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Abstract

We claim and present arguments to the effect that a large class of manifold

learning algorithms that are essentially local and can be framed as kernel

learning algorithms will suffer from the curse of dimensionality. This ob-

servation invites an exploration of non-local manifold learning algorithms,

which attempt to discover shared structure in the tangent planes at different

positions. A criterion for such an algorithm is proposed and experiments
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estimating a tangent plane prediction function are presented, showing its

advantages with respect to local manifold learning algorithms: it is able to

generalize very far from training data (on learning handwritten character

image rotations), where local non-parametric methods fail.

1 Introduction

A central issue in order to obtain generalization is how information from the train-

ing examples are used to make predictions about new examples. In non-parametric

models there are no strong prior assumptions about the structure of the under-

lying generating distribution, and this might make it difficult to generalize far

from the training examples, as illustrated by the curse of dimensionality. There

has been in recent years a lot of work on unsupervised learning based on char-

acterizing a possibly non-linear manifold near which the data would lie, such as

Locally Linear Embedding (LLE) (Roweis & Saul, 2000), Isomap (Tenenbaum, de

Silva, & Langford, 2000), kernel Principal Component Analysis (PCA) (Schölkopf,

Smola, & Müller, 1998), Laplacian Eigenmaps (Belkin & Niyogi, 2003), and Man-

ifold Charting (Brand, 2003). These are all essentially non-parametric methods

that can be shown to be kernel methods with an adaptive kernel (Bengio, De-

lalleau, Le Roux, Paiement, Vincent, & Ouimet, 2004), and which represent the

manifold on the basis of local neighborhood relations. Very often, these relations

are constructed using the nearest neighbors graph (the graph with one vertex per
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observed example, and arcs between near neighbors). The above methods charac-

terize the manifold through an embedding which associates each training example

(an input object) with a low-dimensional coordinate vector (the coordinates on

the manifold). Other closely related methods characterize the manifold as well

as “noise” around it. Most of these methods consider the density as a mixture

of flattened Gaussians, e.g. mixtures of factor analyzers (Ghahramani & Hinton,

1996), Manifold Parzen windows (Vincent & Bengio, 2003), and other Local PCA

models such as mixtures of probabilistic PCA (Tipping & Bishop, 1999). This is

not an exhaustive list, and recent work also combines models through a mixture

density and dimensionality reduction (Teh & Roweis, 2003; Brand, 2003).

In this paper we claim that there is a fundamental weakness with such non-

parametric kernel methods, due to the locality of learning. We show that for

these methods, the definition of the local tangent plane of the manifold at a point

x is based mostly on the near neighbors of x. As a consequence, it is difficult with

such methods to generalize to new combinations of values x that are “far” from

the training examples xi, where being “far” is a notion that should be understood

in the context of several factors: the amount of noise around the manifold (the

examples do not lie exactly on the manifold), the curvature of the manifold, and

the dimensionality of the manifold. For example, if the manifold curves quickly

around x, neighbors need to be closer for a locally linear approximation to be

meaningful. Dimensionality of the manifold compounds that problem because the
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amount of data thus needed will grow exponentially with it. Saying that y is “far”

from x means that y is not well represented by its projection on the tangent plane

at x.

Note that there can be more than one manifold (e.g. in vision, one may imagine a

different manifold for each “class” of object), but the structure of these manifolds

may be related, something that many previous manifold learning methods did not

take advantage of.

In this paper we explore one way to address these problems, based on estimating

the tangent planes of the manifolds as a function F taking x as argument and

computing a prediction of the tangent plane around x. The important point is

that F can be estimated not only from the data around x but from the whole

dataset. Hence if there is a compact way to represent the manifold structure and

if the class from which F is chosen can represent it and if F can be optimized to

learn it, then it can generalize to regions with not enough data to determine the

manifold shape from looking at near neighbors (which may be the case even in

regions where there is data, when the manifold dimension is high, or the manifold

is highly curved, or the data do not lie strickly on the manifold).

