
Parallel computational paradigms for large-scale data processing

— Week #10

Machine Learning I
60629A

Laurent Charlin — 60629

Today

A. Faster computing for machine learning

• Specialized hardware

• Distributed computations

• Short introduction to MapReduce/Hadoop & Spark

Note: Most lectures so far used stats concepts. Today
we’ll turn to computer science.

2

Laurent Charlin — 60629

Data & Computation
• We generate massive quantities of data

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

2. Banks, insurance companies, etc.

3. Modestly-sized websites

• Both large n and large p

• In general computation will scale up with the data

• Often fitting an ML models requires one or multiple operations that looks
at the whole dataset

3

(source: internetlifestats.com)

w = (X�X)�1X�Ye.g., Linear regression

n

p

X Y

http://internetlifestats.com

Laurent Charlin — 60629

Issues with massive
datasets

1. Storage

2. Computation

4

Moore’s Law

[https://en.wikipedia.org/wiki/Moore%27s_law]

https://en.wikipedia.org/wiki/Moore's_law

Laurent Charlin — 60629

Modern Computation
paradigms

1. “Single” computers

• Large Computers

• 1,102 petaFlops*

6

3. Specialized hardware

• Focusses on subset of
operations

• Graphical Processing
Unit (GPU), Field
Programmable Gated
Array (FPGA)

• ~1,000 TFlops*

2. Distributed computation

• 2,3 exaFlops*
(Folding@home)

• Floating point operations per second (Flop)

• Smartphone ~ 11 TeraFlops

• 1 Tera: 1,000 Giga, 1 Peta: 1,000 Tera, 1 Exa: 1,000 Peta

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

*: these numbers are given as indications and are subject to changes and precisions.

GPUs & other
specialized hardware

Laurent Charlin — 60629

Hardware

• Central Processing Unit (CPU)

• Computer’s cognition

• Executes all the instructions from software

• Arithmetics, read/writes, logic, etc.

8

http://www.personal.psu.edu/users/d/l/dlm99/cpu.html

Laurent Charlin — 60629

Neural Networks
• Linear Algebra:

• Multiplication vector X matrix

• Neuron activation of multiple neurons

• Neuron activation for multiple datum

• Multiplication matrix X matrix

• Activation of multiple neurons for multiple datum

• The exact dimensions of these vector & matrix depend on
the data size (mini batch) and the number of neurons

9

Laurent Charlin — 60629

Parallelizing neural
network computations

• The values of C can be computed
independently from one another

• Matrix multiplication can be
parallelized

• When parallelizing we can then
obtain very significative gains

• Depend on the size of C

• In practice, divide in tiles

• Note: not all linear algebra operations can be as easily
parallelized. Notably, the matrix inverse.

10

=
BA C

<latexit sha1_base64="xh50jNfrLMCvJjt5iZCSMUVYOS4=">AAAD63icjVJdaxNBFJ0mftT1K9VHXwZDpWIMiRT1pdAmLfah1fqRtpBdwuzsTTrdmZ1lZjZNWPZHiG/iq+A/8FV/hv/G2SSUbhLQCwOXc+eee+/h+DFn2jQaf1ZK5WvXb9xcveXcvnP33v3K2oNjLRNFoUMll+rUJxo4i6BjmOFwGisgwudw4oftvH4yBKWZjD6ZcQyeIIOI9RklxkK9yrM2frKFd3ALuy522r2UnWc54upE9EK8Y4Eww61eGp5nvUq1UW9MAi8mzVlSRbM46q2VfriBpImAyFBOtO42G7HxUqIMoxwyx000xISGZABdm0ZEgPbSyVUZXrdIgPtS2RcZPEGd9SstqbC4BqWIyboaBPMlD7yrpCkRWo+Fb8kEMWd6vpaDy2rdxPRfeymL4sRARKe79BOOjcS5ijhgCqjhY5sQqpg9B9Mzogg1VuvCFF/K0BBf14jdc1wTCTdMyYvC7elkgRhoER0lEaMygDmUm5FRpCheMGSxnsk3mupnpdJgBGFRLl+6D3wIdk+C30ICl1U7Ny9v7LIBM7p2YG0R1d4ogPDpQkuB7/BS++cfrfQtK/1/kS7t+2dbtxPHoKg1+tYHGCScqNqBvCgi3nJux90Faz4Fh3bAO8tCjFSpu5elbj7S99O9LHOst5vzTl5Mjl/Umy/rm+83q9utmctX0SP0GG2gJnqFttE+OkIdRNFn9BP9Qr/Lovyl/LX8bfq1tDLreYgKUf7+F86MUQ8=</latexit>

