Machine Learning |
60629A

Parallel computational paradigms for large-scale data processing
— Week #10

Today

A. Faster computing for machine learning
e Specialized hardware
e Distributed computations
e Short introduction to MapReduce/Hadoop & Spark

Note: Most lectures so far used stats concepts. Today
we'll turn to computer science.

Laurent Charlin — 60629 2

Data & Computation

e We generate massive quantities of data
1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s

(source: internetlifestats.com)

2. Banks, insurance companies, etc.

3. Modestly-sized websites P
« Both large n and large p i ' H

e In general computation will scale up with the data

o Often fitting an ML models requires one or multiple operations that looks
at the whole dataset

e.g., Linear regression w = (X'X)7'X'Y

Laurent Charlin — 60629 3

http://internetlifestats.com

lssues with massive
datasets

1. Storage

2. Computation

Moore’s Law: The number of transistors on microchips doubles every two years [o¥aWeul

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2IRU €AMD Epyc Rome
72-core Xeon Phj Centrig 2400 © © AWS Graviton?
N o SCPARC fl\]/17 \ 32 core AMD Epyc
Z torage Controller /\pplc A12X Bionic
10,000,000,000 18-core Xeon Haswell-E5 HiSilicon Kirin 990 5G
Xbox One main SoC < Apple A13 (iPhone 11 Pro)
5,000,000,000 61-core-Xeon Phi € 8 . QAMD Ryzen 7 3700X
12-core POWERS —»8 < ™ HiSilicon Kirin 710
8-core Xeon Nehalem-EXN gg) clom CO'SC i7 Biroadu(élé E
ualicomm I]c][)(ragon)
Dual- COISC[XH%CF)]IISIﬁ%OH 74000 8 8 Dual-core + GPU lIris Core i7 Broadwell-U
\'4 Quad-core + GPU GT2 Core i7 Skylake K
1,000;000:000 Pentium D Presler OWERS § L 4 a oS Quad core + GPU Core i/ Haswell
S D wi Apple A7 (dual-core ARMé64 "mobile SoC")
SO0,000,000 Itsnl\lhj&é(\.%gho\ °A§%O;<Clg Qu?d A
13
ltanium 2 Madison 6M €p ‘Core 2 Dué‘\/vf) ch?;I%

Pentium D Smithfield<_ -ore 2. Duo Conroe
ltanium 2 McKlnlcyo ell Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M €p w\QCoro 2 Duo Allendale

100 OOO OOO Pentium 4 Cedar Mill
’ ’ AMD K8@p Pentium 4 Prescott
S0,000,000 Pentium 4 Northw /oodo QBarton S

' Pentium 4 Wll‘lametteo oPennum Il Tualatin
Pentium Il Mobile Dixon QARM Cortex-A9

AMD K7 € Pentium Il Coppermine

10,000,000 ke AMD K6-Il] -
Penhﬁublll f}(attmal
SOOO OOO Bl i fis gugﬁenhuml eschutes
d d \ 4 I<hnnth
Pentium
o AMD K5
SA-°110
1,000,000 ntel 5995% Mkunoo
00,000 "EPaitie -
Intel 80386 | tel o €@ ARM 3
Motorola 68()2006v | 603
100,000 Intelg()’z&’ MUt <
Motorola - ? ARM
50,000 . 4 €©Intel 80186 VRO
Intel 8086€¢p € Intel 8088 o Q/LRM 2 AR?A 6
o/\Rw
Motorola i
10,000 151000 - zitog 289 6069 g M) 7
5,000 ® reazs ntel 085 07
Intel 8008 Intel 8080
o 0 Matotala 65%3 Technology
Intel 4004 36
1,000
AP I TR SR L g S SRR | G- L S SIS U G s S S N RN R N
AN RN NN N O NN O N O N N RN GRS SIS ML SIS SR S U S S U S S

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced [https://fen.wikipedia.org/wiki/Moore%27s_law]
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

https://en.wikipedia.org/wiki/Moore's_law

Modern Computation

« Floating point operations per second (Flop) °
paradigms

« Smartphone ~ 11 TeraFlops

« 1Tera: 1,000 Giga, 1 Peta: 1,000 Tera, 1 Exa: 1,000 Peta

1. “Single” computers 2. Distributed computation 3. Specialized hardware
e Large Computers e 2,3 exaFlops™ e Focusses on subset of
(Folding@home) operations

e 1,102 petaFlops*
e Graphical Processing
https://www.top500.org/lists/top500/list/2020/06/ U N it (G P U) FI e | d

D\D Programmable Gated

Array (FPGA)

\ P B -
g | | r aae
| e i ™
Photo from Riken D

*. these numbers are given as indications and are subject to changes and precisions.
Laurent Charlin — 60629 6

GPUs & other
specialized hardware

Hardware

o« Central Processing Unit (CPU)

http://www.personal.psu.edu/users/d/I/dIm99/cpu.html

« Computer’s cognition
e Executes all the instructions from software

« Arithmetics, read/writes, logic, etc.