We present experiments on a variety of tasks illustrating the weaknesses of the

local manifold learning algorithms. The most striking result is that the non-local

model is able to generalize a notion of rotation learned on one kind of image (digits)

to a very different kind (alphabet characters), i.e. very far from the training data.
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2 Local Manifold Learning

By “local manifold learning”, we mean a method that derives information about

the local structure of the manifold (i.e. implicitly its tangent directions) at x

based mostly on the training examples “around” x. There is a large group of

manifold learning methods (as well as spectral clustering methods) that share

several characteristics, and can be seen as data-dependent kernel PCA (Bengio

et al., 2004). These include LLE (Roweis & Saul, 2000), Isomap (Tenenbaum et al.,

2000), kernel PCA (Schölkopf et al., 1998) and Laplacian Eigenmaps (Belkin &

Niyogi, 2003). The metehods first build a data-dependent Gram matrix M with

n × n entries KD(xi, xj) where D = {x1, . . . , xn} is the training set and KD is

a data-dependent kernel, and compute the eigenvector-eigenvalue pairs {(vk, λk)}

of M . The embedding of the training set is obtained directly from the principal

eigenvectors vk of M (the i-th element of vk gives the k-th coordinate of xi’s

embedding, i.e. ek(xi) = vki, possibly scaled by
√

λk

n
) and the embedding for a

new example can be estimated using the Nyström formula (Bengio et al., 2004):

ek(x) =
1

λk

n
∑

i=1

vkiKD(x, xi) (1)

for the k-th coordinate of x, where λk is the k-th eigenvalue of M (the optional

scaling by
√

λk

n
would also apply). The above equation says that the embedding for

a new example x is a local interpolation of the manifold coordinates of its neighbors
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xi, with interpolating weights given by KD(x,xi)
λk

. To see more clearly how the

tangent plane may depend only on the neighbors of x, consider the relation between

the tangent plane and the embedding function: for any KD, the tangent plane

at x is simply the subspace spanned by the vectors ∂ek(x)
∂x

, as illustrated in

Figure 1. We show below that in the case of very “local” kernels like that of LLE,

spectral clustering with Gaussian kernel, Laplacian Eigenmaps or kernel PCA with

Gaussian kernel, ∂ek(x)
∂x

only depends significantly on the near neighbors of x.

Consider first the simplest case, kernel PCA with a Gaussian kernel: then ∂ek(x)
∂x

can

be closely approximated by a linear combination of the difference vectors (x− xj)

for xj near x. The weights of that combination may depend on the whole data set,

but if the ambient space has many more dimensions then the number of such “near”

neighbors of x, this is a very strong locally determined constraint on the shape of

the manifold. If there are enough examples in a small enough neighborhood around

x then these approaches work well. However, if the dimensionality, curvature and

noise are too large, generalization will be poor, as argued in more detail in the

next subsection.

Let us now consider the case of LLE and show that similar results are obtained. A

kernel consistent with LLE is KLLE(x, xi) being the weight of xi in the reconstruc-

tion of x by its k nearest neighbors (Bengio et al., 2004). This weight is obtained

6



by the following equation (Saul & Roweis, 2002):

KLLE(x, xi) =

∑k
j=1 G−1

ij
∑k

l=1

∑k
m=1 G−1

lm

(2)

with G−1 the inverse of the local Gram matrix G

Glm = (x − xl) · (x − xm)

for all pairs (xl, xm) of k nearest neighbors of x in the training set. Because G−1 =

|G|−1CT with C the cofactor matrix of G, and because |G|−1 at the numerator

and the numerator of cancel, eq. 2 can be rewritten as

KLLE(x, xi) =

∑

j sj

∏

l,m(Glm)tjlm

∑

j uj

∏

l,m(Glm)vjlm

where
∑

j sj

∏

l,m(Glm)tjlm is a polynomial expansion of the cofactor element Cij

(i.e. a determinant), and similary for Clm. and consequently, thanks to the usual

derivation rules, its derivative is a linear combination of derivatives of terms of the

form (Glm)t. But

∂(Glm)t

∂x
=

∂((x − xl) · (x − xm))t

∂x

= t(Glm)t−1(x − xl + x − xm)
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which implies that the derivative of KLLE(x, xi) w.r.t x is in the span of the vectors

(x − xj) with xj one of the k nearest neighbors of x.

