
1

Tractable Multivariate Binary Density Estimation
and the Restricted Boltzmann Forest

Hugo Larochelle

larocheh@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Canada M5S 3G4

Yoshua Bengio

yoshua.bengio@umontreal.ca

Dept. IRO, Université de Montréal, Montreal, Canada H3T 1J4

Joseph Turian

turian@iro.umontreal.ca

Dept. IRO, Université de Montréal, Montreal, Canada H3T 1J4

Keywords: restricted Boltzmann machine, density estimation, mixture modeling

Abstract

We investigate the problem of estimating the density function of multivari-

ate binary data. In particular, we focus on models for which computing the esti-

mated probability of any data point is tractable. We argue that, even in its tractable

regime, the Restricted Boltzmann Machine (RBM) provides a competitive frame-

work for multivariate binary density modeling. With this in mind, we also general-

ize the RBM framework and present the Restricted Boltzmann Forest (RBForest),

which replaces the binary variables in the hidden layer of RBMs with groups of

tree-structured binary variables. This extension allows us to obtain models that

have more modeling capacity but that remain tractable. In experiments on several

datasets, we demonstrate the competitiveness of this approach and study some of

its properties.

1 Introduction

In this work, we consider the problem of learning densities for multivariate binary data.

Such data can be found in various problems of pattern recognition: character recogni-

tion (Kassel, 1995), medical diagnosis (Aitchison & Aitken, 1976) and many natural

language processing problems (Juan & Vidal, 2001). In particular, we focus on models

which give a tractable estimate of the density function, i.e. models that can compute

their estimated value of p(x) in a reasonable, practical amount of time. This constraint

on a model is sometimes required, for instance if one wishes to use it as a module in

a larger probabilistic model (e.g. a mixture model) or in a Bayes classifier, the later

being a useful approach to classification for problems with scarce labeled data (Ng &

Jordan, 2002). So far, the dominating approach to tractable density estimation has been

mixture modeling, where a data point is assumed to have been generated from one out

of m hidden components

p(x) =
m∑

k=1

p(x|k)p(k) . (1)

Models falling in this category include mixtures of Bernoullis (Everitt & Hand, 1981;

Carreira-Perpiñán & Renals, 2000; Juan & Vidal, 2001; Juan & Vidal, 2004; Lowd &

Domingos, 2005) and non-parametric kernel estimators (Aitchison & Aitken, 1976).

An alternative to mixture models are factor models, under which each data point is

generated based on the value of a combination of individual factors:

p(x) =
∑
h∈Hl

p(x|h)p(h) =
∑
h1∈H

· · ·
∑
hl∈H

p(x|h)p(h) (2)

where h = (h1, h2, . . . hl) is structured as a tuple of l factors. The number of dif-

ferent values it can take is exponential in l, even though the number of free param-

eters usually scales linearly in l. For example, in a logistic belief network with one

hidden layer (Neal, 1992), p(x|h) is factorized in several linear logistic regressions

2

∏d
i=1 p(xi|h) and all binary variables (units) in the hidden layer are assumed to be in-

dependent (i.e. p(h) =
∏l

j=1 p(hj)). Hence, another interpretation of a factor model is

as a mixture model with an exponential number of components, where all components

share parameters.

The computations required by Equation 2, which now involves an exponential sum,

can be reduced if p(x) can be factorized in a numerator q(x) that is efficient to compute

and a normalization constant Z that is more expensive:

p(x) =
∑
h∈Hl

p(x,h) =
q(x)

Z
. (3)

This decomposition is generally not possible for directed graphical models (like a logis-

tic belief network), but it is for some undirected or energy-based graphical models. To

save computations, one can compute the normalization constant Z once, after training,

so that the marginal cost of the computation of p(x) for any number of new data points

will depend only on the cost of computing q(x). One such energy-based model is the

Restricted Boltzmann Machine (RBM) (Smolensky, 1986), for which the computation

of q(x) is linear in the number of inputs and the number of hidden units.

Unfortunately, even with the factorization of the numerator, computing the normal-

ization constant Z of an RBM quickly becomes intractable as we increase the number

of hidden units. With only 20 hidden units, computing Z already requires a summation

over about a million (220) configurations of the hidden units. Such a number is rea-

sonable in practice, however 20 hidden units is far from the regime in which RBMs are

usually employed, e.g. to extract a new representation for the input (Hinton et al. (2006)

use RBMs with 500 and 2000 hidden units). For this reason, small RBMs have never

been considered a good alternative to mixture models for tractable density estimation.

The first contribution of this paper is an empirical demonstration that, even in its

tractable regime, an RBM can often be a competitive tractable density estimator. How-

ever, there are some cases where the capacity of the RBM is too small in the tractable

regime.