C = AB

Cij =
X

k

AikBkj

A B

Tiles

Laurent Charlin — 60629

Specialized hardware

• Graphical Processing Unit (GPU)

• Initially designed for 3D games

• Specialized for linear algebra operations

• Thousands of cores (vs. a few tens for CPUs)

• Fast access to memory

• Multi-GPUs for a single computer

11
https://cryptomining-blog.com/tag/multi-gpu-mining-rig/

NVidia

Laurent Charlin — 60629

Even more specialized
hardware

• Tensorflow Processing Unit (TPU)

• Developed by Google for neural networks

• Supports matrix multiplication operations

• Training & Test

• Precision of operations is lower compared to GPUs

• Multiple TPUs per “machine”

12

https://en.wikipedia.org/wiki/Tensor_Processing_Unit

Laurent Charlin — 60629

https://colab.research.google.com/github/lcharlin/
80-629/blob/master/week10-ParallelComputations/
CPU_GPU_TPU.ipynb

• With a few small changes, we can start using a GPU
or even a TPU (Google platform only)

13

https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb

Laurent Charlin — 60629

Distributed Computing

• Faster computers can help

• What about a large of “slow” computers working together?

• Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

14

Laurent Charlin — 60629

Building our intuition
with a simple example

• You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):

• Ask a marathon runner to jog around the city and count

• Build a system to count houses from satellite imagery

2. Distributed (many computers):

• Ask 1,000 people to each count houses from a small
geographical area

• Once they are done they report their result at your HQ

15

Distributed Computing
using MapReduce

Laurent Charlin — 60629

Outline

• MapReduce

• Fundamentals and bag-of-words example

• Spark

• Fundamentals & MLlib

17

Laurent Charlin — 60629

MapReduce

• From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”,
Jeffrey Dean and Sanjay Ghemawat, 2004

• Now also known as (Apache) Hadoop

• Google built large-scale computation from commodity hardware

• Specific distributed interface

• Useful for algorithms that can be expressed using this interface

18

Laurent Charlin — 60629

MapReduce
• Two types of tasks:

A. Map: Solve a subproblem (filtering operation)

• Sorting is then performed

B. Reduce: Combine the results of map workers (summary operation)

19

Map

Reduce

Initial
Problem Solution

.

.

.

.

.

.

.

.

.

Laurent Charlin — 60629

A. Map

B. Reduce

TASK: Create a document’s
bag-of-word representation

.

.

.

.

.

.

.

.

.

The black dog
A black cat

The blue cat
.
.
.

The black dog

The blue cat

A black cat

The, 1
 black, 1
dog, 1

A, 1
black, 1

cat, 1

The, 1
 blue, 1
 cat, 1

Partition
by key

The, 1
The, 1

 black, 1
black, 1
dog, 1
cat, 1
cat, 1

The, 2
black, 2
dog, 1
cat, 2

.

.

.

Laurent Charlin — 60629

Some details
• Typically the number of subproblems is higher than

the number of available machines

• ~linear speed-up wrt to the number of machines

• If a node crashes, need to recompute its subproblem

• Input/Output

• Data is read from disk when beginning map/reduce

• Data is written to disk at the end of map/reduce

21

Laurent Charlin — 60629

MapReduce is quite
versatile

• When I was at Google the saying was (roughly):

“If your problem cannot be framed as MapReduce you
haven’t thought hard enough about your problem.”