The case of Isomap is less intuitively obvious but we show below that it is also

local. Let D(a, b) denote the graph geodesic distance going only through a, b and

points from the training set. As shown in (Bengio et al., 2004), the corresponding

data-dependent kernel can be defined as

KD(x, xi) = −
1

2
(D(x, xi)

2 −
1

n

∑

j

D(x, xj)
2 − D̄i + D̄)

where

D̄i =
1

n

∑

j

D(xi, xj)
2

and

D̄ =
1

n

∑

j

D̄j.

Let N (x, xi) denote the index j of the training set example xj that is the neighbor

of x minimizing ||x − xj|| + D(xj, xi). Then

∂ek(x)

∂x
=

1

λk

∑

i

vki

(

1

n

∑

j

D(x, xj)
(x − xN (x,xj))

||x − xN (x,xj)||
− D(x, xi)

(x − xN (x,xi))

||x − xN (x,xi)||

)

(3)

which is a linear combination of vectors (x−xk), where xk is a neighbor of x. This

clearly shows that the tangent plane at x associated with Isomap is also included

in the subspace spanned by the vectors (x − xk) where xk is a neighbor of x.
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tangent directions

tangent plane

Data on a curved manifold

Figure 1: The tangent plane is spanned by the vectors ∂ek(x)
∂x

, i.e. the directions of

most rapid change of coordinate k when moving along the manifold

There are also a variety of local manifold learning algorithms which can be classi-

fied as “mixtures of pancakes” (Ghahramani & Hinton, 1996; Tipping & Bishop,

1999; Vincent & Bengio, 2003; Teh & Roweis, 2003; Brand, 2003). These are

generally mixtures of Gaussians with a particular covariance structure. When the

covariance matrix is approximated using its principal eigenvectors, this leads to

“Local PCA” types of methods. For these methods the local tangent directions

directly correspond to the principal eigenvectors of the local covariance matrices.

Learning is also local since it is mostly the examples around the Gaussian center

that determine its covariance structure. The problem is not so much due to the

form of the density as a mixture of Gaussians. The problem is that the local pa-
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rameters (e.g. local principal directions) are estimated mostly based on local data.

There is usually a non-local interaction between the different Gaussians, but its

role is mainly of global coordination, e.g. where to set the Gaussian centers to allo-

cate them properly where there is data, and optionally how to orient the principal

directions so as to obtain a globally coherent coordinate system for embedding the

data.

2.1 Where Local Manifold Learning Would Fail

It is easy to imagine at least four causes of failure for local manifold learning

methods, which can be compounded:

• Noise around the manifold. Data are not exactly lying on the manifold.

In the case of non-linear manifolds, the presence of noise means that more

data around each pancake region will be needed to properly estimate the

tangent directions of the manifold in that region. More data is needed sim-

ply to sufficiently average out the noise (i.e. some random directions quite

different from the local principal directions might otherwise be selected).

• High curvature of the manifold. Local manifold learning methods basi-

cally approximate the manifold by the union of many locally linear patches.

For this to work, there must be at least d close enough examples in each

patch (more with noise). With a high curvature manifold, more – smaller
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– patches will be needed, and the number of patches required to cover the

manifold will grow exponentially with the dimensionality of the manifold.

Consider for example the manifold of translations of a high-contrast image

(fig. 2). The tangent direction corresponds to the change in image due to

a small translation (i.e., it is non-zero only at edges in the image). After

a one-pixel translation, the edges have moved by one pixel, and may not

overlap much with the edges of the original image. This is indeed a very

high curvature manifold. In addition, if the image resolution is increased,

then many more training images will be needed to capture the curvature

around the translation manifold with locally linear patches. Yet the physical

phenomenon responsible for translation is expressed by a simple equation,

which does not get more complicated with increasing resolution.

• High intrinsic dimension of the manifold. We have already seen that

high manifold dimensionality d is hurtful because O(d) examples are required

in each patch and O(rd) patches (for some r depending on curvature) are

necessary to span the manifold.

