Generalization to a zero-data task: an empirical study

Hugo Larochelle, Dumitru Erhan and Yoshua Bengio Université de Montréal

20/03/2007

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

• What is a zero-data task? task for which no training data are available

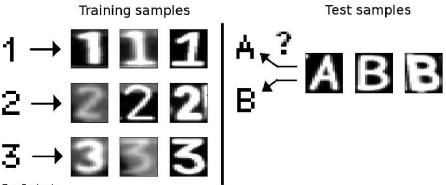
How can we generalize in such a case?

- using a set of task representations or vectors d(z) (given a priori)
- using data from other related tasks

Why should we care?

- occurs in certain applications : drug discovery, song/movie recommendation
- gives worst case scenario for inductive transfer
- corresponds to a more natural learning scenario for a human

Illustration of the problem in classification



7 x 5 pixels task descriptions

Related Work

 Related to *life-long learning* (Thrun, 1996) and inductive transfer, where a learning agent has to sequentially learn some tasks *f_i*

$$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_T$$

Task f_i is learned from training set D_i and previous training sets

- Here, we provide the possibility for tasks to be **learned from a** description
- Related to one-shot or one-sample learning (Miller, 2002), where a classification problem is learned
 - using only one training sample per class
 - using data from other related tasks
- If we let d(z) be a sample from class z, zero-data classification learning is equivalent to one-shot learning

Two views of zero-data task learning

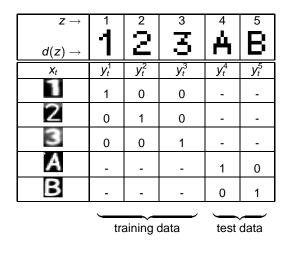
Here, we differentiate two views of the zero-data task learning problem :

- the input space view
- the model indexation view

We note :

- x_t as the input
- z as a task ID and d(z) as its description vector
- y_t^z as the desired model output for input x_t and task z
- \mathcal{D}_{train} and \mathcal{D}_{test} as the training and test sets, with *data from different tasks*

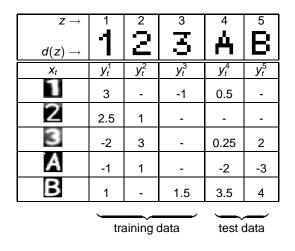
Data notation : classification example



3

イロト イポト イヨト イヨト

Data notation in general



3

Input space view

- The input space view is a reformulation of the problem into a standard learning problem.
- The corresponding training procedure is :
 - for each $(x_t, y_t^z) \in \mathcal{D}_{train}$, generate new sample

 $([x_t, d(z)], y_t^z)$

- use the generated samples as the training set for any learning algorithm to obtain a model $f^*(\cdot)$
- The prediction for a new task *z^{new}* and an input *x* is simply

$$f^*\left([x, d(z^{new})]\right)$$

provided that $d(z^{new})$ is given

Model indexation view

The model indexation view considers the model f_z(x) for task z to be a function of its description d(z):

$$f_z(x) = g_{d(z)}(x)$$

 input space view is a special case of the model indexation view, which does not differentiate x from d(z):

$$g_{d(z)}(x) = g([x, d(z)])$$

Training corresponds to optimizing :

$$\frac{1}{|\mathcal{D}_{train}|}\sum_{(x_t, y_t^z)} C\left(y_t^z, g_{d(z)}(x_t)\right)$$

• The prediction for a new task *z^{new}* and an input *x* is simply

$$g_{d(z^{new})}(x)$$

```
provided that d(z^{new}) is given
```

Model indexation view models

• The first model we tried (LinGen) is a Gaussian model :

$$X|Y^z = 1 \sim \mathcal{N}(Ad(z), \Sigma)$$

where Σ is diagonal

• Setting the prior on the classes to be constant, it can be shown that Bayes rule gives the following decision rule :

 $\underset{z}{\operatorname{argmax}} g_{d(z)}(x) = \underset{z}{\operatorname{argmax}} (d(z)'B) x - d(z)'BUB'd(z)$ where $B = 2A\Sigma^{-1}$ and $U = \frac{1}{4}\Sigma$.

