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Abstract

To escape from the curse of dimensionality, we claim that onecan learn
non-local functions, in the sense that the value and shape ofthe learned
function atx must be inferred using examples that may be far fromx.
With this objective, we present a non-local non-parametricdensity esti-
mator. It builds upon previously proposed Gaussian mixturemodels with
regularized covariance matrices to take into account the local shape of
the manifold. It also builds upon recent work on non-local estimators of
the tangent plane of a manifold, which are able to generalizein places
with little training data, unlike traditional, local, non-parametric models.

1 Introduction

A central objective of statistical machine learning is to discover structure in the joint dis-
tribution between random variables, so as to be able to make predictions about new com-
binations of values of these variables. A central issue in obtaining generalization is how
information from the training examples can be used to make predictions about new exam-
ples and, without strong prior assumptions (i.e. in non-parametric models), this may be
fundamentally difficult, as illustrated by the curse of dimensionality.

(Bengio, Delalleau and Le Roux, 2005) and (Bengio and Monperrus, 2005) present sev-
eral arguments illustrating some fundamental limitationsof modern kernel methods due
to the curse of dimensionality, when the kernel is local (like the Gaussian kernel). These
arguments are all based on the locality of the estimators, i.e., that very important informa-
tion about the predicted function atx is derived mostly from the near neighbors ofx in the
training set. This analysis has been applied to supervised learning algorithms such as SVMs
as well as to unsupervised manifold learning algorithms andgraph-based semi-supervised
learning. The analysis in (Bengio, Delalleau and Le Roux, 2005) highlights intrinsic limita-
tions of such local learning algorithms, that can make them fail when applied on problems
where one has to look beyond what happens locally in order to overcome the curse of di-
mensionality, or more precisely when the function to be learned has many variations while
there exist more compact representations of these variations than a simple enumeration.

This strongly suggests to investigatenon-local learning methods, which can in principle
generalize atx using information gathered at training pointsxi that are far fromx. We
present here such a non-local learning algorithm, in the realm of density estimation.

The proposed non-local non-parametric density estimator builds upon the Manifold Parzen
density estimator (Vincent and Bengio, 2003) that associates a regularized Gaussian with



each training point, and upon recent work on non-local estimators of the tangent plane of
a manifold (Bengio and Monperrus, 2005). Thelocal covariance matrix characterizing the
density in the immediate neighborhood of a data point is learned as afunction of that data
point, withglobal parameters. This allows to potentially generalize in places with little or
no training data, unlike traditional, local, non-parametric models. Here, the implicit as-
sumption is that there is some kind of regularity in the shapeof the density, such that learn-
ing about its shape in one region could be informative of the shape in another region that
is not adjacent. Note that the smoothness assumption typically underlying non-parametric
models relies on a simple form of such transfer, but only for neighboring regions, which is
not very helpful when the intrinsic dimension of the data (the dimension of the manifold
on which or near which it lives) is high or when the underlyingdensity function has many
variations (Bengio, Delalleau and Le Roux, 2005). The proposed model is also related to
the Neighborhood Component Analysis algorithm (Goldberger et al., 2005), which learns
a global covariance matrix for use in the Mahalanobis distance within a non-parametric
classifier. Here we generalize this global matrix to one thatis a function of the datumx.

2 Manifold Parzen Windows

In the Parzen Windows estimator, one puts a spherical (isotropic) Gaussian around each
training pointxi, with a single shared variance hyper-parameter. One approach to improve
on this estimator, introduced in (Vincent and Bengio, 2003), is to use not just the presence
of xi and its neighbors but also their geometry, trying to infer the principal characteristics of
the local shape of the manifold (where the density concentrates), which can be summarized
in the covariance matrix of the Gaussian, as illustrated in Figure 1. If the data concentrates
in certain directions aroundxi, we want that covariance matrix to be “flat” (near zero
variance) in the orthogonal directions.

One way to achieve this is to parametrize each of these covariance matrices in terms of
“principal directions” (which correspond to the tangent vectors of the manifold, if the data
concentrates on a manifold). In this way we do not need to specify individually all the
entries of the covariance matrix. The only required assumption is that the “noise directions”
orthogonal to the “principal directions” all have the same variance.

p̂(y) =
1

n

n
∑

i=1

N(y; xi + µ(xi), S(xi)) (1)

whereN(y; xi +µ(xi), S(xi)) is a Gaussian density aty, with mean vectorxi +µ(xi) and
covariance matrixS(xi) represented compactly by

S(xi) = σ2
noise(xi)I +

d
∑

j=1

s2
j (xi)vj(xi)vj(xi)

′ (2)

wheres2
j(xi) andσ2

noise(xi) are scalars, andvj(xi) denotes a “principal” direction with
variances2

j(xi) + σ2
noise(xi), whileσ2

noise(xi) is the noise variance (the variance in all the
other directions).vj(xi)

′ denotes the transpose ofvj(xi).