As a second contribution, this paper addresses this situation and presents a gener-

alization of the RBM, which we call the Restricted Boltzmann Forest (RBForest). In

the RBForest, we replace the binary hidden variables of the RBM with groups of tree-

structured binary variables. By varying the size of the trees, the number of parameters

3

of the model can be increased while keeping the computations of p(x) tractable. We

describe efficient algorithms for inference and training in the RBForest, and we study

some of its properties.

2 Restricted Boltzmann Machines (RBMs)

An RBM defines a probability distribution over a binary input vector x and a layer of

binary hidden variables h, through a bilinear energy function over these two vectors

E(x,h) = −bTx− hTWx− cTh. (4)

The energy function is converted into a probability function as follows:

p(x,h) =
e−E(x,h)

Z
(5)

where the normalization constant Z ensures that Equation 5 defines a valid distribution.

It is straightforward to show that

p(x|h) =
∏

i

p(xi|h) =
∏

i

sigm(bi +
∑

j

Wjihj) (6)

where sigm(a) = 1/(1 + e−a). p(h|x) also has a similar form:

p(h|x) =
∏

j

p(hj|x) =
∏

j

sigm(cj +
∑

i

Wjixi). (7)

Equation 7 implies that inference over the hidden variables given an input pattern is easy

and simple to compute, as it can proceed independently for each hidden variable hj .

However, the expression for the likelihood of an input x is in general computationally

expensive:

p(x) =

∑
h∈{0,1}l e−E(x,h)

Z
. (8)

Computing the numerator is not a problem. Because of the factorial aspect of the nu-

merator, it can be computed in O(dl):∑
h∈{0,1}l

e−E(x,h) =
∑

h1∈{0,1}

· · ·
∑

hl∈{0,1}

ebT x+hT Wx+cT h

= ebT x

 ∑
h1∈{0,1}

eh1W1,:x+c1h1

 . . .

 ∑
hl∈{0,1}

ehlWl,:x+clhl

= ebT x

l∏
i=1

(
1 + eWi,:x+ci

)
(9)

4

where Wi,: is the ith row of W. However, computing the normalization constant is

exponentially expensive, either in l or d, depending on whether the factorization is made

according to the input or the hidden variables, respectively. Factorizing according to the

inputs, we get:

Z =
∑

h{0,1}l

∑
x∈{0,1}d

ebT x+hT Wx+cT h =
∑

h{0,1}l

ecT h

d∏
i=1

(
1 + eWT

:,ih+bi

)
(10)

where W:,i is the ith column of W. Z does not depend on x and has to be computed

only once. So one option to make the computation of p(x) tractable is to limit the

number of hidden units l enough to make the exponential summation required by Z

computationally feasible. Doing so however also limits the number of parameters and

the capacity of the RBM. Yet it is unclear how important the impact is on the general

performance of the RBM. Indeed, while being certainly less powerful than a bigger

RBM, an RBM with only 20 hidden variables is still an implicit mixture over a million

components (with shared parameters). So even if only a small fraction of those were

effectively used and had a significant probability of being picked, it might be sufficient

to be competitive with standard mixture models.

3 Restricted Boltzmann Forests (RBForests)

Instead of limiting the number of hidden variables of the RBM, another approach for

making p(x) tractable would be to directly limit the number of possible configurations

of the elements of h, by introducing structural constraints on allowable configurations.

In particular, we propose to introduce tree constraints in the RBM. These constraints

will be applied to groups of hidden variables, yielding a hidden layer acting as a set of

trees (forest). For this reason, we dub this new model the Restricted Boltzmann Forest.

The general idea is depicted in Figure 1. Hidden variables are grouped in T perfect

(i.e. full and complete) binary trees of depth D. In a tree, hidden variables must re-

spect the following constraints. When a hidden variable is inactive (hi = 0) all hidden

variables in its left subtree must be inactive. Likewise, if a hidden variable is active

(hi = 1), its right subtree variables must be inactive. So the activity of hidden variables

define a path in the tree from the root to one of the leaves, which we will refer to as the

5

h

x

W

Active paths

Figure 1: Illustration of a Restricted Boltzmann Forest for binary input vectors, where

binary variables in the hidden layer are grouped in trees. When a hidden variable is

inactive (white) or active (black), all hidden variables will accordingly be inactive in its

left or right subtree. On the right (zoomed-in box), the variables in the active paths of

two of the trees are identified.

active path1.

It should be noticed that the RBForest can be seen as a generalization of the standard

RBM. Indeed, an RBM is simply an RBForest with trees of depth 0. So, with the

RBForest, we effectively add an additional degree of freedom (the tree depth) over

which it can be advantageous to do model selection. Note also that both the RBM and

the RBForest use exactly the same energy function. However, in the RBForest, we

don’t allow configurations of h that do not respect the tree constraints (which would be

equivalent to assigning an infinite energy to those configurations).

