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Rapid evolution of (image) 
generation capability

P(image)

https://twitter.com/goodfellow_ian/status/1084973596236144640/photo/1
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P(image ∣ text)

Conditional Generation

A photo of a raccoon  
wearing an astronaut helmet,  
looking out of the window at night.

https://imagen.research.google/ 

text

image

https://imagen.research.google
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Why generate images? 

• It used to be a tougher question to answer  

• To use wherever images are used (visualizations, 
video games, presentations, ads, etc…) 

• Human-in-the-loop design 
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Today’s Plan*
• “Predict” an image  

• Generative Models 

• Images (P(x)): 

• Frameworks: Variational auto-encoders (VAEs), 
Generative Adversarial Networks (GANs) 

• Images conditioned on text (P(x | y )) :  

•  Dall-E 2, Imagen 

* Like last week, the slides are mostly from David Berger
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Convolution Neural 
Network (CNN) — Recall 

• Séries of layers (blocs): convolutions + pooling 

• Each layer reduces the dimensionality of the 
representation

6 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks 

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
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Convolution
• Input: 5 x 5  

• Filter (kernel): 3 x 3. Stride 2.  

• Output: 2 x 2 
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Output

Input

https://arxiv.org/pdf/1603.07285 

https://arxiv.org/pdf/1603.07285
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“Reverse” a convolution 
network

• Each layers increases the dimensionality of the 
incoming representation 

• (Note: this is in fact the same operation as done by backdrop in a 
CNN.)

8 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks 

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
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Interpolation 

1. Repetition  

• A 

• No parameters to learn

9

2.     (Bi-)linear interpolation



Laurent Charlin — 60629

Transposed Convolution
• Useful to generate images or increase the resolution of an image (like in movies) 

• Input: 2 x 2  

• Filter: 3 x 3. Stride 1.  

• Output: 3 x 3  

• If we write down a convolution as a matrix operation (by vectorizing 
the image), then the reverse operation is multiplying by the 
transpose (hence the name)

10 https://arxiv.org/pdf/1603.07285 

Output

Input

https://arxiv.org/pdf/1603.07285
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U-Nets: https://arxiv.org/pdf/1505.04597 

https://wiki.cloudfactory.com/docs/mp-wiki/key-principles-of-computer-vision/upsampling-and-downsampling-techniques-in-machine-learning 

U-Nets
• Encoder-Decoder Architecture 

• Encoder: Obtain a représentation of the 
image (classic CNN without the 
classification output) 

• Decoder: From the representation, obtain 
an image 

• Connections between the encoder and 
decoder allow for precise localization 

• up-conv ->transposed convolution (for 
example) 

• Proposed for segmentation 

• Has become standard for image generation

https://arxiv.org/pdf/1505.04597
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Generative models

• A U-Net can obtain a representation from an image, 
but it does not have a probabilistic interpretation 

• A generative model is a method for parametrizing
 — unsupervisedP(x)
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Why are generative models 
(often) probabilistic?

• Allows different types of evaluation  

• For example, the probability of an image according to 
the model:   

• Can obtain samples  

• Quantifies uncertainty 

• It has been popular recently to parametrize 
distributions with neural networks (think of a softmax 
layer) — these are not always proper generative models

Pθ(xnew)

x ∼ Pθ(x)
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Auto-Encoder (AE)
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For	an	AE	with	a	single	hidden	layer:
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   Auto-encoder - Recall

x1 x2 x3 xpx

x̂1 x̂2 x̂3 x̂px̂

h(x)

W } Encoder

h(x) = g(a(x))
= g(Wx + b)

For	an	AE	with	a	single	hidden	layer:



   Auto-encoder - Recall

x1 x2 x3 xpx

x̂1 x̂2 x̂3 x̂px̂

h(x)

W } Encoder

h(x) = g(a(x))
= g(Wx + b)

W* }
Decoder

x̂ = o(â(x))
= o(W*h(x) + b*)

For	an	AE	with	a	single	hidden	layer:
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Variational Auto-encoder 
(VAE)

* Understanding these models precisely requires concepts that are beyond our class. Here, we aim for  
familiarization with the terms and an intuitive understanding.