In (Vincent and Bengio, 2003),µ(xi) = 0, and σ2
noise(xi) = σ2

0 is a global hyper-
parameter, while(λj(xi), vj) = (s2

j (xi) + σ2
noise(xi), vj(xi)) are the leading (eigen-

value,eigenvector) pairs from the eigen-decomposition ofa locally weighted covariance
matrix (e.g. the empirical covariance of the vectorsxl − xi, with xl a near neighbor ofxi).
The “noise level” hyper-parameterσ2

0 must be chosen such that the principal eigenvalues
are all greater thanσ2

0 . Another hyper-parameter is the numberd of principal components
to keep. Alternatively, one can chooseσ2

noise(xi) to be the(d + 1)th eigenvalue, which
guarantees thatλj(xi) > σ2

noise(xi), and gets rid of a hyper-parameter. This very simple
model was found to be consistently better than the ordinary Parzen density estimator in
numerical experiments in which all hyper-parameters are chosen by cross-validation.



3 Non-Local Manifold Tangent Learning

In (Bengio and Monperrus, 2005) a manifold learning algorithm was introduced in which
the tangent plane of ad-dimensional manifold atx is learned as a function ofx ∈ R

D,
using globally estimated parameters. The output of the predictor functionF (x) is ad × D
matrix whosed rows are thed (possibly non-orthogonal) vectors that span the tangent
plane. The training information about the tangent plane is obtained by considering pairs of
near neighborsxi andxj in the training set. Consider the predicted tangent plane ofthe
manifold atxi, characterized by the rows ofF (xi). For a good predictor we expect the
vector(xi − xj) to be close to its projection on the tangent plane, with localcoordinates
w ∈ R

d. w can be obtained analytically by solving a linear system of dimensiond.

The training criterion chosen in (Bengio and Monperrus, 2005) then minimizes the sum
over such(xi, xj) of the sinus of the projection angle, i.e.||F ′(xi)w− (xj − xi)||

2/||xj −
xi||2. It is a heuristic criterion, which will be replaced in our new algorithm by one de-
rived from the maximum likelihood criterion, considering that F (xi) indirectly provides
the principal eigenvectors of the local covariance matrix at xi. Both criteria gave similar
results experimentally, but the model proposed here yieldsa complete density estimator. In
both casesF (xi) can be interpreted as specifying the directions in which oneexpects to
see the most variations when going fromxi to one of its near neighbors in a finite sample.
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Figure 1:Illustration of the local parametrization of local or Non-Local Manifold Parzen.
The examples around training pointxi are modeled by a Gaussian.µ(xi) specifies the
center of that Gaussian, which should be non-zero whenxi is off the manifold.vk ’s are
principal directions of the Gaussian and are tangent vectors of the manifold.σnoise repre-
sents the thickness of the manifold.

4 Proposed Algorithm: Non-Local Manifold Parzen Windows

In equations (1) and (2) we wroteµ(xi) andS(xi) as if they werefunctions of xi rather
than simply using indicesµi andSi. This is because we introduce here a non-local ver-
sion of Manifold Parzen Windows inspired from the non-localmanifold tangent learning
algorithm, i.e., in which we canshare information about the density across different
regions of space. In our experiments we use a neural network ofnhid hidden neurons,
with xi in input to predictµ(xi), σ2

noise(xi), and thes2
j(xi) andvj(xi). The vectors com-

puted by the neural network do not need to be orthonormal: we only need to consider the
subspace that they span. Also, the vectors’ squared norm is used to infers2

j(xi), instead
of having a separate output for them. We will noteF (xi) the matrix whose rows are the
vectors output of the neural network. From it we obtain thes2

j(xi) andvj(xi) by perform-

ing a singular value decomposition, i.e.F ′F =
∑d

j=1 s2
jvjv

′

j . Moreover, to make sure
σ2

noise does not get too small, which could make the optimization unstable, we impose
σ2

noise(xi) = s2
noise(xi) + σ2

0 , wheresnoise(·) is an output of the neural network andσ2
0 is

a fixed constant.

Imagine that the data were lying near a lower dimensional manifold. Consider a training
examplexi near the manifold. The Gaussian centered nearxi tells us how neighbors of



xi are expected to differ fromxi. Its “principal” vectorsvj(xi) span the tangent of the
manifold nearxi. The Gaussian center variationµ(xi) tells us howxi is located with
respect to its projection on the manifold. The noise variance σ2

noise(xi) tells us how far
from the manifold to expect neighbors, and the directional variancess2

j(xi) + σ2
noise(xi)

tell us how far to expect neighbors on the different local axes of the manifold, nearxi’s
projection on the manifold. Figure 1 illustrates this in 2 dimensions.