3.1 Inference in the RBForest

Let us first define some notation. Let N(t) be the set of indices of the hidden variables

in the tth tree, A(i) be the indices of the ancestors of the node hi and P (i) be the index

of the parent of hi. C(i) will be the vector of values C(i)k that hk must take for the

activation of node hi to be allowed, for k ∈ A(i). Also, for notational convenience, if

M is a set of indices of hidden variables (as are N(t) and A(i)), we consider that hM

refers to the sub-vector of h containing the hidden variables in M . Finally, S(t) will

refer to the set of all configurations of variables hN(t) in the tth tree that respect the tree

constraints.

In an RBForest, the conditional distribution p(x|h) is unchanged and is as given

1Notice that for a path to be active, all hidden variables in the path need not be active.

6

in Equation 6. However, p(h|x) is slightly more complex than in Equation 7. Since

the tree constraints apply only within single trees, we obtain that p(h|x) factorizes

as p(h|x) =
∏

t p(hN(t)|x). We can then develop the p(hN(t)|x) factors by taking

advantage of the tree structure of hN(t).

In particular, let us define the sums of exponentiated energies over all configurations

compatible with hi being active and inactive as L (i, N(t)) and R (i, N(t)) respectively:

L (i, N(t)) =
∑

hN(t)|hi=1,hN(t)∈S(t)

e−E(x,hN(t)) (11)

R (i, N(t)) =
∑

hN(t)|hi=0,hN(t)∈S(t)

e−E(x,hN(t)) (12)

where E(x,hN(t)) is the energy associated to the tth tree for hidden variables hN(t) and

input x (i.e. E(x,hN(t)) contains the terms of E(x,h) in Equation 4 that are specific to

x and hN(t)).

For hi in hN(t), we have that the tree-local distribution p(hi = 1|hA(i),x) is simply:

p(hi = 1|hA(i),x) =
L (i, N(t))

L (i, N(t)) + R (i, N(t))
(13)

when hA(i) = C(i)A(i) and 0 otherwise. Then, using this tree-local distribution we can

write

p(hN(t)|x) =
∏

i∈path(hN(t))

p(hi|hA(i),x) (14)

when hN(t) respects the tree constraints (otherwise p(hN(t)|x) = 0). Here, path(hN(t))

is the set of hidden variables in the active path of the tth tree with value hN(t). To

sample from p(hN(t)|x), we first sample the root variable hroot(t) from p(hroot(t)|x)

(A(root(t)) is empty). We then move to the left or right subtree accordingly. We

repeat this sampling procedure by using the tree-local distribution of Equation 13 until

a leaf has been sampled. The marginal probability of each hidden variable being active

p(hi = 1|x) is also simple to compute:

p
(
hi = 1|hA(i) = C(i)A(i),x

) ∏
j∈A(i)

p
(
hj = C(i)j|hA(j) = C(i)A(j),x

)
(15)

which can be written in a recursive form as

p
(
hi = 1|hA(i) = C(i)A(i),x

)
p
(
hP (i) = C(i)P (i)|x

)
(16)

7

Let’s now consider the computations required by the terms L (i, N(t)) and R (i, N(t))

of Equation 11 and 12. These terms are required to compute the tree-local distributions.

A naive computation of all these terms would be linear in the number of hidden variables

(nodes in all trees) and in the depth of that tree. However, using the tree constraints, we

have that for a non-leaf hi and its two children hj and hk, the following holds:

L (i, N(t)) = eWi,:x (L (j, N(t)) + R (j, N(t))) (17)

R (i, N(t)) = L (k,N(t)) + R (k,N(t)) (18)

and for a leaf hi we have L (i, N(t)) = eWi,:x and R (i, N(t)) = 1. We can hence

obtain all L (i, N(t)) and R (i, N(t)) terms by proceeding level-wise, first assigning the

value of these terms for the leaves and going upwards to compute all other terms. This

bottom-up pass is then linear only in the number of hidden variables. The pseudocode

for this procedure is given in the Appendix.

Once all terms have been computed, and using Equation 13 to rewrite Equation 16

as follows

p(hi = 1|x) =
L (i, N(t)) p(hP (i) = C(i)P (i)|x)

L (i, N(t)) + R (i, N(t))
, (19)

we see that a top-down pass starting at the root with

p(hroot(t) = 1|x) =
L (root(t), N(t))

L (root(t), N(t)) + R (root(t), N(t))
(20)

can be used to compute all marginal probabilities of the hidden variables. This compu-

tation is also linear in the number of hidden variables in the tree. Pseudocodes of the

sampling and inference procedures for the RBForest are given in the Appendix.

