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Experimental Results
Hyper-parameters chosen by cross-validation
Out-of-sample Negative Log-Likelihood (NLL):

Algorithm NLL on sinus NLL on spiral
Non Local MP 1.409768 -1.35885
Gauss Mix Full 1.56653 -0.5747403
Gauss Mix Diag 2.593532 -0.6400698
Gauss Mix Spher 2.672263 -0.1716301
Manifold Parzen 1.697273 -0.6077337
Parzen Window 1.841497 -0.513347

And the obtained distributions are:
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Manifold Parzen
The use of global parameters helps to find principal directions that are smoother
and more consistent with the global structure of the data:
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Toy Data
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Semi-Spherical Variant
A simplified version of the above model has been implemented for the experi-
ments described here. The simplification is that the same variance is assumed
for all the principal eigenvectors, i.e. sj(x) = s1(x).
In addition to the matrix F (xi) with rows vj(xi), the outputs of the neural net-
works are the ’noise variance’ σ2

noise(xi), the excess ’on-manifold variance’
s1(xi), and the Gaussian mean displacement µ(xi).
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Non-Local Manifold Parzen Windows
Consider µ(xi) and S(xi) as functions of xi with global parameters: share in-
formation about the density across different regions of space.
Neural network with xi in input to predict µ(xi), σ2

noise(xi), and the sj(xi) and
vj(xi). The vj(xi) do not need to be orthonormal.
• The Gaussian near xi tells how neighbors of xi are expected to differ from xi.
• Its “principal” vectors vj(xi) span the tangent of the manifold near xi.
• µ(xi) tells how xi is located with respect to its projection on the manifold.
• σ2

noise(xi) tells us how far from the manifold to expect neighbors.
• sj(xi) + σ2

noise(xi) tell us how far to expect neighbors on the different local
axes of the manifold.
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Manifold Parzen
Windows

Regularized Gaussian mixture, Gaussians cen-
tered near each training example xi, covariance
matrices flat in “principal directions”:

p(y) =
1

n

n∑

i=1

Normal(y; xi + µ(xi), S(xi))

where xi + µ(xi) = Gaussian center and S(xi) =
covariance of i-th component, with

S(xi) = σ2
noise(xi)I +

k∑

j=1

sj(xi)vj(xi)vj(xi)
′

where sj(xi) and σ2
noise(xi) are scalars, and

vj(xi) denotes a “principal” direction with vari-
ance sj(xi) + σ2

noise(xi), while σ2
noise(xi) is the

noise variance (the variance in all the other direc-
tions).
In (Vincent and Bengio, 2003), µ(xi) = 0,
and σ2

noise(xi) = σ2 is a global hyper-
parameter, while (λj(xi), vj(xi)) =

(sj(xi) + σ2
noise(xi), vj(xi)) are leading

(eigenvalue,eigenvector) of local empirical
covariance.
Hyper-parameters: k and σ2

noise.
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Non-Local Tangent
Plane Predictors

Tangent plane basis vectors = learned function
of x and global parameters θ, with flexibly
parametrized matrix-valued d×n function F (x).

Train d×n function F (x) to approximately span
the differences between x and its neighbors y.
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Train on rotated DIGITS and generalize on LET-
TERS! Learn rotation manifold.
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Top: using neural network DOES rotate. Bot-
tom: using local predictor DOES NOT rotate.
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Curse of Dimensionality for Local
Estimators

Curse of dimensionality for Parzen Windows

Number of required examples ∝ m(4+d)/5 where d is the intrinsic
dimension of the data and m is the number of examples required to
obtain given error level when d = 1. See (Silverman, 1986; Hardle
et al., 2004).

Tangent Plane Defined from Neighhbors

i

x

x

Spectral manifold learning al-
gorithms (LLE, Isomap, etc...)
define the local tangent plane at x
mainly on the span of the vectors
of neighbor differences xi − x.

Local Manifold Learning: Local Linear Patches

Current manifold learning algo-
rithms cannot handle highly curved
manifolds because they are based
on locally linear patches estimated
locally (possibly aligned globally).

Fundamental Problem with Local Manifold Learning: curse of di-
mensionality. Can’t generalize “far” from training examples. O((1/r)d)

patches needed, > O(d) data/patch (∝ noise).
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Summary

1. The curse of dimensionality in density estimation is due to the
locality of the estimators: f (x) mostly depends on the neighbors of x.

2. Previous work on density estimation taking advantage of manifold
structure: Manifold Parzen Windows (Vincent & Bengio 2003). Each
local Gaussian is flattened in the directions of the manifold. Still local.

3. Previous work on non-local manifold learning: Manifold Tangent
Learning (Bengio and Monperrus, 2005). Learn to predict the tangent
vectors of the manifold at x as a function of x and of globally estimated
parameters θ. Yields to non-local generalization.

4. This work: combine the above two, i.e. predict the covariance
matrix at i-th Gaussian xi as a function of xi and of globally estimated
parameters θ.

5. Results: better density estimates than using a local estimator (Parzen
Windows or Manifold Parzen Windows or Gaussian Mixtures).

Yoshua Bengio
Hugo LarochelleNon-Local Manifold Parzen Windows


