks for three kinds
of architectures. Same conventions as in Figure 9.

20

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

7. Continuous-Valued Inputs

In this section, we wish to emphasize the importance of adapting the unsupervised learning algo-
rithms to the nature of the inputs. We will focus on the SRBM network because they rely on RBMs,
which are less simple to work with and adapt to the sorts of visible data we want to model. With
the binary units introduced for RBMs and DBNs in Hinton et al. (2006) one can “cheat” and handle
continuous-valued inputs by scaling them to the [0,1] interval and considering each input contin-
uous value as the probability for a binary random variable to take the value 1. This has worked
well for pixel gray levels, but it may be inappropriate for other kinds of input variables. Previ-
ous work on continuous-valued input in RBMs include Chen and Murray (2003), in which noise is
added to sigmoidal units, and the RBM forms a special form of diffusion network (Movellan et al.,
2002). Welling et al. (2005) also show how to derive RBMs from arbitrary choices of exponential
distributions for the visible and hidden layers of an RBM. We show here simple extensions of the
RBM framework in which only the energy function and the allowed range of values are changed.
As can be seen in Figures 11 and 12 and in the experiment of Section 7.3, such extensions have a
very significant impact on nature of the solution learned for the RBM’s weights and hence on the
initialization of a deep network and its performance.

7.1 Linear Energy: Exponential or Truncated Exponential

Consider a unit with value xk in an RBM, connected to units h of the layer above. p(xk|h) can
be obtained by considering the terms in the energy function that contain xk. These terms can be
grouped in xk(WT

·kh + ck) when the energy function is linear in xk (as in Equation 7, appendix B),
where W·k is the k-th column of W. If we allow xk to take any value in interval I, the conditional
density of xk becomes

p(xk|h) =
exk(WT

· jh+ck)1xk∈I
R

v ev(WT

· jh+ck)1v∈Idv
.

When I = [0,∞), this is an exponential density with parameter a(h) = WT

· jh + ck, and the nor-

malizing integral, equal to −1
a(h) , only exists if a(h) < 0 ∀h. Computing the density, the expected

value (−1
a(h)) and sampling would all be easy, but since the density does not always exist it seems

more appropriate to let I be a closed interval, yielding a truncated exponential density. For sim-
plicity we consider the case I = [0,1] here, for which the normalizing integral, which always exists,
is

e−a(h)−1
a(h)

.

The conditional expectation of xk given h is interesting because it has a sigmoidal-like saturating
and monotone non-linearity:

E [xk|h] =
1

1− e−a(h)
−

1
a(h)

.

Note that E [xk|h] does not explode for a(h) near 0, but is instead smooth and in the interval
[0,1]. A sample from the truncated exponential is easily obtained from a uniform sample U , using
the inverse cumulative F−1 of the conditional density p(xk|h):

F−1(U) =
log(1−U× (1− ea(h)))

a(h)
.

21

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: Input weights of a random subset of the hidden units, learned by an RBM with truncated
exponential visible units, when trained on samples from the MNIST data set. The top
and bottom images correspond to the same filters but with different color scale. On the
top, the display setup is the same as for Figures 6 and 7 and, on the bottom, a black and
white pixel correspond to weights smaller than −30 and larger than 30 respectively.

The contrastive divergence updates have the same form as for binary units of Equation 11,
since the updates only depend on the derivative of the energy with respect to the parameters. Only
sampling is changed, according to the unit’s conditional density. Figure 11 shows the filters learned
by an RBM with truncated exponential visible units, when trained on MNIST samples. Note how
these are strikingly different from those obtained with binomial units.

22

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

7.2 Quadratic Energy: Gaussian Units

To obtain Gaussian-distributed units, one only needs to add quadratic terms to the energy. Adding
∑k d2

k x2
k gives rise to a diagonal covariance matrix between units of the same layer, where xk is the

continuous value of a Gaussian unit and d2
k is a positive parameter that is equal to the inverse of the

variance of xk. In this case the variance is unconditional, whereas the mean depends on the inputs
of the unit: for a visible unit xk with hidden layer h and inverse variance d2

k ,

E [xk|h] =
a(h)

2d2
k

.

The contrastive divergence updates are easily obtained by computing the derivative of the energy
with respect to the parameters. For the parameters in the linear terms of the energy function b, c
and W, the derivatives have the same form as for the case of binary units. For quadratic parameter
dk > 0, the derivative is simply 2dkx2

k . Figure 12 shows the filters learned by an RBM with Gaussian
visible units, when trained on MNIST samples.

Gaussian units were previously used as hidden units of an RBM (with multinomial inputs)
applied to an information retrieval task (Welling et al., 2005). That same paper also shows how
to generalize RBMs to units whose marginal distribution is from any member of the exponential
family.

7.3 Impact on Classification Performance

In order to assess the impact of the choice for the visible layer distribution on the ultimate perfor-
mance of an SRBM network, we trained and compared different deep networks whose first level
RBM had binary, truncated exponential or Gaussian input units. These networks all had 3 hidden
layers, with 2000 hidden units for each of these layers. The hyperparameters that were optimized
are the unsupervised learning rates and number of updates as well as the fine-tuning learning rate.
Because the assumption of binary inputs is not unreasonable for the MNIST images, we conducted
this experiment on a modified and more challenging version of the data set where the background
contains patches of images downloaded from the Internet. Samples from this data set are shown in
Figure 13. This data set is part of a benchmark6 designed by Larochelle et al. (2007). The results
are given in Table 5, where we can see that the choice of the input distribution has a significant
impact on the classification performance of the deep network. As a comparison, a support vector
machine with Gaussian kernel achieves 22.61% error on this data set (Larochelle et al., 2007). Other
experimental results with truncated exponential and Gaussian input units are found in Bengio et al.
(2007).