Variational Auto-Encoder - Motivation
Idea:	
• The	data	are	generated	conditioned	on	a	random	variable	(Z):

ℙθ (x ∣ z) You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
a posterior P(z|x) over it.
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Variational Auto-Encoder - Motivation

z

Idea:	
• The	data	are	generated	conditioned	on	a	random	variable	(Z):

ℙθ (x ∣ z)

x

Graphical	representation

θ

You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
a posterior P(z|x) over it.



Variational Auto-Encoder - Motivation

z Question:	
• How	do	we	learn	such	a	
distribution?

Idea:	
• The	data	are	generated	conditioned	on	a	random	variable	(Z):

ℙθ (x ∣ z)

x

Graphical	representation

θ

You can think of Z has an embedding.  
VAEs will learn a prior P(z) and 
a posterior P(z|x) over it.
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Partial	answer:	
• A	“good”	model	should	maximize	the	likelihood	of	the	data	P(x)		
• Bayes,	provides	us	with	two	possibilities:
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Idea:	
• We	could	approximate	the	real	
posterior	to	make	it	tractable

Let’s	explore	the	first	problem:	
• The	posterior	can	be	intractable:

ℙθ (x) = ∫z
ℙθ (z ∣ x)ℙθ (x)dz

x

z θϕ

The	approximation	of	the	posterior	
would	be	parametric	by	ϕ

Variational Auto-Encoder - Motivation



We	can	obtain	a	bound	on	the	log-likelihood	of	 :x

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),
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We	can	obtain	a	bound	on	the	log-likelihood	of	 :x

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),

Where:	

• We’re	trying	to	the	distance	between	the	posterior	 	
and	the	prior	 .

qϕ(z ∣ x)
qϕ(z)

• While	maximizing	the	conditional	log-likelihood	of	 .x

Question:
• How	do	we	do	this	in	practice?
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log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),
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Graphical	view:	
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x

z θϕ

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),

Graphical	view:	

qϕ(z ∣ x) pθ(x ∣ z)

Variational Auto-Encoder - Formalism



x
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We	suppose	the	posterior	follows	an	
unknown	distribution	parametrizes	
by	a	neural	network	
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z θϕ

log pθ(x) ≥ − KL{qϕ(z ∣ x) | | qϕ(z)} + log pθ(x ∣ z),

Graphical	view:	

qϕ(z ∣ x) pθ(x ∣ z)

qϕ(z)
We	suppose	the	posterior	follows	an	
unknown	distribution	parametrizes	
by	a	neural	network	

We	suppose	the	prior	follows	a	particular	distribution		

(e.g.,	a	zero-mean	Gaussian)

Variational Auto-Encoder - Formalism
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We	can	estimate	these	parameters	using	an	auto	encoder:

x

zϕ

qϕ(z ∣ x)

θ
pθ(x ∣ z)

qϕ(z) x̂1 x̂2 x̂3 x̂p

}
Décodeur

pθ(x ∣ z)
Estimer

x1 x2 x3 xp

} Encodeur

qϕ(z ∣ x)
Estimer
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x̂1 x̂2 x̂3 x̂p

}
Decode

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ
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σ

μ σ
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VAEs	are	a	way	to	train	a	generative	model

1. Train	the	model	to	learn:
• pθ(x ∣ z)

• qϕ(z ∣ x) ∼ 𝒩(μ, σ2)

2. Generate	 	et	obtain	 .ϵ z ∼ P(z)
3. Obtain	 	from	 .x pθ(x ∣ z)

x̂1 x̂2 x̂3 x̂p

}
Decoder

pθ(x ∣ z)
Estimate

x1 x2 x3 xp

} Encoder

qϕ(z ∣ x)
Estimate

μ σ

Steps:
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Example:	Generating	numbers	(range	0—9)

Variational Auto-encoders 



Example:	Generating	numbers	(range	0—9)

Multivariate	Normal	
	( )ℝ2

Multivariate	Normal	
	( )ℝ5

Multivariate	Normal	( )ℝ10 Multivariate	Normal	( )ℝ20

Variational Auto-encoders 
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Generative Adversarial Networks 
 (GANs)



   GANs - Introduction 
Well-known	for	image	generation
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Historical note

• Framework for learning a generative model (for example, an 
“inverted” CNN) 