The important element of this model is that the parameters ofthe predictive neural network
can potentially represent non-local structure in the density, i.e., they allow to potentially
discover shared structure among the different covariance matrices in the mixture. Here is
the pseudo code algorithm for training Non-Local Manifold Parzen (NLMP):

Algorithm NLMP::Train( X, d, k, kµ, µ(·), S(·), σ2
0)

Input : training setX , chosen number of principal directionsd, chosen number of
neighborsk andkµ, initial functionsµ(·) andS(·), and regularization hyper-parameter
σ2

0 .
(1) Forxi ∈ X
(2) Collect max(k,kµ) nearest neighbors ofxj .

Below, callyj one of thek nearest neighbors,yµ
j one of thekµ nearest neighbors.

(3) Perform a stochastic gradient step on parameters ofS(·) andµ(·),
using the negative log-likelihood error signal on theyj, with a Gaussian
of meanxi + µ(xi) and of covariance matrixS(xi).

The approximate gradients are:

∂C(yµ
j

,xi)

∂µ(xi)
= − 1

nkµ (yµ
j
)
S(xi)

−1(yµ
j − xi − µ(xi))

∂C(yj,xi)

∂σ2

noise
(xi)

= 0.5 1
nk(yj)

(

Tr(S(xi)
−1) − ||(yj − xi − µ(xi))

′S(xi)
−1||2

)

∂C(yj,xi)
∂F (xi)

= 1
nk(yj)

F (xi)S(xi)
−1

(

I − (yj − xi − µ(xi))(yj − xi − µ(xi))
′S(xi)

−1
)

wherenk(y) = |Nk(y)| is the number of points in the training set that
havey among theirk nearest neighbors.

(4) Go to (1) until a given criterion is satisfied (e.g. average NLL of NLMPdensity
estimation on a validation set stops decreasing)
Result: trainedµ(·) andS(·) functions, with correspondingσ2

0 .

Deriving the gradient formula (the derivative of the log-likelihood with respect to the neural
network outputs) is lengthy but straightforward. The main trick is to do a Singular Value
Decomposition of the basis vectors computed by the neural network, and to use known
simplifying formulas for the derivative of the inverse of a matrix and of the determinant of
a matrix. Details on the gradient derivation and on the optimization of the neural network
are given in the technical report (Bengio and Larochelle, 2005).

5 Computationally Efficient Extension: Test-Centric NLMP

While the NLMP algorithm appears to perform very well, one ofits main practical lim-
itation for density estimation, that it shares with Manifold Parzen, is the large amount of
computation required upon testing: foreachtest pointx, the complexity of the computation
is O(n.d.D) (whereD is the dimensionality of input spaceRD).

However there may be a different and cheaper way to compute anestimate of the density
atx. We build here on an idea suggested in (Vincent, 2003), whichyields an estimator that



does not exactly integrate to one, but this is not an issue if the estimator is to be used for
applications such as classification. Note that in our presentation of NLMP, we are using
“hard” neighborhoods (i.e. a local weighting kernel that assigns a weight of 1 to thek
nearest neighbors and 0 to the rest) but it could easily be generalized to “soft” weighting,
as in (Vincent, 2003).

Let us decompose the true density atx as: p(x) = p(x|x ∈ Bk(x))P (Bk(x)), where
Bk(x) represents the spherical ball centered onx and containing thek nearest neighbors
of x (i.e., the ball with radius‖x − Nk(x)‖ whereNk(x) is thek-th neighbor ofx in the
training set).

It can be shown that the above NLMP learning procedure looks for functionsµ(·) andS(·)
that best characterize the distribution of thek training-set nearest neighbors ofx as the
normalN(·; x + µ(x), S(x)). If we trust this locally normal (unimodal) approximation of
the neighborhood distribution to be appropriate then we canapproximatep(x|x ∈ Bk(x))
by N(x; x + µ(x), S(x)). The approximation should be good whenBk(x) is small and
p(x) is continuous. Moreover asBk(x) containsk points amongn we can approximate
P (Bk(x)) by k

n
.

This yields the estimator̂p(x) = N(x; x+µ(x), S(x)) k
n

, which requires onlyO(d.D) time
to evaluate at a test point. We call this estimatorTest-centric NLMP, since it considers only
the Gaussian predicted at the test point, rather than a mixture of all the Gaussians obtained
at the training points.

6 Experimental Results

We have performed comparative experiments on both toy and real-world data, on density
estimation and classification tasks. All hyper-parametersare selected by cross-validation,
and the costs on a large test set is used to compare final performance of all algorithms.