8. Generating vs Encoding

Though the SRBM and SAA networks are similar in their motivation, there is a fundamental dif-
ference in the type of unsupervised learning used during training. Indeed, the RBM is based on
the learning algorithm of a generative model, which is trained to be able to generate data similar
to those found in the training set. On the other hand, the autoassociator is based on the learning
algorithm of an encoding model which tries to learn a new representation or code from which the
input can be reconstructed without too much loss of information.

6. The benchmark’s data sets can be downloaded from http://www.iro.umontreal.ca/˜lisa/icml2007.

23

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: Input weights of a random subset of the hidden units, learned by an RBM with Gaussian
visible units, when trained on samples from the MNIST data set. The top and bottom
images correspond to the same filters but with different color scale. On top, the display
setup is the same as for Figures 6 and 7 and, on the bottom, a black and white pixel
correspond to weights smaller than −10 and larger than 10 respectively.

24

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13: Samples from the modified MNIST digit recognition data set with a background con-
taining image patches. Here, a black pixel corresponds to an input value of 0 and a white
pixel corresponds to 1 (the inputs are scaled between 0 and 1).

SRBM input type Train. Valid. Test

Bernoulli 10.50% 18.10% 20.29%
Gaussian 0% 20.50% 21.36%
Truncated exponential 0% 14.30% 14.34%

Table 5: Classification error on MNIST with background containing patches of images (see Fig-
ure 13) on the training, validation, and test sets, for different distributions of the input
layer for the bottom RBM. The best hyperparameters were selected according to the vali-
dation error.

It is not clear which of the two approaches (generating or encoding) is the most appropriate. The
advantage of a generative model is that the assumptions that are made are usually clear. However,
it is possible that the problem it is trying to solve is harder than it needs to be, since ultimately we
are only interested in coming up with good representations or features of the input. For instance, if
one is interested in finding appropriate clusters in a very high dimensional space, using a mixture of
Gaussians with full covariance matrix can quickly become too computationally intensive, whereas
using the simple k-means algorithm might do a good enough job. As for encoding models, they
do not require to be interpretable as a generative model and they can be more flexible because any
parametric or non-parametric form can be chosen for the encoder and decoder, as long as they are
differentiable.

25

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Another interesting connection between reconstruction error in autoassociators and CD in RBMs
was mentioned earlier: the reconstruction error can be seen as an estimator of the log-likelihood
gradient of the RBM which has more bias but less variance than the CD update rule (Bengio and
Delalleau, 2007). In that paper it is shown how to write the RBM log-likelihood gradient as a series
expansion where each term is associated with a sample of the contrastive divergence Gibbs chain.
Because the terms become smaller and converge to zero, this justifies taking a truncation of the
series as an estimator of the gradient. The reconstruction error gradient is a mean-field (i.e., biased)
approximation of the first term, whereas CD-1 is a sampling (i.e., high-variance) approximation of
the first two terms, and similarly CD-k involves the first 2k terms.

This suggests combining the reconstruction error and contrastive divergence for training RBMs.
During unsupervised pre-training, we can use the updates given by both algorithms and combine
them by associating a coefficient to each of them. This is actually equivalent to applying the updates
one after the other but using different learning rates for both. We tested this idea in the MNIST data
set split of Section 6.1, where we had to validate separately the learning rates for the RBM and
the autoassociator updates. This combination improved on the results of the SRBM and the SAA
networks, obtaining 1.02% and 1.09% on the validation and test set respectively. This improvement
was confirmed in a more complete experiment on 6 other folds with mutually exclusive test sets
of 10 000 examples, where the mixed gradient variant gave on average a statistically significant
improvement of 0.1% on a SRBM network. One possible explanation for the improvement brought
by this combination is that it uses a better trade-off between bias and variance in estimating the
log-likelihood gradient.

Another deterministic alternative to CD is mean-field CD (MF-CD) of Welling and Hinton
(2002), and is equivalent to the pseudocode code in Appendix B, with the statements h0 ∼ p(h|x0)
and v1 ∼ p(x|h0) changed to h0← sigm(b+Wv0) and v1← sigm(c+WTh0) respectively. MF-CD
can be used to test another way to change the bias/variance trade-off, either as a gradient estimator
alone, or by combining it to the CD-1 gradient estimate (in the same way we combined the au-
toassociator gradient with CD-1, previous paragraph). On the MNIST split of Section 6.1, SRBM
networks with MF-CD and combined CD-1/MF-CD7 achieved 1.26% and 1.17% on the test set
respectively. The improvement brought by combining MF-CD with CD-1 was not found to be
statistically significant, based on similar experiments on the 6 other folds.

This suggests that something else than the bias/variance trade-off is at play in the improvements
observed when combining CD-1 with the autoassociator gradient. A hypothesis that should be ex-
plored is that whereas there is no guarantee that an RBM will encode in its hidden representation
all the information in the input vector, an autoassociator is trying to achieve this. In fact an RBM
trained by maximum likelihood would be glad to completely ignore the inputs if these were inde-
pendent of each other. Minimizing the reconstruction error would prevent this, and may be useful in
the context where the representations are later used for supervised classification (which is the case
here).