3.2 Learning in the RBForest

To train an RBForest, Contrastive Divergence (CD) (Hinton, 2000) can be used just

as in a regular RBM. CD provides an efficient approximation for the gradient of the

negative log-likelihood (NLL) of some input xt with respect to any parameter θ

∂ −log p(xt)

∂θ
= EEh|xt

[
∂

∂θ
E(xt,h)

]
− EEx,h

[
∂

∂θ
E(x,h)

]
. (21)

It uses a short Gibbs chain of k steps starting at xt to obtain an approximate sample

xneg from the model’s distribution and uses this sample to get a point estimate of the

8

second expectation over x. The conditional expectation over h given some input can

then be done exactly and involves computing the conditional probabilities p(hi = 1|x)

of individual hidden variables being active. To train the model, one can then use this

estimate of the gradient on the parameters to perform stochastic gradient descent. For

more details, see the pseudocode in the Appendix. The only two differences between

CD in a regular RBM and in an RBForest are: (1) in the sampling procedure of the

hidden layer given a value for the input layer and (2) in the computation of p(hk = 1|x)

for the positive and negative phase updates. Development of better learning algorithms

for RBMs is currently an active area of research (see Tieleman (2008); Tieleman and

Hinton (2009)) from which RBForests should also benefit.

3.3 Computing p(x)

Remains the question of how to compute p(x) in an RBForest. The formula is similar to

that of Equation 8, with the sum over h ∈ {0, 1}l being replaced with a sum over values

of h that respect the tree constraints. More specifically, using Equations 11 and 12 and

the linearity of E(x,h) in h, we have:

∑
h|hN(t)∈S(t) ∀t

e−E(x,h) =

 ∑
hN(1)∈S(1)

e−E(x,hN(1))

 . . .

 ∑
hN(T)∈S(T)

e−E(x,hN(T))

=

T∏
t=1

(L(root(t), N(t)) + R(root(t), N(t)))

where each of the L(root(t), N(t)) and R(root(t), N(t)) can efficiently be computed,

as described previously. As for the computation of Z, its formula is that of Equation 10

where the sum over h ∈ {0, 1}l is replaced with a sum over h|hN(t) ∈ S(t) ∀t ∈

{1, . . . , T}. This exponential sum must be done explicitly. However, it is still possible

to keep it reasonably small while increasing the number of units l, by choosing appro-

priate values for the number of trees T and their depth D. For instance, an RBForest

with T = 5 trees of depth D = 3 will also have 2(D+1)T = 220 terms in the sum over

h, just like in an RBM with 20 hidden variables. However, that RBForest will have 75

hidden variables, more than three times as many. See the Appendix for pseudocodes

computing Z and p(x).

9

4 Related Work

Salakhutdinov and Murray (2008) have proposed a technique to approximate the value

of the normalization constant Z for larger RBMs, making it possible to get an approxi-

mate estimate of the value of p(x). We emphasize that this work and ours have different

goals. Indeed, they were interested in evaluating the generative modeling capacity of

large RBMs (i.e. in the regime they are usually used in), so having only an approximate

estimate of p(x) was sufficient. Here, we specifically focus on the case where p(x) is

tractable and exact (which is useful for using an RBM in a larger probabilistic model

or in a Bayes classifier) and argue that even in that regime the RBM framework and its

RBForest generalization are competitive when compared to other tractable approaches.

5 Experiment: density estimation

We present here an experimental comparison of the RBM and the RBForest with a stan-

dard mixture of Bernoullis (MoB). Just like RBMs and RBForest, the “emission” prob-

ability distribution given the hidden state is also a product of independent Bernoullis.

Hence, the only difference between the MoB, RBM and RBForest lies in the nature of

the prior distribution over the hidden state. In the MoB, this prior is explicit, and corre-

sponds to a multinomial over the M possible mixture components, whereas in the RBM

and RBForest, the prior is implicit and more complex. This makes the MoB a perfect

choice for experimental comparisons, which in essence will specifically evaluate the

impact of changing the nature of the prior over the hidden state. Moreover, it has been

argued previously that the MoB is a competitive density estimator in general (Lowd &

Domingos, 2005).

The experiment evaluation was conducted on several datasets of multivariate bi-

nary data. These datasets vary in nature (text, image, biological and game related data)

and in size (from a few hundred to many thousands of examples), while all being of

relatively high dimensionality (between 100 and 500 inputs). The majority of these

datasets were taken from the LIBSVM datasets web page2, with the exception of the

2See http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

10

ocr-letter dataset3 and the nips-0-12 dataset4. All datasets were divided in training,

validation, and test sets. The validation set NLL was used as a criteria to select good

values for the hyper-parameters, among combinations of values for the learning rate η

(in {0.005, 0.0005, 0.00005}), the number of CD steps5 (in {10, 25}) and the number

of iterations over the training set (in {100, 500, 1000})6. The RBM had 23 hidden vari-

ables, and we considered RBForests with 3, 4, 5, 7 and 11 trees of depth 5, 4, 3, 2 and 1

respectively, so that the total number of hidden layer configurations would be less than

10 million. The mixtures of multivariate Bernoullis were trained with the EM algo-

rithm, using the number of components (in {32, 64, 128, 256, 512, 1024}) chosen based

on the validation set NLL7. Early stopping based on the average NLL of the validation

set was also used, with a look ahead of 5 iterations, and 2 random initializations of EM

were always tested.