• Presence of many manifolds with little data per manifold. In many

real-world settings there is not just one global manifold but a large num-

ber of (generally non-intersecting) manifolds which however share something

about their structure. A simple example is the manifold of transformations
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(view-point, position, lighting,...) of 3D objects in 2D images. There is one

manifold per object instance (corresponding to the successive application of

small amounts of all of these transformations). If there are only a few ex-

amples for each such class then it is almost impossible to learn the manifold

structures using only local manifold learning.

However, if the manifold structures are generated by a common underlying phe-

nomenon then a non-local manifold learning method such as the one introduced in

the next section could potentially generalize across multiple manifolds, and make

predictions for manifolds for which a single instance is observed, as demonstrated

in the experiments in section 5.

3 Non-Local Manifold Tangent Learning

We propose here a new non-local manifold learning methodology. We choose to

characterize the manifolds in the data distribution through a matrix-valued func-

tion F (x) that predicts at x ∈ Rm a basis for the tangent plane of the manifold

near x, hence F (x) ∈ Rd×m for a d-dimensional manifold. Basically, F (x) specifies

in which directions (w.r.t. x) one expects to find near neighbors of x.

We are going to consider a simple supervised learning setting to train this function.

As with Isomap, we consider that the vectors (x−xi) with xi a near neighbor of x

span a noisy estimate of the manifold tangent space. We propose to use them to
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define a “noisy target” for training F (x). In our experiments we simply collected

the k nearest neighbors of each example x, but better selection criteria might be

devised. Points on the predicted tangent subspace can be written x + F (x)′w

with w ∈ Rd being local coordinates in the basis specified by F (x). Several

criteria are possible to match the neighbors differences with the subspace defined

by F (x). One that yields to simple analytic calculations is to minimize the distance

between the x − xj vectors and their projection on the subspace defined by F (x).

The low-dimensional local coordinate vector wtj ∈ Rd that matches neighbor xj

of example xt is thus an extra free parameter that has to be optimized, but this

optimization can be done analytically. The overall training criterion involves a

double optimization over function F and local coordinates wtj of what we call the

relative projection error:

R(F, w) =
∑

t

∑

j∈N (xt)

||F (xt)
′wtj − (xt − xj)||2

||xt − xj||2
(4)

where w = {wtj} and N (x) denotes the selected set of near neighbors of x. The

objective is to minimize R across F and w simultaneously. The normalization by

||xt − xj||2 is to avoid giving more weight to the neighbors that are further away.

The above ratio amounts to minimizing the square of the sinus of the projection

angle. To perform the above minimization, we can do coordinate descent (which

guarantees convergence to a minimum), i.e. alternate changes in F and changes
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in w which at each step go down the total criterion. Since the minimization over

w can be done separately for each example xt and neighbor xj, it is equivalent to

minimize

||F (xt)
′wtj − (xt − xj)||

2

||xt − xj||2
(5)

over vector wtj for each such pair (done analytically) and compute the gradient of

the above over F (or its parameters) to move F slightly (in the experiments we

used stochastic gradient on the parameters of F ). The solution for wtj is obtained

by solving the linear system

F (xt)F (xt)
′wtj = F (xt)

(xt − xj)

||xt − xj||2
. (6)

In our implementation this is done robustly through a singular value decomposition

F (xt)
′ = USV ′

and, introducing a matrix B,

wtj = B(xt − xj)
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where B can be precomputed for all the neighbors of xt:

B =

(

d
∑

k=1

1Sk>εV·kV
′
·k/S

2
k

)

F (xt)

with ε a small regularization threshold. The gradient of the criterion with respect

to the i-th row of F (xt), holding the local coordinates wtj fixed, is simply

∂R

∂Fi(xt)
= 2

∑

j∈N (xt)

wtji

||xt − xj||
(F (xt)

′wtj − (xt − xj)) (7)

where wtji is the i-th element of wtj. In practice, it is not necessary to store more

than one wtj vector at a time. In the experiments, F (·) is parameterized as a

standard one hidden layer neural network with m inputs and d × m outputs. It

is trained by stochastic gradient descent, one example xt at a time. The rows of

F (xt) are not constrained to be orthogonal nor to have norm 1. They are only

used to define a basis for the tangent plane.