9. Continuous Training of all Layers of a Deep Network

The layer-wise training algorithm for networks of depth l actually has l +1 separate training phases:
first the l phases for the unsupervised training of each layer, and then the final supervised fine-tuning
phase to adjust all the parameters simultaneously. One element that we would like to dispense with

7. The weight of the CD-1 and MF-CD gradient estimates was considered as a hyperparameter.

26

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

is having to decide the number of unsupervised training iterations for each layer before starting the
fine-tuning. One possibility is then to execute all phases simultaneously, that is, train all layers
based on both their greedy unsupervised and global supervised gradients. The advantage is that we
can now have a single stopping criterion (for the whole network). However, computation time is
slightly greater, since we do more computations initially on the upper layers, which might be wasted
before the lower layers converge to a decent representation, but time is saved on optimizing hyper-
parameters. When this continuous training variant is used on the MNIST data set with the same
experimental setup as in Section 6.1, we reach 1.6% and 1.5% error on the test set respectively for
the SRBM network and the SAA network, so unsupervised learning still brings better generaliza-
tion in this setting. This variant may be more appealing for on-line training on very large data sets,
where one would never cycle back on the training data.

However, there seems to be a price to pay in terms of classification error, with this online variant.
In order to investigate what could be the cause, we experimented with a 2-phase algorithm designed
to shed some light on the contribution of different factors to this decrease. In the first phase, all
layers of networks were simultaneously trained according to their unsupervised criterion without
fine-tuning. The output layer is still trained according to the supervised criterion, however, unlike
in Section 6.1, the gradient is not backpropagated into the rest of the network. This allows us to
monitor the discriminative capacity of the top hidden layer. This first phase also enables us to
verify whether the use of the supervised gradient too early during training explains the decrease in
performance (recall the poor results obtained with purely supervised greedy layer-wise training).
Then, in the second phase, 2 options were considered:

1. fine-tune the whole network according to the supervised criterion and stop layer-wise unsu-
pervised learning;

2. fine-tune the whole network and maintain layer-wise unsupervised learning (as in the previous
experiment).

Figures 14(a) and 15(a) show examples of the progression of the test classification error for such
an experiment with the SRBM and SAA networks respectively. As a baseline for the second phase,
we also give the performance of the networks when unsupervised learning is stopped and only the
parameters of the output layer are trained. These specific curves do not correspond to the best values
of the hyperparameters, but are representative of the global picture we observed on several runs with
different hyperparameter values.

We observe that the best option is to perform fine-tuning without layer-wise unsupervised
learning, even when supervised learning is not introduced at the beginning. Also, though per-
forming unsupervised and supervised learning at the same time outperforms unsupervised learn-
ing without fine-tuning, it appears to yield over-regularized networks, as indicated by the asso-
ciated curves of the training negative log-likelihood of the target classes for both networks (see
Figures 14(b) and 15(b)). Indeed, we see that by maintaining some unsupervised learning, the net-
works are not able to optimize as well their supervised training objective. From other runs with
different learning rates, we have observed that this effect becomes less visible when the supervised
learning rate gets larger, which reduces the relative importance of the unsupervised updates. But
then the unsupervised updates usually bring significant instabilities in the learning process, making
even the training cost oscillate.

Another interesting observation is that, when layer-wise unsupervised learning is performed,
the classification error is less stable in an SRBM network than in an SAA network, as indicated by

27

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

� ��� ����� ����� �������� ���

��� �	�

��� ���

����������� ���������������� !�� ������" � ����# $ ����� ��%

�����������&��� ���������	������ !�� �����'" � ����# $ ����� ��%
�������� ���������	������ !�� ������" � ����# $ ����� ��%
��������&��� ���������	������ !�� ������" � ����# $(����� ��%

(a) SRBM network, test classification error curves

) *�) +�)�) +�*�) ,�)�))�-)

)�- ,

)�- .
/10�2�354�6�7 8�8�9�:�;	<�=�9�> ?�7 ;�9�8�@ 7 :�9�A B <�:�7 :�C
/10�2�354�:�0&6�7 8�8�9�:�;�<�=�9�> ?�7 ;�9�8�@ 7 :�9�A B <�:�7 :�C
2�3�4�6�7 8�8�9�:�;�<�=�9�> ?�7 ;�9�8�@ 7 :�9�A B <�:�7 :�C
2�3�4�:�0&6�7 8�8�9�:�;	<�=�9�> ?�7 ;�9�8�@ 7 :�9�A B <�:�7 :�C

(b) SRBM network, train NLL error curves.

Figure 14: Example of learning curves of the 2-phase experiment of Section 9. During the first
half of training, all hidden layers are trained according to CD and the output layer is
trained according to the supervised objective, for all curves. In the second phase, all
combinations of two possibilities are displayed: CD training is performed at all hidden
layers (“CD”) or not (“No CD”), and all hidden layers are fine-tuned according to the
supervised objective (“hidden supervised fine-tuning”) or not (“no hidden supervised
fine-tuning”).

