Université min de Montréal

Summary

1. The *curse of dimensionality* in density estimation is due to the **locality** of the estimators: f(x) mostly depends on the neighbors of x.

2. Previous work on density estimation taking advantage of manifold structure: Manifold Parzen Windows (Vincent & Bengio 2003). Each local Gaussian is flattened in the directions of the manifold. Still local.

3. Previous work on non-local manifold learning: Manifold Tangent Learning (Bengio and Monperrus, 2005). Learn to predict the tangent vectors of the manifold at x as a function of x and of globally estimated parameters θ . Yields to non-local generalization.

4. This work: combine the above two, i.e. predict the *covariance matrix* at *i*-th Gaussian x_i as a function of x_i and of globally estimated parameters θ .

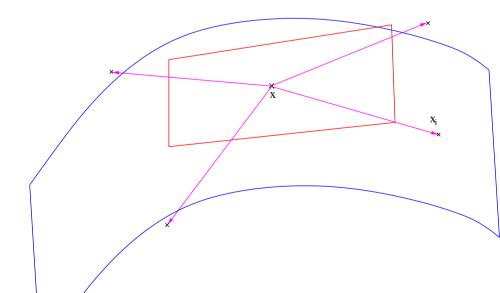
5. Results: *better density estimates* than using a local estimator (Parzen Windows or Manifold Parzen Windows or Gaussian Mixtures).

Curse of Dimensionality for Local Estimators

Curse of dimensionality for Parzen Windows

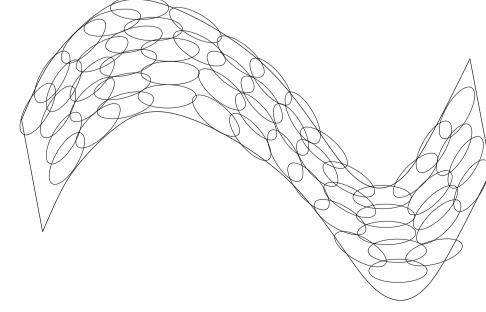
Number of required examples $\propto m^{(4+d)/5}$ where d is the intrinsic dimension of the data and m is the number of examples required to obtain given error level when d = 1. See (Silverman, 1986; Hardle et al., 2004).

Tangent Plane Defined from Neighbors



Spectral manifold learning algorithms (LLE, Isomap, etc...) define the local tangent plane at xmainly on the span of the vectors of neighbor differences $x_i - x$.

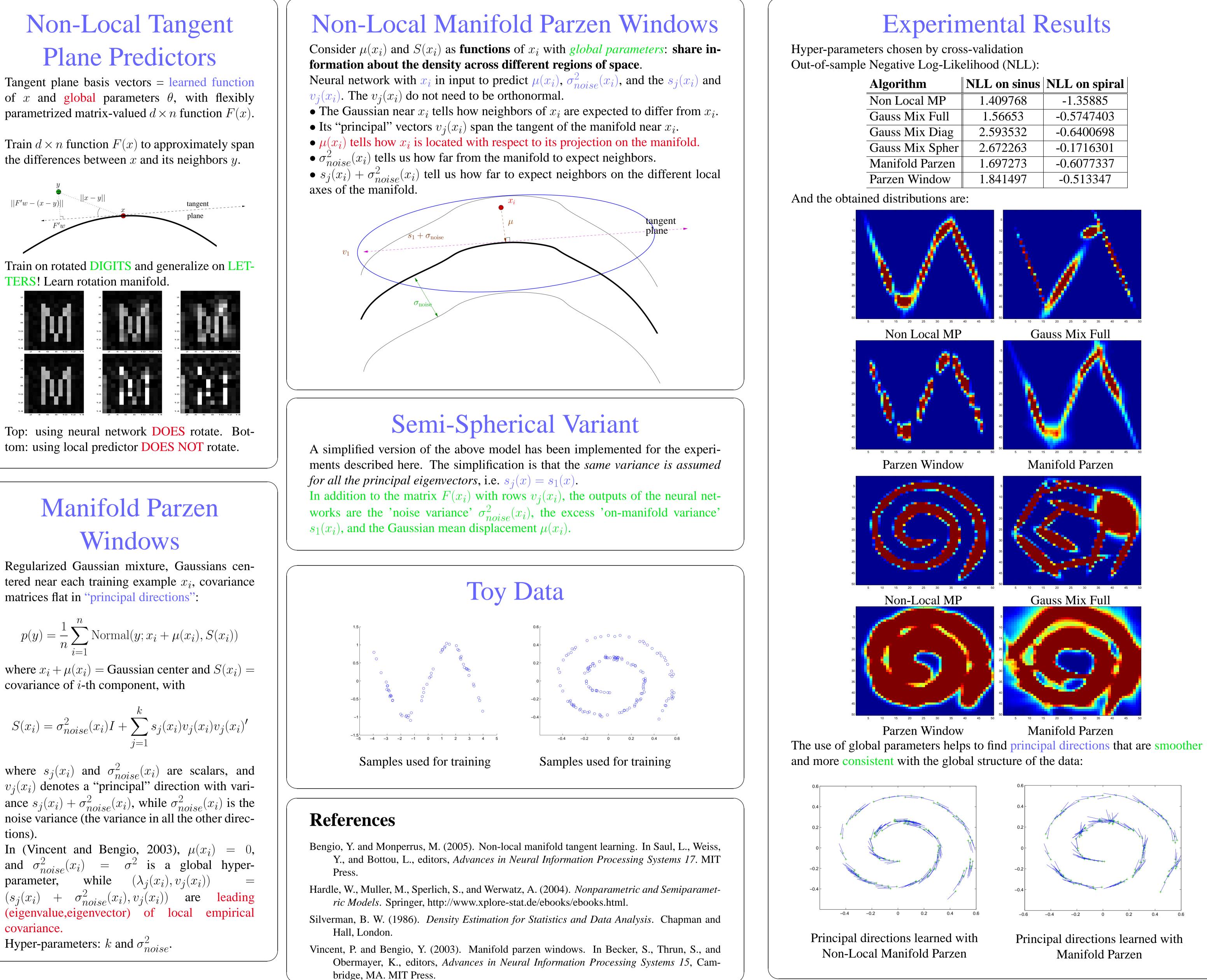
Local Manifold Learning: Local Linear Patches



Current manifold learning algorithms cannot handle highly curved manifolds because they are based on locally linear patches estimated locally (possibly aligned globally).

Fundamental Problem with Local Manifold Learning: curse of dimensionality. Can't generalize "far" from training examples. $O((1/r)^d)$ patches needed, > O(d) data/patch (\propto noise).

Non-Local Manifold Parzen Windows



Yoshua Bengio Hugo Larochelle

rithm	NLL on sinus	NLL on spiral
Local MP	1.409768	-1.35885
s Mix Full	1.56653	-0.5747403
s Mix Diag	2.593532	-0.6400698
s Mix Spher	2.672263	-0.1716301
fold Parzen	1.697273	-0.6077337
en Window	1.841497	-0.513347