Although the above algorithm provides a characterization of the manifold, it does

not directly provide an embedding nor a density function. However, once the

tangent plane function is trained, there are ways to use it to obtain all of the

above. The simplest method is to apply existing algorithms that provide both an

embedding and a density function based on a Gaussian mixture with pancake-like

covariances. For example one could use Charting (Brand, 2003), and the local

covariance matrix around x could be of the form F (x)′F (x) + σ2I, i.e. F specifies
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both the principal directions and variances in these directions, and σ2 takes care

of off-manifold noise.

Figure 3 illustrates why Non-Local Tangent Learning can be a more accurate

predictor of the tangent plane. Since the tangent plane is estimated by a smooth

predictor (in our case a neural net) that has the potential to generalize non-locally,

the tangent plane tends to vary smoothly between training points. This will not

be true for local PCA for example, especially if there are not many training points.

Note that this type of estimator can make predictions anywhere in the data space,

even far from the training examples, which can be problematic for algorithms such

as Local PCA.

4 Previous Work on Manifold Learning

The non-local manifold learning algorithm presented here (find F (·) which mini-

mizes minw R(F, w)) is similar to the one proposed in (Rao & Ruderman, 1999) to

estimate the generator matrix of a Lie group. That group defines a one-dimensional

manifold generated by following the orbit x(t) = eGtx(0), where G is an m × m

matrix and t is a scalar manifold coordinate. A multi-dimensional manifold can

be obtained by replacing Gt above by a linear combination of multiple generating

matrices. In (Rao & Ruderman, 1999) the matrix exponential is approximated to

first order by (I + Gt), and the authors estimate G for a simple signal undergoing
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translations, using as a criterion the minimization of
∑

x,x̃ mint ||(I + Gt)x − x̃||2,

where x̃ is a neighbor of x in the data. Note that in this model the tangent plane

is a linear function of x, i.e. F (x) = Gx. By minimizing the above across many

pairs of examples, a good estimate of G for the artificial data was recovered (Rao

& Ruderman, 1999). Our proposal extends this approach to multiple dimensions

and non-linear relations between x and the tangent planes.

The work on Tangent Distance (Simard, LeCun, & Denker, 1993), though more

focused on character recognition, also uses information from the tangent plane of

the data manifold. In Simard et al. (1993), the tangent planes are used to build

a nearest neighbor classifier that is based on the distance between the tangent

subspaces around two examples to be compared. The tangent vectors that span

the tangent space are not learned, but rather are obtained analytically a priori,

for transformations that locally do not change the class label (such as rotation,

location shift and thickness change). Hastie, Simard, and Sackinger (1995) and

Hastie and Simard (1998) present the Tangent Subspace Learning algorithm, to

learn character prototypes along with a tangent plane around each prototype,

which reduces the time and memory requirements of the nearest-neighbor Tangent

Distance classifier. Unlike in in the case of Rao and Ruderman (1999), the manifold

can be more than one-dimensional (they present results for 12 dimensions), but the

manifold is locally linear around each prototype (hence must be globally smooth if

the number of prototypes is significantly less than the number of examples). This
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learning procedure exploits the a priori tangent vector basis for the training points,

which is computed analytically as in Tangent Distance (Simard et al., 1993). Non-

Local Tangent Learning can be viewed as an extension of these ideas that avoids

the need for explicit prior knowledge on the invariances of objects in each class,

and that also introduces the notion of non-local learning of the manifold structure.

More generally, we can say that Non-Local Tangent Learning, Local PCA, LLE,

Isomap and Tangent Subspace Learning all try to learn a manifold structure (either

the embedding or the tangent plane) that respects local metric structure. Since all of

them implicitly or explicitly estimate the tangent plane, they all have the potential

to learn invariants that could be useful for transformation-invariant classification.

Local PCA and LLE are based on the Euclidean metric, Isomap on an approximate

geodesic metric, and Hastie et al. (1995) use the Tangent Distance metric, based

on a priori knowledge about the domain. One important difference with the ideas

presented here is that for all these algorithms the predicted manifold structure

at x is obtained essentially using only local information in the neighborhood of

x. We believe that the main conceptual advantage of the approach proposed here

over local manifold learning is that the parameters of the tangent plane predictor

can be estimated using data from very different regions of space, thus in principle

allowing to be less sensitive to all four of the problems described in 2.1, thanks to

sharing of information across these different regions.
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5 Experimental Results

The objective of the experiments is to validate the proposed algorithm: does it

provide a good estimate of the true tangent planes? Does it generalize better than

a local manifold learning algorithm, especially in regions “far” from the data?