D E�D F�D�D F�E�D G�D�DD�H D�D

D�H D	E

D�H F�D
I5J�K5KML�N�O P�P�Q�R�S�T�U�Q�V W�O S�Q�P&X O R�Q�Y Z(T�R�O R�[
I5J�K5KML�R�J\N�O P�P�Q�R'S	T�U�Q�V W�O S�Q�P&X O R�Q�Y Z(T�R�O R�[
K5KML�N�O P�P�Q�R�S�T�U�Q�V W�O S�Q�P&X O R�Q�Y Z T�R�O R�[
K5KML�R�J\N�O P�P�Q�R�S�T�U�Q�V W�O S�Q�P&X O R�Q�Y Z(T�R�O R�[

(a) SAA network, test classification error curves

] ^�] _�]�] _�^�] `�]�]]�a]

]�a `

]�a b
c1d�e1eMf�g�h i�i�j�k�l�m�n�j�o p�h l�j�i'q h k�j�r s(m�k�h k�t
c1d�e1eMf�k�dug�h i�i�j�k�l�m�n�j�o p�h l�j�i&q h k�j�r s m�k�h k�t
e1eMf�g�h i�i�j�k�l�m�n�j�o p�h l�j�i'q h k�j�r s(m�k�h k�t
e1eMf�k�dug�h i�i�j�k�l�m�n�j�o p�h l�j�i'q h k�j�r s m�k�h k�t

(b) SAA network, train NLL error curves.

Figure 15: Same as Figure 14, but with autoassociators (“AA”) used for layer-wise unsupervised
learning.

28

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

the dented learning curves in Figure 14(b), whereas the curves in Figure 15(b) are smoother. This
may be related to the better performance of the SAA network (1.5%) versus the SRBM network
(1.6%) when combining unsupervised and supervised gradients, in the experiment reported at the
beginning of this section. Autoassociator learning might hence be more appropriate here, possibly
because its training objective, that is, the discovery of a representation that preserves the information
in the input, is more compatible with the supervised training objective, which asks that the network
discovers a representation that is predictive of the input’s class. This hypothesis is related to the one
presented at the end of Section 8 regarding the apparent improvement brought by minimizing the
reconstruction error in addition to CD-1 updates.

These experiments show that one can eliminate the multiple unsupervised phases: each layer
can be pre-trained in a way that simply ignores what the layer above are doing. However, it appears
that a final phase involving only supervised gradient yields the best performance. A plausible ex-
planation of these results, and in particular the quick improvement when the unsupervised updates
are removed, is that the unsupervised pre-training brings the parameters near a good solution for the
supervised criterion, but far enough from that solution to yield a significantly higher classification
error. Note that in a setting where there is little labeled data but a lot of unlabelled examples, the
additional regularization introduced by maintaining some unsupervised learning might be beneficial
(Salakhutdinov and Hinton, 2007b).

10. Conclusion

In this paper, we discussed in detail three principles for training deep neural networks, which are
(1) pre-training one layer at a time in a greedy way (2) using unsupervised learning at each layer
in a way that preserves information from the input and disentangles factors of variation and (3)
fine-tuning the whole network with respect to the ultimate criterion of interest. We also presented
experimental evidence that supports the claim that they are key ingredients for reaching good re-
sults. Moreover, we presented a series of experimental results that shed some light on many aspects
of deep networks: confirming that the unsupervised procedure helps the optimization of the deep
architecture, while initializing the parameters in a region near which a good solution of the super-
vised task can be found. Our experiments showed cases where greater depth clearly helps, but too
much depth could be slightly detrimental. We found that CD-1 can be improved by combining it
with the gradient of reconstruction error, and that this is not just due to the use of a lower-variance
update. We showed that the choice of input distribution in RBMs could be important for continuous-
valued input and yielded different types of filters at the first layer. Finally we studied variants more
amenable to online learning in which we show that if different training phases can be combined, the
best results were obtained with a final fine-tuning phase involving only the supervised gradient.

There are many questions and issues that remain to be addressed and that we intend to in-
vestigate in future work. As pointed out in Section 8, the most successful unsupervised learning
approach seems to fall in between generative and encoding approaches. This raises questions about
what are the properties of a learning algorithm that learns good representations for deep networks.
Finding good answers to these questions would have a direct positive impact on the performance of
deep networks. Finally, better model selection techniques that would permit to reduce the number
of hyperparameters would be beneficial and will need to be developed for deep network learning
algorithms to become easier to use.

29

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Acknowledgments

The author are particularly grateful for the inspiration from and constructive discussions with Dan
Popovici, Aaron Courville, Olivier Delalleau, James Bergstra, and Dumitru Erhan. The authors also
want to thank the editor and reviewers for their helpful comments and suggestions. This research
was performed thanks to funding from NSERC, MITACS, and the Canada Research Chairs.

Appendix A. Pseudocode for Greedy Layer-Wise Training Paradigm

Input: training set D = {(xt ,yt)}
T
t=1, pre-training learning rate εpre-train and fine-tuning learning

rate εfine-tune

Initialize weights Wi
jk ∼U(−a−0.5,a−0.5) with a = max(|ĥi−1|, |ĥi|) and set biases bi to 0

% Pre-training phase
for i ∈ {1, . . . , l} do

while Pre-training stopping criterion is not met do
Pick input example xt from training set
ĥ0(xt)← xt

for j ∈ {1, . . . , i−1} do
a j(xt) = b j +W jĥ j−1(xt)
ĥ j(xt) = sigm

(
a j(xt)

)

end for
Using ĥi−1(xt) as input example, update weights Wi and biases bi−1, bi with learning rate
εpre-train according to a layer-wise unsupervised criterion (see pseudocodes in appendices B
and C)

end while
end for

% Fine-tuning phase
while Fine-tuning stopping criterion is not met do

Pick input example (xt ,yt) from training set

% Forward propagation
ĥ0(xt)← xt

for i ∈ {1, . . . , l} do
ai(xt) = bi +Wiĥi−1(xt)
ĥi(xt) = sigm

(
ai(xt)