The results are displayed in Table 1. The first surprising observation is that, even

with only 23 hidden units, the RBM outperforms the MoB in more than half of the

cases. Hence, while experiments in previous work on such small RBMs (Tieleman,

2008; Tieleman & Hinton, 2009) might have seemed of limited relevance to a practical

application, it appears that this regime can still be competitive when compared to a

standard mixture modeling approach.

Moreover, in the three cases where the RBM performs less well, its RBForest gener-

alization allows us to reach and/or outperform the MoB. Notice that this experiment was

designed to distinguish the performance of a standard RBM with the performance that

is achievable when using the additional modeling degrees of freedom that the RBForest

provides (i.e. the depth of a tree). In other words, in a case where the RBM performed

better than the RBForest (e.g. on the web dataset), the RBForest would have reached

the same performance if we had allowed the trees to be of depth 0.

3See http://ai.stanford.edu/∼btaskar/ocr/.
4See http://www.cs.toronto.edu/∼roweis/data.html.
5For the mushrooms and nips-0-12 datasets, which are smaller, we also considered 50 steps of CD
6No weight decay was used, since choosing an appropriate number of iterations seemed sufficient to

avoid overfitting.
7In our experiments, it turns out that 1024 was never chosen as the best number of components.

Hence, bigger mixtures would certainly have led to overfitting.

11

Table 1: Density estimation experiment results, with details about the different datasets.

The comparison is made by looking at the difference between the test set average NLL

of the MoB with that of the RBM and RBForest (i.e. the RBM and/or RBForest outper-

forms the MoB if this difference is positive). Confidence interval estimates based on

the test average NLL statistics of the different models are given.

Dataset
Number Set sizes Test NLL Test NLL

of inputs Train Valid Test diff. (RBM) diff. (RBForest)

adult 123 5000 1414 26147 4.18 ± 0.11 4.12 ± 0.11

connect-4 126 16000 4000 47557 0.75 ± 0.04 0.59 ± 0.04

dna 180 1400 600 1186 1.29 ± 0.72 1.39 ± 0.73

mushrooms 112 2000 500 5624 -0.69 ± 0.13 0.042 ± 0.12

nips-0-12 500 400 100 1240 12.65 ± 1.55 12.61 ± 1.55

ocr-letter 128 32152 10000 10000 -2.49 ± 0.44 3.78 ± 0.43

rcv1 150 40000 10000 150000 -1.29 ± 0.16 0.56 ± 0.16

web 300 14000 3188 32561 0.78 ± 0.30 -0.15 ± 0.31

5.1 Comparison with groups of multinomial hidden variables

To make the computation of Z tractable, instead of tree-structured groups of hidden

variables, one could have used multinomial groups. In a multinomial group, the binary

hidden variables are mutually exclusive, i.e. only one in each group can be active. It is

possible to show that for any RBForest, there exists an equivalent energy-based model

with multinomial groups of hidden variables that computes exactly the same distribution

(but with a different parametrization). We sketch the construction here: consider the

case of an RBForest with only one tree and with parameters W, b and c. Then, consider

a multinomial group version of that RBForest (with parameters W∗, b∗ and c∗) by

associating each bit h∗i of a multinomial variable with a path path(h) in the RBForest

tree and setting its weight vector to W∗
i,: = hTW and its bias to c∗i = hTc. Finally, use

the same input bias vector b∗ = b. Such a construction implies that each of these pairs

12

of h in the RBForest and h∗ in the multinomial group version assign the same energy

for any x. So, these two models necessarily define the same distribution.

However, there is a crucial difference between both models, which we hypothesize

as being linked to differences in the difficulty of optimizing their non-convex training

criteria. We observed that optimization is much easier with the RBForest than with

multinomial units. In the case of the RBForest, we observe in practice that training

progresses smoothly by first finding good values for the root node’s weights and then

slowly moving the optimization of the weights at the first level, and so forth. This is due

mainly to the level-wise recursive nature of the value of p(hk = 1|x) (see Equation 16),

which is involved in the CD update of the weights W. In the case of the multinomial

groups, all the hidden variables are competing with each other to explain the input. So

we observe that several hidden variables take a while (if ever) to overcome the influence

of other hidden variables and can remain essentially untrained for several iterations. We

illustrate this in Figure 2, where we show the weights of an RBForest with one tree of

depth 3 (i.e. 16 possible paths) and the weights of a model with one multinomial group

of 16 (mutually exclusive) binary variables8. As in Table 1, we also ran experiments

with models using multinomial groups of equivalent capacity as the trained RBForests.