• Developed by researchers at Université de Montréal (2014) 

• The first to generate high-quality complex images 

• Have been (mostly?) replaced by diffusion models 

• The study of GANs has provided insights into 2-player 
(min-max) optimization

28
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GANs — Intuition 
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GANs — Intuition 
• Two players (each is a neural network) 

• Generator: The first player. It learns to generate a (good) image 

• Discriminator: The second player, learns to recognize 
(discriminate) good images from bad images
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GANs — Intuition 
• Two players (each is a neural network) 

• Generator: The first player. It learns to generate a (good) image 

• Discriminator: The second player, learns to recognize 
(discriminate) good images from bad images

• The game (at each round): 

• The second player receives an image. It must determine whether 
the image comes from the generator or from the training data 

• Depending on the response, the players update (their weights) 
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Training	GANs	in	practice	alternates	between	training	D	and	G



   GANs - Varia
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DALL-E 2 
(As an example of using a 

diffusion model)
https://arxiv.org/pdf/2204.06125v1 

https://arxiv.org/pdf/2204.06125v1
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1. Input,	a	sentence	(prompt)	of	the	image	we	want	to	create

2. This	prompt	is	encoded	in	a	(latent)	representation

3. Transform	this	representation	in	an	image	representation	(image	space)	—	not	shown

4. Decode	the	image	representation	into	an	actual	image
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   DALL-E - CLIP

1. Learn	latent	representations	of	
text	 	and	images	Ti Ii

•	From	a	batch	of	size	N

2. Similarity	measure

•	max TiIi

3. Dissimilarity	measure

•	min TiIj ∀j ≠ i
4. Maximize	the	similarities	and	

minimize	the	dissimilarities
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   DALL-E - Diffusion Model
Idea:

• From	an	image	(left),	generate	other	similar	ones	
• This	is	where	diffusion	models	are	used



 Diffusion Models
Idea:

• Add	noise	incrementally	to	an	image	until	it	is	pure	white	noise	
• Danoise	the	image	to	obtain	the	original	image		
• If	we	know	the	noise	mechanism,	starting	from	white	noise,	we	
can	then	generate	an	image
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   DALL-E - Diffusion Model

For	text-to-image	generation,	we	add	information	from	the	text		
During	the	diffusion	process



   DALL-E

,c

We	use	the	text	representation	
to	condition	the	model		



   DALL-E

“Face	face	of	a	man	with	red	hair”

,c

We	use	the	text	representation	
to	condition	the	model		
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   DALL-E - Wrap-it up!

Idea:
• Given		(x,	y)	a	tuple	of	an	image	x	and	text	y.	
• Given	the	representation	of	an	image	z.	
• The	distribution	of	the	image	given	the	text	is:

Décodeur
Prior



Imagen

https://imagen.research.google/
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Architecture
• Uses a fixed and pertained encoder 

• Followed by a diffusion model to obtain a first 
image  

• Followed by a few other diffusion models to 
obtain images of higher and higher resolution

• The diffusion models use an attention 
mechanism on the text representation 

• The diffusion moles are parametrized using a 
U-Net

For example a transformer learned from a  
large-scale text dataset to predict the next word. 
No image!

https://arxiv.org/pdf/2205.11487 
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« Classifier-free » 
guidance

• The diffusion model is trained using two objectives 

1. Generate images from the text 

2. (Also) Generate images   

• This allows to obtain high-quality images (1) that 
are diversified (2) 

• Imagen proposes a method to ensure pixels don’t 
saturate during diffusion (somewhat similar problem 
to clipping in RNNs)
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Compared to Dall-E 2

• Better empirical performance 
(according to a human study) 

• “Alignment” -> “Does the caption 
accurately describe the above 
image”  

• “Fidelity” -> “Which image is more 
photorealistic” 

• Users a simpler architecture (no CLIP)
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The size of the text encoder is 
an important hyper-ammeter
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Alignment between images and the text

T5 XXL  (2.6B) 
-  Trans. Encodeur-Decodeur  

- Uses only the encoder

Comparatively, the size of the image  
generation model is less important

Nb. De paramètres du  
U-Net
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Still far from perfect…

• E.g., operations that require counting and logic 
remain difficult