)

end for
al+1(xt) = bl+1 +Wl+1ĥl(xt)
o(xt) = ĥl+1(xt) = softmax

(
al+1(xt)

)

% Backward gradient propagation and parameter update
∂ logoyt (xt)

∂al+1
j (xt)

← 1yt= j−o j(xt) for j ∈ {1, . . . ,K}

30

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

bl+1← bl+1 + εfine-tune
∂ logoyt (xt)

∂al+1(xt)

Wl+1←Wl+1 + εfine-tune
∂ logoyt (xt)

∂al+1(xt)
ĥl(xt)

T

for i ∈ {1, . . . , l}, in decreasing order do
∂ logoyt (xt)

∂ĥi(xt)
←
(
Wi+1

)T ∂ logoyt (xt)

∂ai+1(xt)

∂ logoyt (xt)

∂ai
j(xt)

←
∂ logoyt (xt)

∂ĥi
j(xt)

ĥi
j(xt)

(
1− ĥi

j(xt)
)

for j ∈ {1, . . . , |ĥi|}

bi← bi + εfine-tune
∂ logoyt (xt)

∂ai

Wi←Wi + εfine-tune
∂ logoyt (xt)

∂ai ĥi−1(xt)
T

end for
end while

In the first step of the gradient computation, one has to be careful to compute the gradient
of the cost with respect to al+1(xt) at once, in order not to lose numerical precision during the

computation. In particular, computing ∂ logoyt (xt)
∂o(xt)

first, then ∂o(xt)
∂al+1(xt)

and applying chain-rule, leads to
numerical instability and sometimes parameter value explosion (NaN).

Appendix B. Restricted Boltzmann Machines and Deep Belief Networks

In this section, we give a brief overview of restricted Boltzmann machines and deep belief networks.

B.1 Restricted Boltzmann Machine

A restricted Boltzmann machine is an energy-based generative model defined over a visible layer
v (sometimes called input) and a hidden layer h (sometimes called hidden factors or representa-
tion). Given an energy function energy(v,h) on the whole set of visible and hidden units, the joint
probability is given by

p(v,h) =
e−energy(v,h)

Z
(6)

where Z ensures that p(v,h) is a valid distribution and sums to one. See Figure 3 for an illustration
of an RBM.

Typically we take hi ∈ {0,1}, but other choices are possible. For now, we consider only binary
units, that is, vi ∈ {0,1} (the continuous case will be discussed in Section 7), where the energy
function has the form

energy(v,h) =−hTWv− cTv−bTh =−∑
k

ckvk−∑
j

b jh j−∑
jk

Wjkvkh j . (7)

When considering the marginal distribution over v, we obtain a mixture distribution

p(v) = ∑
h

p(v,h) = ∑
h

p(v|h)p(h)

with a number of parameters linear in the number of hidden units H, while having a number of
components exponential in H. This is because h can take as many as 2H possible values. The 2H

distributions p(v|h) will in general be different, but they are tied. Though computing exactly the
marginal p(v) for large values of H is impractical, a good estimator of the log-likelihood gradient

31

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

have been found with the contrastive divergence algorithm described in the next section. An impor-
tant property of RBMs is that the posterior distribution over one layer given the other is tractable
and fast to compute, as opposed to mixture models with very many components in general. Indeed
one can show that

p(v|h) = ∏
k

p(vk|h) where p(vk = 1|h) = sigm(ck +∑
j

Wjkh j) , (8)

p(h|v) = ∏
j

p(h j|v) where p(h j = 1|v) = sigm(b j +∑
k

Wjkvk) . (9)

Because of the particular parametrization of RBMs, inference of the “hidden factors” h given the
observed input vector v is very easy because those factors are conditionally independent given v. On
the other hand, unlike in many factor models (such as ICA Jutten and Herault, 1991; Comon, 1994;
Bell and Sejnowski, 1995 and sigmoidal belief networks Dayan et al., 1995; Hinton et al., 1995;
Saul et al., 1996), these factors are generally not marginally independent (when we integrate v out).
Notice the similarity between Equations 9 and 1, which makes it possible to relate the weights and
biases of an RBM with those of a deep neural network.

B.2 Learning in a Restricted Boltzmann Machine

To train an RBM, we would like to compute the gradient of the negative log-likelihood of the data
with respect to the RBM’s parameters. However, given an input example v0, the gradient with
respect to a parameter θ in an energy-based model

∂
∂θ

(− log p(v0)) = Ep(h|v0)

[
∂energy(v0,h)

∂θ

]
−Ep(v,h)

[
∂energy(v,h)

∂θ

]
(10)

necessitates a sum over all possible assignments for h (first expectation of Equation 10) and another
sum over all assignments for v and h (second expectation). The first expectation is not problematic
in an RBM because the posterior p(h|v0) and ∂energy(v0,h)

∂θ factorize. However, the second expectation
requires a prohibitive exponential sum over the possible configurations for v or h.