5.1 Error Measurement

In addition to visualizing the results for the low-dimensional data, we measure per-

formance by considering how well the algorithm learns the local tangent distance,

as measured by the normalized projection error of nearest neighbors (eq. 5). We

compare the errors of four algorithms, always on test data not used to estimate the

tangent plane: (a) true analytic (using the true manifold’s tangent plane at x

computed analytically), (b) tangent learning (using the neural-network tangent

plane predictor F (x), trained using the k ≥ d nearest neighbors in the training set

of each training set example), (c) Isomap (using the tangent plane defined in Eq.

3), (d) Local PCA (using the d principal components of the empirical covariance

of the k nearest neighbors of x in the training set).

5.2 Tasks

• Multiple Sinusoidal Manifolds. We first consider a low-dimensional but

multi-manifold problem. The data {xi} are in 2 dimensions and coming from
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a set of 40 1-dimensional manifolds. Each manifold is composed of 4 near

points obtained randomly from a sinus curve, i.e ∀i ∈ 1..4,

xi = (a + ti, sin(a + ti) + b)

where a, b, and ti are randomly chosen. Four neighbors were used for training

both the Non-Local Tangent Learning algorithm and the benchmark local

non-parametric estimator (Local PCA of the 4 neighbors). Figure 4 shows

the training set and the tangent planes recovered with Non-Local Tangent

Learning, both at training examples and generalizing away from the data.

The neural network has 10 (chosen arbitrarily) hidden units. This problem

is particularly difficult for local manifold learning: out-of-sample relative

projection errors are respectively 0.09 for the true analytic plane, 0.25 for

non-local tangent learning, and 0.81 for local PCA.

• Gaussian Curves in a High-Dimensional Space. This is a higher di-

mensional manifold learning problem, with 41 dimensions. The data are

generated by sampling Gaussian curves. Each curve is of the form x(i) =

et1−(−2+i/10)2/t2 with i ∈ {0, 1, . . . , 40}. Note that the tangent vectors are

not linear in x. The manifold coordinates are t1 and t2, sampled uniformly,

respectively from (−1, 1) and (0.1, 3.1). Normal noise (standard deviation =

0.001) is added to each point. 100 example curves were generated for train-
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ing and 200 for testing. The neural network has 100 hidden units. Figure 5

shows the relative projection error as a function of the number of nearest

neighbors, for the four methods on this task. First, the error decreases be-

cause of the effect of noise (nearby noisy neighbors may form a high angle

with the tangent plane). Then, it increases because of the curvature of man-

ifold (further away neighbors form a larger angle). This effect is illustrated

schematically in Figure 6, and gives rise to the U-shaped projection error

curve in Figure 5.

• Rotation Manifold. This is a high-dimensional multi-manifold task, in-

volving digit images to which we have applied slight rotations, in such a

way as to have the knowledge of the analytic formulation of the manifolds.

There is one rotation manifold for each instance of digit from the database,

but only two examples for each manifold: one real image from the MNIST

dataset and one slightly rotated image. 1000×2 examples are used for train-

ing and 1000 × 2 for testing. In this context we use k = 1 nearest neighbor

only and the manifold dimension is 1. The average relative projection error

for the nearest neighbor is 0.27 for the analytic tangent plane (obtained

using the same technique as in Simard et al. (1993)), 0.43 with tangent

learning (100 hidden units), and 1.5 with Local PCA. Note the neural

network would probably overfit if trained too much (here only 100 epochs).