Model indexation view models

• The two other models used the same decision rule directly :

$$g_{d(z)}(x) = (d(z)'B) x - d(z)'BUB'd(z)$$

but with two different discriminative costs

Model LinDisc_1-vs-all uses a multi-class cost :

$$C(x_t, y_t^z) = -1_{\{y_t^z=1\}} \log(\operatorname{softmax}(g_{d(z)}(x_t)))$$

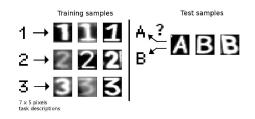
where the softmax normalization is done over the training classes only, not the test classes

Model LinDisc_0-1 uses a binary cost :

$$C(x_t, y_t^z) = -y_t^z \log(sigm(g_{d(z)}(x_t))) -(1 - y_t^z) \log(1 - sigm(g_{d(z)}(x_t)))$$

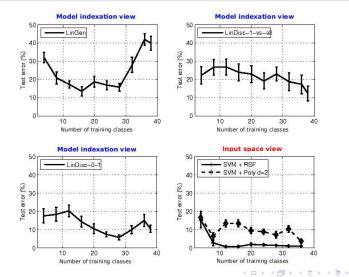
◎ ▶ < ∃ ▶ < ∃ ▶

First problem : classification



- Selected 6 classes randomly \Rightarrow 15 pairs of *test classes* (character types)
- 200 samples per class
- Trained on samples from 4, 8, 12, ..., 36 and 38 *training classes* (mutually exclusives from the test classes)
- Measured generalization using classification error rate in the test classes

Results

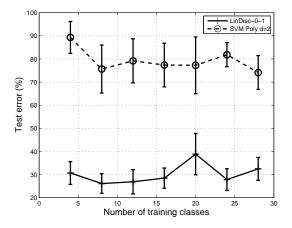


Hugo Larochelle, Dumitru Erhan and Yoshua Bengio

Generalization to a zero-data task: an empirical study

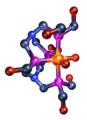
Results

Classification error when allowing to output a training class at test time



Second problem : ranking

- Problem setting
 - *x_t* is a molecule (drug candidate)
 - z is a protein (disease) and d(z) is its description
 - y_t^z is 1 if the molecule and the protein reach a certain level of activity, 0 otherwise



- We perform 7-fold cross-validation, by training on 6 proteins and testing on the held out protein
- The evaluation metric is the area under the lift curve
- A random ranking would obtain 1 under this measure, on average

Results

Area under the lift curve (AULC) results for the different proteins.

	AULC (MOE)			AULC (FP)		
Protein	LinDisc_0-1	SVM Gauss	Poly d=2	LinDisc_0-1	SVM Gauss	SVM Poly d=2
A	1.10	1.10	2.02	1.39	2.79	2.76
D	1.34	0.94	0.88	1.46	0.83	0.87
F	1.25	0.89	0.77	0.85	0.83	0.81
Н	1.36	0.96	0.98	1.59	0.79	0.79
I	1.45	1.00	1.02	1.45	1.24	1.23
S	0.96	0.94	0.89	1.61	0.73	0.76
U	0.93	0.92	0.83	0.96	0.78	0.80

As a comparison, on the training tasks, the AULC is usually above 2.1.

Conclusion and future work

Conclusion

- We presented zero-data task learning and described different ways of approaching this problem
- We showed empirically that generalization is possible in this framework

Future work

- Do more experiments in other domains
 - recognition of more symbols
 - movie recommendation
- Develop a non-linear version of LindDisc_0-1

Conlusion and future work

THANK YOU!

Hugo Larochelle, Dumitru Erhan and Yoshua Bengio Generalization to a zero-data task: an empirical study

Miller, E. (2002).

Learning from one example in machine vision by sharing probability densities.

PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.

Thrun, S. (1996).

Is learning the *n*-th thing any easier than learning the first?

In Touretzky, D. and Mozer, M., editors, *Advances in Neural Information Processing Systems (NIPS)* 8, pages 640–646, Cambridge, MA. MIT Press.