Experiments on toy 2D data. To understand and validate the non-local algorithm we
tested it on toy 2D data where it is easy to understand what is being learned. Thesinus
data set includes examples sampled around a sinus curve. In thespiral data set examples
are sampled near a spiral. Respectively, 57 and 113 examplesare used for training, 23 and
48 for validation (hyper-parameter selection), and 920 and3839 for testing. The following
algorithms were compared:
• Non-Local Manifold Parzen Windows. The hyper-parameters are the number of princi-
pal directions (i.e., the dimension of the manifold), the number of nearest neighborsk and
kµ, the minimum constant noise varianceσ2

0 and the number of hidden units of the neural
network.
• Gaussian mixture with full but regularized covariance matrices. Regularization is done
by setting a minimum constant valueσ2

0 to the eigenvalues of the Gaussians. It is trained
by EM and initialized using the k-means algorithm. The hyper-parameter isσ2

0 , and early
stopping of EM iterations is done with the validation set.
• Parzen Windows density estimator, with a spherical Gaussian kernel. The hyper-
parameter is the spread of the Gaussian kernel.
• Manifold Parzen density estimator. The hyper-parameters are the number of principal
components,k of the nearest neighbor kernel and the minimum eigenvalueσ2

0 .

Note that, for these experiments, the number of principal directions (or components) was
fixed to 1 for both NLMP and Manifold Parzen.

Density estimation results are shown in table 1. To help understand why Non-Local Mani-
fold Parzen works well on these data, figure 2 illustrates thelearned densities for the sinus
and spiral data. Basically, it works better here because it yields an estimator that is less sen-
sitive to the specific samples around each test point, thanksto its ability to share structure



Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1:Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2:Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2:Illustration of the learned densities (sinus on top, spiralon bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-Local Manifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixturewith Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versionsof these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted byTest-
centric NLMPto rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated



Figure 3: From left to right: original image of a digit 1; rotated analytically by −0.2
radians; Rotation predicted using Non-Local MP; rotation predicted using MP. Rotations
are obtained by following the tangent vector in small steps.

digit obtained is quite similar to the same digit analytically rotated. For comparison, we
tried to apply the same rotation technique to that digit, butby using the principal direction,
computed by Manifold Parzen, of its nearest neighbor’s Gaussian component in the training
set. This clearly did not work, and hence shows how crucial non-local learning is for this
task.

In this experiment, to make sure that NLMP focusses on the tangent plane of the rotation
manifold, we fixed the number of principal directionsd = 1 and the number of nearest
neighborsk = 1, and also imposedµ(·) = 0. The same was done for Manifold Parzen.

Experiments on Classification by Density Estimation. The USPS data set was used
to perform a classification experiment. The original training set (7291) was split into a
training (first 6291) and validation set (last 1000), used totune hyper-parameters. One
density estimator for each of the 10 digit classes is estimated. For comparison we also
show the results obtained with a Gaussian kernel Support Vector Machine (already used
in (Vincent and Bengio, 2003)).Non-local MP* refers to the variation described in (Bengio
and Larochelle, 2005), which attemps to train faster the components with larger variance.
The t-test statistic for the null hypothesis of no difference in the average classification
error on the test set of 2007 examples between Non-local MP and the strongest competitor
(Manifold Parzen) is shown in parenthesis. Figure 4 also shows some of the invariant
transformations learned byNon-local MP for this task.

Note that better SVM results (about 3% error) can be obtainedusing prior knowledge about
image invariances, e.g. with virtual support vectors (Decoste and Scholkopf, 2002). How-
ever, as far as we know the NLMP performance is the best on the original USPS dataset
among algorithms that do not use prior knowledge about images.

Algorithm Valid. Test Hyper-Parameters
SVM 1.2% 4.68% C = 100, σ = 8

Parzen Windows 1.8% 5.08% σ = 0.8
Manifold Parzen 0.9% 4.08% d = 11, k = 11, σ2

0 = 0.1
Non-local MP 0.6% 3.64% (-1.5218) d = 7, k = 10, kµ = 10,

σ2
0 = 0.05, nhid = 70

Non-local MP* 0.6% 3.54% (-1.9771) d = 7, k = 10, kµ = 4,
σ2

0 = 0.05, nhid = 30

Table 3:Classification error obtained on USPS with SVM, Parzen Windows and Local and
Non-Local Manifold Parzen Windows classifiers. The hyper-parameters shown are those
selected with the validation set.

7 Conclusion

We have proposed a non-parametric density estimator that, unlike its predecessors, is able
to generalize far from the training examples by capturing global structural features of the



Figure 4:Tranformations learned byNon-local MP. The top row shows digits taken from
the USPS training set, and the two following rows display theresults of steps taken by one
of the 7 principal directions learned byNon-local MP, the third one corresponding to more
steps than the second one.

density. It does so by learning a function with global parameters that successfully predicts
the local shape of the density, i.e., the tangent plane of themanifold along which the density
concentrates. Three types of experiments showed that this idea works, yields improved
density estimation and reduced classification error compared to its local predecessors.
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