Fortunately, there exists an approximation for this gradient given by the contrastive divergence
(CD) algorithm (Hinton, 2002), which has been shown to work well empirically (Carreira-Perpiñan
and Hinton, 2005). There are two key elements in this approximation. First, consider that in order
to estimate the second term of Equation 10, we could replace the expectation by a unique evaluation
of the gradient ∂energy(v,h)

∂θ at a particular pair of values (v,h). This pair should ideally be sampled
from the distribution p(v,h), which would make the estimation of the gradient unbiased. However,
sampling exactly from an RBM distribution is not as easy as in a directed graphical model. Instead,
we have to rely on sampling methods such as Markov Chain Monte Carlo methods. For an RBM,
we can use Gibbs sampling based on the conditional distributions of Equations 8 and 9, but this
method can be costly if the Markov chain mixes slowly. So the second key idea is to run only a few
iterations of Gibbs sampling and use the data sample v0 as the initial state for the chain at the visible
layer. It turns out that applying only one iteration of the Markov chain works well in practice. This
corresponds to the following sampling procedure:

v0
p(h0|v0)
−→ h0

p(v1|h0)
−→ v1

p(h1|x1)
−→ h1

32

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

where
p(hi|vi)
−→ and

p(vi+1|hi)
−→ represent the operations of sampling from p(hi|vi) and p(vi+1|hi) respec-

tively. Estimation of the gradient using the above sampling procedure is noted CD-1, with CD-k
referring to the contrastive divergence algorithm, performing k iterations of the Markov chain up
to vk. Training with CD-k has been shown to empirically approximate well training with the exact
log-likelihood gradient (Carreira-Perpiñan and Hinton, 2005). Furthermore, it can be shown that the
CD-k update is an unbiased estimator of the truncation of a series expansion of the log-likelihood
gradient (Bengio and Delalleau, 2007), where the truncated part of the series converges to 0 as k
increases.

Now let us consider the estimation of the gradient on a weight W jk. We have

∂energy(v,h)

∂Wjk
=−h jvk

which means that the CD-1 estimate of the gradient becomes

−Ep(h|v0) [h jv0k]+Ep(h|v1) [h1 jv1k] =−p(h j|v0)v0k + p(h j|v1)v1k . (11)

This is similar to what was presented in Hinton et al. (2006) except that we clarify here that we take
the expected value of h given v instead of averaging over samples. These estimators have the same
expected value because

Ep(v,h) [h jvk] = Ep(v)

[
Ep(h|v) [h jvk]

]
= Ep(v) [p(h j|v)vk] .

Using p(h|vk) instead of hk is also what is found in the Matlab code distributed with Hinton and
Salakhutdinov (2006). Note that it is still necessary to sample h0 ∼ p(h|v0) in order to sample v1,
but it is not necessary to sample h1. The above gradient estimator can then be used to perform
stochastic gradient descent by iterating through all vectors v0 of the training set and performing a
parameter update using that gradient estimator in an on-line fashion. Gradient estimators for the
biases bk and c j can as easily be derived from Equation 10.

Notice also that, even if v0 is not binary, the formula for the CD-1 estimate of the gradient
does not change and is still computed essentially in the same way: only the sampling procedure for
p(v|h) changes (see Section 7 for more details about dealing with continuous-valued inputs). The
CD-1 training update for a given training input is detailed by the pseudocode in the next section.

In our implementation of the greedy layer-wise initialization phase, we use the deterministic
sigmoidal outputs of the previous level as training vector for the next level RBM. By interpreting
these real-valued components as probabilities, learning such a distribution for binary inputs can be
seen as a crude “mean-field” way of dealing with probabilistic binary inputs (instead of summing
or sampling across input configurations).

B.3 Pseudocode for Contrastive Divergence (CD-1) Training Update

Input: training input x, RBM weights Wi and biases bi−1,bi and learning rate ε
Notation: a∼ p(·) means set a equal to a random sample from p(·)

% Set RBM parameters
W←Wi, b← bi, c← bi−1

33

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

% Positive phase
v0← x
ĥ0← sigm(b+Wv0)

% Negative phase
h0 ∼ p(h|v0) according to Equation 9
v1 ∼ p(v|h0) according to Equation 8
ĥ1← sigm(b+Wv1)

% Update

Wi←Wi + ε
(

ĥ0
(
v0
)T
− ĥ1

(
v1
)T)

bi← bi + ε
(

ĥ0− ĥ1
)

bi−1← bi−1 + ε
(
v0−v1

)

B.4 Deep Belief Network

We wish to make a quick remark on the distinction between the SRBM network and the more widely
known deep belief network (DBN) (Hinton et al., 2006), which is not a feed-forward neural network
but a multi-layer generative model. The SRBM network was initially derived (Hinton et al., 2006)
from the DBN, for which stacking RBMs also provides a good initialization.

A DBN is a generative model with several layers of stochastic units. It actually corresponds to
a sigmoid belief network (Neal, 1992) of l− 1 hidden layers, where the prior over its top hidden
layer hl−1 (second factor of Equation 12) is an RBM, which itself has a hidden layer hl . More
precisely, it defines a distribution over an input layer x and l layers of binary stochastic units hi as
follows:

p(x,h1, . . . ,hl) =

(
l−1

∏
i=1

p(hi−1|hi)

)
p(hl−1,hl) (12)

where hidden units are conditionally independent given the units in the above layer

p(hi−1|hi) = ∏
k

p(hi−1
k |h

i) .