An even more interesting experiment consists in applying the above trained
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predictor on novel images that come from a very different dis-

tribution but one that shares the same manifold structure: it was

applied to images of other characters that are not digits. We have used the

predicted tangent planes to follow the manifold by small steps (this is very

easy to do in the case of a one-dimensional manifold). More formally, this

corresponds to the following pseudo-code:

WalkOnManifold(x, F (·), i, nsteps, stepsize)

for s from 1 to nsteps

1. ds = SV D(F (x), i)

2. x = x + ds · stepsize

where x is the initial image, F (·) is the tangent predictor, nsteps is the num-

ber of steps, stepsize controls how far in the direction ds each step is made

and SV D(F (x), i) is a function that returns the ith orthogonal basis vector

of the subspace spanned by the rows of F (x) using its SVD decomposition.

Note that the sign of stepsize also determines the orientation of the walk.

Also, since in the present task the dimension of the manifold is only 1, then

we have i = 1 and the SVD isn’t necessary. We have considered the more

general case only because it will be used in the next task.

Figure 7 shows the effect of applying WalkOnManifold on a letter ’M’

image for a few and a larger number of steps, both for the neural network

predictor and for the local PCA predictor.
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This example illustrates the crucial point that non-local tangent plane learn-

ing is able to generalize to truly novel cases, where local manifold learning

fails. The results showed in figure 7 provide evidence of the impressive ex-

trapolation capacity of Non-Local Tangent Learning, since the ’M’ letter is

quite different from any digit in the training set, i.e. the neural network is not

just locally smoothing the tangent plane estimation, but it truly generalizes

the notion of rotation (here) to new objects.

Since this experiment was set so that the only class invariant transformation

that could be learned would be the rotation transformation, one might won-

der in what ways this task differs from supervised learning, i.e., predicting

the effect of a slight rotation on an image. First of all one should note that

we are predicting an undirected vector (i.e. rotations one way or the other

are both acceptable), and second the procedure can be readily generalized

to predicting a whole tangent plane, without prior knowledge about invari-

ants of the inputs, as shown with the next set of experiments, in which only

natural data are used to infer the shape of the manifold.

• Digit Images Manifold. Finally, we performed the following experiment

in order to observe the invariances that can be learned with Non-Local Tan-

gent Learning for a typical character recognition dataset. These invariances

can be compared with those reported for other methods, such as in Hastie

et al. (1995). We used the first 6291 examples from the USPS training set to
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train a separate neural network per each digit class, using Non-Local

Tangent Learning. For this experiment, the hyper-parameters (number of

neighbors, number of hidden units, number of training epochs through early

stopping) were tuned using a validation set (the 1000 USPS examples fol-

lowing the training set), with normalized projection error. The manifold di-

mension was chosen to be 7, following inspiration from the Tangent Distance

work (Simard et al., 1993). Then, for each class, we chose one digit example

and performed a walk on the manifold as indicated by the pseudo-code of

WalkOnManifold for the rotation manifold task, in order to visualize the

learned manifold around the example image.

The results are plotted in figure 8. The values of nsteps and i where tuned

manually to clarify visually the effect of the learned transformations. Note

that those transformations are not linear, since the directions ds are likely

to be different from one step to another, and visual inspection also suggests

so (e.g. changing the shape of the loop in a ’2’).

The overall picture is rather good, and some of the digit transformations are

quite impressive, showing that the model learned typical transformations.

For instance, we can see that Non-Local Tangent Learning was able to ro-

tate the digit “8” so that it would stand straight. In our opinion, those

transformations compare well to those reported in Hastie et al. (1995), al-

though no prior knowledge about images was used here in order to obtain
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these transformations.

In Bengio and Larochelle (2006), we describe an extension of Non-Local Tangent

Learning, Non-Local Manifold Parzen, which uses non-local learning to train a

Manifold Parzen (Vincent & Bengio, 2003) density estimator. The basic idea is to

estimate not only the tangent plane but also variances in each of the local principal

directions, as functions of x. Having both principal directions and variances one

can write down a locally Gaussian density and estimate the global density as a

mixture of these Gaussian components (one on each training example). From

the density one can readily obtain a classifier using one density estimator per

class. Improvements with respect to local learning algorithms on the out-of-sample

likelihood and classification error are reported for toy and real life problems, such

as the USPS digit recognition task. Note that this extension provides other ways

to do model selection, e.g. by cross-validation on the out-of-sample likelihood or

classification error.