On half of the datasets, the RBForest was found statistically better. On the others, no

significant difference was detected. More importantly, improvements are found on the

datasets where the RBM performs worse than the MoB.

5.2 Training a mixture of RBForests

We mentioned previously that one advantage of having a tractable density estimator is

that it can be used in a larger probabilistic model. For instance, consider a mixture of

M RBForest components

p(x) =
M∑

m=1

p(x|C = m)p(C = m)

where p(x|C = m) is given by the distribution of an RBForest with parameters Wm,

bm and cm (the different RBForest components have different parameters). Such a mix-
8Both models were trained on the ocr-letter training set for 10 iterations, with a learning rate of

η = 0.005 and using CD-10 We chose 10 iterations only to show the state of both models some way

through training.

13

Dataset
Test NLL Size of

difference tree

adult -0.03 ± 0.08 3

connect-4 2.31 ± 0.03 3

dna -0.06 ± 0.64 7

mushrooms 0.73 ± 0.09 3

nips-0-12 1.35 ± 1.51 3

ocr-letter 2.78 ± 0.40 63

rcv1 0.60 ± 0.16 63

web -0.17 ± 0.29 7

(a)

(b)

Figure 2: (Left) Comparison between using trees vs multinomial units. The NLL dif-

ference is the NLL obtained using multinomial units minus the NLL obtained using

trees. The table also shows the size of the tree (number of nodes) with best validation

average NLL. (Right) Illustration of training optimization a tree of hidden variables and

a multinomial group. (a) On top, illustration for a single-tree RBForest of the weights

Wi,: for each hidden variable, and at bottom, illustration of the summed weights WTh

for all possible configurations of the hidden layer (i.e. the equivalent multinomial group

weights). On the left of the tree root, weights captured different amounts of horizontal

white backgrounds. On the right of the root, weights captured the structure of more

vertically elongated characters. (b) Illustration of the weights learned using binary hid-

den variables forming a multinomial group. Most of them are still close to their initial

near-zero value.

14

ture can be trained using the Generalized EM algorithm. During the E step, we simply

compute the posterior probabilities (or responsibilities) of each RBForest components

having generated each training example

q(C = m|x) =
p(x|C = m)p(C = m)∑M

m=1 p(x|C = m)p(C = m)

which can be computed exactly since p(x|C = m) is tractable in the RBForest.

In the M step, we fix the values of the posterior probabilities computed in the E

step and we minimize according to p(x|C = m) and p(C = m) the following expected

negative log-likelihood:

−
∑
xt∈D

M∑
m=1

q(C = m|xt) log (p(xt|C = m)p(C = m)) (22)

= −
∑
xt∈D

(
M∑

m=1

q(C = m|xt) log p(xt|C = m)−
M∑

m=1

q(C = m|xt) log p(C = m)

)

where D is the training set. The prior distribution p(C = m) minimizing Equation 22

is simply

p(C = m) =

∑
xt∈D q(C = m|xt)

|D|
.

As for the RBForest components, optimizing Equation 22 is equivalent to training each

RBForest components on a weighted version of the training set. The weight of example

xt for the mth RBForest component is simply q(C = m|xt), meaning that the learning

rate is multiplied by q(C = m|xt) when updating the mth RBForest’s parameters given

example xt.

We trained a mixture of 8 RBForest using the Generalized EM algorithm, on the ocr-

letter dataset. The parameters of each RBForest are initialized randomly. However, to

break the initial symmetry, we also perform K-means on the training set (with K = M)

and perform 10 000 training updates for each RBForest on different subsets of data as

given by K-means. Then we proceed with the Generalized EM algorithm on the full

training set. This larger model reached a test NLL difference of 6.27 with the MoB,

improving on a single RBForest (3.78).

Another approach to training mixtures of RBM-inspired models was also presented

by Nair and Hinton (2009). Their framework for so-called implicit mixtures of RBMs

is directly applicable to RBForests, and the resulting density estimator would also be

15

tractable, as long as each individual RBForest is also tractable. In this work, the choice

of training an explicit mixture (derived from a directed graphical model) instead of

an implicit mixture (derived from an undirected graphical model) was made in order

to show that the larger probabilistic system in which the RBForest is used need not

correspond to an undirected graphical model (like the RBForest).

On a different but related topic, we also mention that the implicit mixtures of Nair

and Hinton (2009) use multinomial units to index the mixture components and, as we

have seen in Section 5.1, using such units can create difficulties during training. Nair

and Hinton (2009) actually mention such difficulties, which forced them to introduce

a temperature parameter when sampling the multinomial units. This parameter can be

fixed to some tuned value, and can vary during training using some annealing schedule.

The experiment of Figure 2 suggests that using tree-structured units might be another

way to facilitate training in such implicit mixtures, maybe avoiding the need for tuning

a temperature parameter.