To process binary values, Bernoulli layers can be used, which correspond to equations

p(hi−1
k = 1|hi) = sigm

(
bi−1

k +∑
j

W i
jkhi

j

)

where h0 = x is the input. We also have

p(hl−1,hl) ∝ e∑ j cl−1
j hl−1

j +∑k bl
khl

k+∑ jk W l
jkhl−1

j hl
k (13)

for the top RBM. Note that Equation 13 can be obtained from Equations 6 and 7, by naming v as
hl−1, and h as hl .

We emphasize the distinction between hi and ĥi(x), where the former is a random variable and
the latter is the representation of an input x at the i-th hidden layer of the network obtained from the
repeated application of Equation 1.

34

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

To train such a generative model, Hinton et al. (2006) proposed the pre-training phase of the
SRBM network. When all layers of a DBN have the same size, it was actually shown that this
initialization improves a lower bound on the likelihood of the data as the DBN is made deeper. After
this pre-training phase is over, Hinton et al. (2006) propose a variant of the Wake-Sleep algorithm
for sigmoid belief networks (Hinton et al., 1995) to fine-tune the generative model.

By noticing the similarity between the process of approximating the posterior p(hi|x) in a deep
belief network and computing the hidden layer representation of an input x in a deep network,
Hinton (2006) then proposed the use of the greedy layer-wise pre-training procedure for deep belief
networks to initialize a deep feed-forward neural network, which corresponds to the SRBM network
described in this paper.

Appendix C. Pseudocode of Autoassociator Training Update

Input: training input x, autoassociator weights Wi and biases bi−1,bi and learning rate ε

% Set autoassociator parameters
W←Wi, b← bi, c← bi−1

% Forward propagation
a(x)← b+Wx
h(x)← sigm(a(x))
â(x)← c+WTh(x)
x̂← sigm(â(x))

% Backward gradient propagation
∂C(x̂,x)
∂â(x)

← x̂−x
∂C(x̂,x)

∂ĥ(x)
←W ∂C(x̂,x)

∂â(x)

∂C(x̂,x)
∂a j(x) ←

∂C(x̂,x)

∂ĥ j(x)
ĥ j(x)

(
1− ĥ j(x)

)
for j ∈ {1, . . . , |ĥ(x)|}

% Update

Wi←Wi− ε
(

∂C(x̂,x)
∂a(x) xT + ĥ(x) ∂C(x̂,x)

∂â(x)

T

)

bi← bi− ε ∂C(x̂,x)
∂a(x)

bi−1← bi−1− ε ∂C(x̂,x)
∂â(x)

References

Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

Peter Auer, Mark Herbster, and Manfred K. Warmuth. Exponentially many local minima for single
neurons. In M. Mozer, D. S. Touretzky, and M. Perrone, editors, Advances in Neural Information
Processing System 8, pages 315–322. MIT Press, Cambridge, MA, 1996.

35

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2:53–58, 1989.

Anthony J. Bell and Terrence J. Sejnowski. An information maximisation approach to blind sepa-
ration and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

Yoshua Bengio. Learning deep architectures for AI. Technical Report 1312, Université de Montréal,
dept. IRO, 2007.

Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive divergence. Technical
Report 1311, Dept. IRO, Université de Montréal, 2007.

Yoshua Bengio and Yann Le Cun. Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of highly variable functions
for local kernel machines. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 107–114. MIT Press, Cambridge, MA, 2006.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 153–160. MIT Press, 2007.

Guillaume Bouchard and Bill Triggs. The tradeoff between generative and discriminative classifiers.
In IASC International Symposium on Computational Statistics (COMPSTAT), pages 721–728,
Prague, August 2004. URL http://lear.inrialpes.fr/pubs/2004/BT04.

Miguel A. Carreira-Perpiñan and Geoffrey E. Hinton. On contrastive divergence learning. In
Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth International Work-
shop on Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, pages
33–40. Society for Artificial Intelligence and Statistics, 2005.

Hsin Chen and Alan F. Murray. A continuous restricted Boltzmann machine with an implementable
training algorithm. IEE Proceedings of Vision, Image and Signal Processing, 150(3):153–158,
2003.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the Twenty-fifth International Con-
ference on Machine Learning (ICML 2008), pages 160–167, 2008. URL http://www.kyb.
tuebingen.mpg.de/bs/people/weston/papers/unified\-nlp.pdf.

Pierre Comon. Independent component analysis - a new concept? Signal Processing, 36:287–314,
1994.

Garrison W. Cottrell, Paul Munro, and David Zipser. Learning internal representations from gray-
scale images: An example of extensional programming. In Ninth Annual Conference of the
Cognitive Science Society, pages 462–473, Seattle 1987, 1987. Lawrence Erlbaum, Hillsdale.

Peter Dayan, Geoffrey Hinton, Radford Neal, and Rich Zemel. The Helmholtz machine. Neural
Computation, 7:889–904, 1995.

36

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

David DeMers and Garrison W. Cottrell. Non-linear dimensionality reduction. In C.L. Giles, S.J.
Hanson, and J.D. Cowan, editors, Advances in Neural Information Processing Systems 5, pages
580–587, San Mateo CA, 1993. Morgan Kaufmann.

Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In D.S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 524–532, Denver,
CO, 1990. Morgan Kaufmann, San Mateo.

Ildiko E. Frank and Jerome H. Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–148, 1993.

Brendan J. Frey. Graphical models for machine learning and digital communication. MIT Press,
1998.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of
multilayer perceptrons. Neural Networks, 13(3):317–327, 2000.

Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, Urs Muller, and Yann LeCun. Deep
belief net learning in a long-range vision system for autonomous off-road driving. In Proc.
Intelligent Robots and Systems (IROS’08), 2008. URL http://www.cs.nyu.edu/˜raia/docs/
iros08-farod.pdf.

Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th
annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California, 1986. ACM
Press.

Johan Hastad and M. Goldmann. On the power of small-depth threshold circuits. Computational
Complexity, 1:113–129, 1991.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14:1771–1800, 2002.

Geoffrey E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40:185–234, 1989.

Geoffrey E. Hinton. To recognize shapes, first learn to generate images. Technical Report UTML
TR 2006-003, University of Toronto, 2006.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, July 2006.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-sleep algorithm
for unsupervised neural networks. Science, 268:1558–1161, 1995.

Goeffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Alex Holub and Pietro Perona. A discriminative framework for modelling object classes. In CVPR
’05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05) - Volume 1, pages 664–671, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2372-2. doi: http://dx.doi.org/10.1109/CVPR.2005.25.

37

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2:359–366, 1989.

Tommi S. Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers.
In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, Advances in Neural Information Processing
Systems 11. MIT Press, Cambridge, MA, 1999.

Tony Jebara. Machine Learning: Discriminative and Generative (The Kluwer International Se-
ries in Engineering and Computer Science). Springer, December 2003. ISBN 1402076479.
URL http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/
1402076479.

Christian Jutten and Jeanny Herault. Blind separation of sources, part I: an adaptive algorithm based
on neuromimetic architecture. Signal Processing, 24:1–10, 1991.

Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted boltzmann ma-
chines. In Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Annual Interna-
tional Conference on Machine Learning (ICML 2008), pages 536–543. Omnipress, 2008.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An em-
pirical evaluation of deep architectures on problems with many factors of variation. In Zoubin
Ghahramani, editor, Twenty-fourth International Conference on Machine Learning (ICML 2007),
pages 473–480. Omnipress, 2007. URL http://www.machinelearning.org/proceedings/
icml2007/papers/331.pdf.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of generative
and discriminative models. In CVPR ’06: Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 87–94, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2597-0. doi: http://dx.doi.org/10.1109/CVPR.
2006.227.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Régis Lengellé and Thierry Denoeux. Training MLPs layer by layer using an objective function for
internal representations. Neural Networks, 9:83–97, 1996.

Javier R. Movellan, Paul Mineiro, and R. J. Williams. A monte-carlo EM approach for partially
observable diffusion processes: theory and applications to neural networks. Neural Computation,
14:1501–1544, 2002.

Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71–113,
1992.

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In NIPS, pages 841–848, 2001.

Simon Osindero and Geoffrey E. Hinton. Modeling image patches with a directed hierarchy of
markov random field. In Neural Information Processing Systems Conference (NIPS) 20, 2008.

38

EXPLORING STRATEGIES FOR TRAINING DEEP NEURAL NETWORKS

Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In Proc. Computer Vision
and Pattern Recognition Conference (CVPR’07). IEEE Press, 2007a.

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning
of sparse representations with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007b.

Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief
networks. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Infor-
mation Processing Systems 20. MIT Press, Cambridge, MA, 2008. URL http://www.cs.nyu.
edu/˜ranzato/publications/ranzato-nips07.pdf.

Ruslan Salakhutdinov and Geoffrey Hinton. Using deep belief nets to learn covariance kernels
for gaussian processes. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008. URL http:
//www.csri.utoronto.ca/˜hinton/absps/dbngp.pdf.

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. In Proceedings of the 2007 Work-
shop on Information Retrieval and applications of Graphical Models (SIGIR 2007), Amsterdam,
2007a. Elsevier.

Ruslan Salakhutdinov and Geoffrey Hinton. Learning a nonlinear embedding by preserving class
neighbourhood structure. In Proceedings of AISTATS 2007, San Juan, Porto Rico, 2007b. Omni-
press.

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks. In
Proceedings of the International Conference on Machine Learning, volume 25, 2008.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for col-
laborative filtering. In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pages 791–798, New York, NY, USA, 2007. ACM.

Lawrence K. Saul, Tommi Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid belief
networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

Eric Saund. Dimensionality-reduction using connectionist networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(3):304–314, 1989.

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1,
chapter 6, pages 194–281. MIT Press, Cambridge, 1986.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Andrew McCallum and Sam
Roweis, editors, Proceedings of the 25th Annual International Conference on Machine Learning
(ICML 2008), pages 1096–1103. Omnipress, 2008. URL http://icml2008.cs.helsinki.fi/
papers/592.pdf.

Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons, 1987.

39

LAROCHELLE, BENGIO, LOURADOUR AND LAMBLIN

Max Welling and Geoffrey E. Hinton. A new learning algorithm for mean field boltzmann machines.
In ICANN ’02: Proceedings of the International Conference on Artificial Neural Networks, pages
351–357, London, UK, 2002. Springer-Verlag. ISBN 3-540-44074-7.

Max Welling, Michal Rosen-Zvi, and Geoffrey E. Hinton. Exponential family harmoniums with an
application to information retrieval. In L.K. Saul, Y. Weiss, and L. Bottou, editors, Advances in
Neural Information Processing Systems 17. MIT Press, 2005.

Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised em-
bedding. In Proceedings of the Twenty-fifth International Conference on Machine Learn-
ing (ICML 2008), 2008. URL http://www.kyb.tuebingen.mpg.de/bs/people/weston/
papers/deep-embed.pdf.

Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

40