6 Conclusion

The central claim of this paper is that there are fundamental problems with local

non-parametric approaches to manifold learning, essentially due to the curse of

dimensionality (at the dimensionality of the manifold), but worsened by manifold

curvature, noise, and the presence of several disjoint manifolds. To address these
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problems, we propose that learning algorithms should be designed in such a way

that they can share information about the structure of the manifold coming from

different regions of space. In this spirit we have proposed a simple learning al-

gorithm based on predicting the tangent plane at x with a function F (x) whose

parameters are estimated using the whole data set. Note that the same funda-

mental problems are present with non-parametric approaches to semi-supervised

learning (e.g. as in (Szummer & Jaakkola, 2002; Chapelle, Weston, & Scholkopf,

2003; Belkin & Niyogi, 2003; Zhu, Ghahramani, & Lafferty, 2003)), which rely on

an accurate estimation of the manifold in order to propagate label information.

Future work should investigate how to better handle the curvature problem: imag-

ine that most nearest neighbor pairs are too far for the locally linear approximation

of the manifold to be approximately valid between them. One way to deal with this

would be to follow the manifold using the local tangent estimates, and search from

or sample from manifold-following paths between pairs of neighboring examples.

The algorithm was already extended to obtain a mixture of factor analyzers in

(Bengio & Larochelle, 2006) (with the factors or the principal eigenvectors of the

Gaussian centered at x obtained from F (x)). This view provides an alternative cri-

terion to optimize F (x) (the local log-likelihood of such a Gaussian), that suggests

a way to estimate the missing information (the variances along the eigenvector

directions). On the other hand, since we can estimate F (x) everywhere, a more

ambitious view would consider the density as a “continuous” mixture of Gaussians
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(with an infinitesimal component located everywhere in space). According to that

view, the model implicitly defines a distribution P by specifying how to stochasti-

cally go from a a sample xt from P to another nearby sample xt+1, e.g. according

to a Gaussian centered on the manifold surface near xt and whose principal com-

ponents span the tangent plane.
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tangent directions

tangent image

tangent directions

tangent image

shifted
image

high−contrast image

Figure 2: The manifold of translations of a high-contrast image has very high

curvature. A smooth manifold is obtained by considering that an image is a

sample on a discrete grid of an intensity function over a two-dimensional space.

The tangent vector for translation is thus a tangent image, and it has high values

only on the digit edges. The tangent plane for an image translated by only one

pixel looks similar but changes abruptly since the edges are also shifted by one

pixel. Hence the two tangent planes are almost orthogonal.
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Figure 3: This figure displays the difference between local PCA and Non-Local

Tangent Learning. The top image shows what the one-dimensional tangent plane

learned by local PCA (using 2 nearest neighbors) might look like, for the data

points in blue. The bottom image shows the same, but for Non-Local Tangent

Learning. We emphasize here that with Non-Local Tangent Learning, the pre-

dicted tangent plane should change smoothly between points and new predictions

can be made anywhere in the data space.
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Figure 4: Multiple Sinusoidal Manifolds. 2-D data with 1-D sinusoidal mani-

folds: the method indeed captures the tangent planes. The small segments are the

estimated tangent planes. Small dots are the training examples.
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Figure 5: Gaussian Curves in a High-Dimensional Space. Relative projec-

tion error for k-th nearest neighbor, w.r.t. k, for compared methods (from lowest

to highest at k=1: analytic, tangent learning, local PCA, Isomap). Note U-shape

due to opposing effects of curvature and noise.
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Figure 6: Schematic explanation of the U-shaped curve in projection error. With

noise around manifold, nearest examples tend to have a large angle, but because

of curvature the error also increases with distance to the reference point.
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Figure 7: Rotation Manifold. Left column: original image. Middle: applying a

small amount of the predicted rotation. Right: applying a larger amount of the

predicted rotation. Top: using the estimated tangent plane predictor. Bottom:

using local PCA, which is clearly much worse (the letter is not rotated).
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Figure 8: Digit Images Manifold. Examples of the “walk on the manifold” for

digit samples of USPS (middle row). There is one model per digit class (column).

Moving up or down the column corresponds to moving along one of the learned

directions. Only the middle row corresponds to an actual example image, the other

rows are obtained by walking one way or the other along the manifold.
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