5.3 Visualizing the implicit mixture components

A possible explanation for why the RBM and the RBForest are able to perform well

with relatively few parameters is that, because of their factorial nature, they implicitly

learn a mixture of exponentially many components (see Equation 2). However, it is not

necessarily clear whether they actually take advantage of this situation (for instance,

only a handful of those components could end up having a significant probability of

being picked). To verify this, we took the best RBForest trained on the ocr-letter dataset

(3 trees of depth 5) and grouped the test samples into different groups based on which

implicit mixture components had the highest posterior probability (or responsibility).

More precisely, for each test example xt, we found which of the 643 = 262144 implicit

mixture component (i.e. which value of h) had the largest probability given xt:

ĥ(xt) = arg max
h|hN(t)∈S(t) ∀t∈{1,...,T}

p(h|xt) = arg max
h|hN(t)∈S(t) ∀t∈{1,...,T}

T∏
t=1

p(hN(t)|xt)

Since p(h|xt) factorizes according to each tree, finding h with the largest probability

simply requires finding the configuration hN(t) of each tree that maximizes p(hN(t)|xt)

separately. Since each tree only has 2D+1 = 26 = 64 possible configurations of its units,

16

Figure 3: Visualization of 375 of the implicit mixture components (one per column)

learned by the RBForest on the ocr-letter dataset.

finding the configuration with maximum probability can be done with an exhaustive

search. Having found ĥ(xt) for each test example xt, we then grouped together test

examples sharing the same value for ĥ(xt).

Among the 643 = 262144 implicit mixture components, about 4000 were “respon-

sible” for at least one test sample, hence much more than the 63 × 3 = 189 hidden

units the RBForest has. Figure 3 illustrates a small subset of all groups of test samples

sharing the same implicit component. We see that many implicit components captured

some meaningful structure from the data, with groups often being class-specific, but

with data from the same class being also split across different groups that capture spe-

cific variations on a character’s size or angle.

17

Conclusion

We presented experimental evidence that, even in its tractable regime, the RBM is often

a competitive model for multivariate binary density modeling. For cases where it lacks

capacity, we proposed the Restricted Boltzmann Forest, a generalization of the RBM.

Efficient inference and training algorithms were proposed for the RBForest, and the ad-

vantage of using trees was emphasized using a comparison with groups of multinomial

units.

Appendix

Pseudocode for Inference and Sampling in the RBF

To do inference, we first need a function which computes the sum of exponentiated

energies L(i, N(t)) and R(i, N(t)), with a bottom-up pass.

Algorithm: SUM-EXP-ENERGIES-RBF(x)

Input: input x

Output: all sums of exponentiated energies L(i, N(t)) and R(i, N(t))

for t = 1 to T do

Initialize energies

for i such that hi is a leaf in tree t do

L(i, N(t))← eWi,:x

R(i, N(t))← 1

end for

Bottom-up pass

for δ = D − 1 to 0 do

for i such that hi is a node at level δ of tree t do

j ← index of left children of hi

k ← index of right children of hi

L(i, N(t))← eWi,:x (L (j, N(t)) + R (j, N(t)))

R(i, N(t))← L (k,N(t)) + R (k,N(t))

18

end for

end for

end for

From the values of L(i, N(t)) and R(i, N(t)), we can then infer all the hidden

variables’ marginal probabilities given some input p(hi = 1|x) with a top-down pass.

Algorithm: INFERENCE-RBF(x)

Input: input x

Output: marginal probabilities p(hi = 1|x)

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

for t = 1 to T do

Initialize top-down pass

p(hroot(t) = 1|x)← L(root(t),N(t))
L(root(t),N(t))+R(root(t),N(t))

for δ = 1 to D do

for i such that hi is a node at level δ of tree t do

p(hi = 1|x) =
L(i,N(t))p(hP (i)=C(i)P (i)|x)

L(i,N(t))+R(i,N(t))

end for

end for

end for

19

As for sampling hidden layer variables given some input, the procedure is very

similar.

Algorithm: SAMPLE-HIDDEN-RBF(x)

Input: input x

Output: a sample h from p(h|x)

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

for t = 1 to T do

Get root probability

p(hroot(t) = 1|x)← L(root(t),N(t))
L(root(t),N(t))+R(root(t),N(t))

hroot(t) ← sample from Bernoulli distribution with parameter p(hroot(t) = 1|x)

i← root(t)

for δ = 1 to D do

if hi = 1 then

i← index of left child of hi

else

i← index of right child of hi

end if

Get tree local probability

p(hi = 1|hA(i) = C(i)A(i),x)← L(i,N(t))
L(i,N(t))+R(i,N(t))

hi ← sample from Bernoulli distribution with parameter p(hi = 1|hA(i) =

C(i)A(i),x)

end for

end for

Sampling the input (visible) units is exactly the same as in a standard RBM.