• A few examples of “map-reduceable” problems:

• Intuition: Your problem needs to be decomposable into
map functions and reduce functions

• Sorting, filtering, distinct values, basic statistics

• Finding common friends, sql-like queries, sentiment
analysis

22

Laurent Charlin — 60629

MapReduce for machine
learning

1. Training linear regression

• Reminder: there is a closed-form solution

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

3. Hyper-parameter search

• A neural network with 2 hidden layers and 5 hidden units per layer and another
with 3 hidden layers and 10 hidden units

23

w = (X�X)�1X�Y

w = (
�

ij

X�
i Xj)

�1(
�

i

X�
i Yi)

•Each term in the sums can be
 computer independently

A. Map

X�
0 X1

Laurent Charlin — 60629

Shortcomings of
MapReduce

• Many models are fitted with iterative algorithms

• Gradient descent:

1. Find the gradient for the current set parameters

2. Update the parameters with the gradient

• Not ideal for MapReduce

• Would require several iterations of MapReduce

• Each time the data is read/written from/to the disk

24

Distributed
computing using

Apache Spark

Laurent Charlin — 60629

(Apache) Spark
• Advantages over MapReduce

1. Less restrictive computations graph
(DAG instead of Map then Reduce)

• Doesn’t have to write to disk in-between operations

2. Richer set of transformations

• map, filter, cartesian, union, intersection, distinct,
etc.

3. In-memory processing

26

Initial
Problem

Solution

Laurent Charlin — 60629

Spark History
• Started in Berkeley’s AMPLab (2009)

• Version 1.0 2014

• Based on Resilient Distributed Datasets (RDDs)

• Version 2.0 June 2016

• V2.3 February 2018, V2.4.4 September 2019, V3.5.4 September 2024

• Pyton + Spark: pySpark

• Good (current) documentation:

1. Advanced Analytics with Spark, 2nd edition (2017).

2. Project docs: https://spark.apache.org/docs/latest/

27

https://spark.apache.org/docs/latest/

Laurent Charlin — 60629

DataFrames

• An extra abstraction on top of RDDs (resilient distributed
datasets)

• Encodes rows as a set of columns

• Each column has a defined type

• Useful for (pre-processed) machine learning datasets

• Same name as data.frame (R) or pandas.DataFrame

• Similar type of abstraction but for distributed datasets

• Two types of operations (for our needs): transformers, estimators.

28

Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

DataFrame

Estimator

Laurent Charlin — 60629

Parallel gradient descent

• Logistic Regression

• No closed-form solution, can use gradients

• Loss functions are often decomposable

30

y =
1

1+ exp(�w0 �w1x1 �w2x2 � . . . �wpxp)

∂
∑

j Loss(Yj,Xj,w)

∂wi

∂ Loss(Y,X,w)

∂wi

.

.

.

.

.

.

.

.

.

∂ Loss(Y0,X0,w)

∂wi

∂ Loss(Yn,Xn,w)

∂wi

∂ Loss(Y1,X1,w)

∂wi

∂ Loss(Y2,X2,w)

∂wi

ML setup

https://spark.apache.org/docs/latest/ml-guide.html

Load your data as a
Spark DataFrame

1. 2.

https://spark.apache.org/docs/latest/ml-guide.html

Laurent Charlin — 60629

Takeaways
• Specialized hardware

• The go-to method for neural nets training

• Distributed computing is useful:

• for large-scale data (e.g., data that does not fit on a single computer)

• for faster computing (when you have multiple available computers)

• Current frameworks (e.g., spark) offer easy access to popular ML models +
algorithms

• Useful speedups by decomposing the computation into a number of
identical smaller pieces

• Still requires some engineering/coding

32