Algorithm: SAMPLE-VISIBLE-RBF(h)

Input: value of the hidden units h

Output: a sample x from p(x|h)

20

for i = 1 to l do

p(xi = 1|h)← sigm(bi +
∑

j Wjihj)

xi ← sample from Bernoulli distribution with parameter p(xi = 1|h)

end for

21

Pseudocode Contrastive Divergence training of the RBF

Training in an RBF is based on stochastic gradient descent. When cycling over training

examples, the parameters of the RBF are updated for a given example xt according to

the following algorithm:

Algorithm: TRAIN-RBF-CD(xt,η,k)

Input: training example xt, learning rate η, number of Gibbs steps k

Positive phase

xpos ← xt

Set positive hidden statistics to the vector of probabilities p(hi = 1|xpos)

ĥpos ← INFERENCE-RBF(xpos)

Negative phase

xneg ← xpos

while k > 0 do

hneg ← SAMPLE-HIDDEN-RBF(xneg)

xneg ← SAMPLE-VISIBLE-RBF(hneg)

k ← k − 1

end while

Set negative hidden statistics to the vector of probabilities p(hi = 1|xneg)

ĥneg ← INFERENCE-RBF(xneg)

Update parameters

b← b + η (xpos − xneg)

c← c + η
(
ĥpos − ĥneg

)
W←W + η

(
ĥposxposT − ĥnegxnegT

)

Computing p(x)

To compute p(x), we first need to compute the normalization constant Z, with the

following procedure:

22

Algorithm: COMPUTE-Z-RBF()

Output: normalization constant Z of the RBF

Initialize Z

Z ← 0

Sum over all possible values of h, compatible with the tree constraints

for h such that hN(1) ∈ S(1), . . . ,hN(T) ∈ S(T) do

Z ← Z +
∏d

j=1

(
1 + eWT

:,jh+bj

)
end for

23

With a procedure to compute Z, we can then compute p(x) as follows:

Algorithm: COMPUTE-PROB-RBF(x)

Input: input x

Output: probability p(x) under the RBF

Get Z

Z ← COMPUTE-Z-RBF()

Get sum of exponentiated energies

L(·, ·), R(·, ·)←SUM-EXP-ENERGIES-RBF(x)

Get numerator of p(x)

num←
∏T

t=1 (L(root(t), N(t) + R(root(t), N(t)))

p(x)← num/Z

References

Aitchison, J., & Aitken, C. (1976). Multivariate binary discrimination by the kernel

method. Biometrika, 63, 413–420.

Carreira-Perpiñán, M. A., & Renals, S. A. (2000). Practical identifiability of finite

mixtures of multivariate bernoulli distributions. Neural Computation, 12, 141–152.

Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions. Monographs on

Statistics and Applied Probability. London: Chapman and Hall.

Hinton, G. E. (2000). Training products of experts by minimizing contrastive divergence

(Technical Report GCNU TR 2000-004). Gatsby Unit, University College London.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief

nets. Neural Computation, 18, 1527–1554.

Juan, A., & Vidal, E. (2001). On the use of bernoulli mixture models for text classifica-

tion. PRIS ’01: Proceedings of the 1st International Workshop on Pattern Recognition

in Information Systems (pp. 118–126). ICEIS Press.

24

Juan, A., & Vidal, E. (2004). Bernoulli mixture models for binary images. ICPR ’04:

Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04)

Volume 3 (pp. 367–370). Washington, DC, USA: IEEE Computer Society.

Kassel, R. (1995). A comparison of approaches to on-line handwritten character recog-

nition. Doctoral dissertation, MIT Spoken Language Systems Group.

Lowd, D., & Domingos, P. (2005). Naive bayes models for probability estimation.

Proceedings of the Twenty-second International Conference on Machine Learning

(ICML’05) (pp. 529–536). New York, NY, USA: ACM.

Nair, V., & Hinton, G. E. (2009). Implicit mixtures of restricted boltzmann machines.

In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou (Eds.), Advances in neural

information processing systems 21 (nips’08), 1145–1152.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,

56, 71–113.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. Advances in Neural Information

Processing Systems 14 (NIPS’01) (pp. 841–848).

Salakhutdinov, R., & Murray, I. (2008). On the quantitative analysis of deep belief net-

works. Proceedings of the Twenty-fifth International Conference on Machine Learn-

ing (ICML’08) (pp. 872–879). ACM.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel distributed

processing, vol. 1, chapter 6, 194–281. Cambridge: MIT Press.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to

the likelihood gradient. Proceedings of the Twenty-fifth International Conference on

Machine Learning (ICML’08) (pp. 1064–1071). Helsinki, Finland: ACM.

Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive

divergence. Proceedings of the Twenty-sixth International Conference on Machine

Learning (ICML’09) (pp. 1033–1040). New York, NY, USA: ACM.

25