Laurent Charlin — 60629 8

Neural Networks

e Linear Algebra:
o Multiplication vector X matrix
e Neuron activation of multiple neurons
e Neuron activation for multiple datum

o Multiplication matrix X matrix

o Activation of multiple neurons for multiple datum

e The exact dimensions of these vector & matrix depend on
the data size (mini batch) and the number of neurons

Laurent Charlin — 60629 9

Parallelizing neural
network computations

e The values of C can be computed

A B C independently from one another
— o Matrix multiplication can be
parallelized
e When parallelizing we can then

obtain very significative gains

A B
C=AB e Depend on the size of C
Tiles o In practice, divide in tiles

« Note: not all linear algebra operations can be as easily
parallelized. Notably, the matrix inverse.

Laurent Charlin — 60629

Specialized hardware

e Graphical Processing Unit (GPU)

e Initially designed for 3D games

NVidia

e Specialized for linear algebra operations
e Thousands of cores (vs. a few tens for CPUs)
e Fast access to memory

« Multi-GPUs for a single computer

https://cryptomining-blog.com/tag/multi-gpu-mining-rig/
Laurent Charlin — 60629 11

Even more specialized
hardware

1, 2% B . Tensorflow Processing Unit (TPU)

e Developed by Google for neural networks

https://fen.wikipedia.org/wiki/Tensor_Processing_Unit

e« Supports matrix multiplication operations
e Training & Test
e Precision of operations is lower compared to GPUs

« Multiple TPUs per “machine”

Laurent Charlin — 60629 12

https://colab.research.google.com/github/Icharlin/
80-629/blob/master/weekl0-ParallelComputations/

CPU_GPU_TPU.ipynb

e With a few small changes, we can start using a GPU
or even a TPU (Google platform only)

Laurent Charlin — 60629 13

https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb

Laurent Charlin — 60629

Distributed Computing

« Faster computers can help

« What about a large of “slow” computers working together?

o Divide the computation into small problems

1. All (slow) computers solve a small problem at the
same time

2. Combine the solution of small problems into initial
solution

14

Laurent Charlin — 60629

Building our intuition
with a simple example

e You are tasked with counting the number of houses in Montreal
1. Centralized (single computer):
« Ask a marathon runner to jog around the city and count
o Build a system to count houses from satellite imagery
2. Distributed (many computers):

e Ask 1,000 people to each count houses from a small

geographical area

e Once they are done they report their result at your HQ

15

Distributed Computing
using MapReduce

Outline

« MapReduce
« Fundamentals and bag-of-words example
e Spark

e Fundamentals & MLIib

Laurent Charlin — 60629 17

MapReduce

e From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”,
Jeffrey Dean and Sanjay Ghemawat, 2004

e Now also known as (Apache) Hadoop

e Google built large-scale computation from commodity hardware

o Specific distributed interface

o Useful for algorithms that can be expressed using this interface

Laurent Charlin — 60629 18

MapReduce

e Two types of tasks:
A. Map: Solve a subproblem (filtering operation)
e Sorting is then performed

B. Reduce: Combine the results of map workers (summary operation)

Map

Reduce
Initial .
— Solution

Problem

Laurent Charlin — 60629 19

TASK: Create a document'’s

bag-of-word representation

The black dog
A black cat
The blue cat

Laurent Charlin — 60629

The black dog

A black cat

The blue cat

A. Map

The, 1
black, 1
dog, 1

~~—

Partition
by key

The, 1

The, 1
black, 1 \
black, 1

dogr1 _>

cat, 1
cat, 1

B. Reduce

The, 2
black, 2
dog, 1
cat, 2

Some detalls

o Typically the number of subproblems is higher than
the number of available machines

e ~linear speed-up wrt to the number of machines
e If a node crashes, nheed to recompute its subproblem
e INnput/Output

« Data is read from disk when beginning map/reduce

o Data is written to disk at the end of map/reduce

Laurent Charlin — 60629 21

MapReduce Is quite
versatile

« When | was at Google the saying was (roughly):

“If your problem cannot be framed as MapReduce you
haven’t thought hard enough about your problem.”

e A few examples of “map-reduceable” problems:

e Intuition: Your problem needs to be decomposable into
map functions and reduce functions

e Sorting, filtering, distinct values, basic statistics

« Finding common friends, sql-like queries, sentiment
analysis

Laurent Charlin — 60629 22

MapReduce for machine
learning

1. Training linear regression

e Reminder: there is a closed-form solution

W — (XTX)_1XTY «Each term in the sums can be
computer independently

W — (XTX)—'I(XTY) A. Map
zij: 1“7 z,: |

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)
3. Hyper-parameter search

o A neural network with 2 hidden layers and 5 hidden units per layer and another
with 3 hidden layers and 10 hidden units

Laurent Charlin — 60629 23

Shortcomings of
MapReduce

« Many models are fitted with iterative algorithms
o Gradient descent:
1. Find the gradient for the current set parameters
2. Update the parameters with the gradient
« Not ideal for MapReduce
« Would require several iterations of MapReduce
o Each time the data is read/written from/to the disk

Laurent Charlin — 60629 24

Distributed
computing using
Apache Spark

(Apache) Spark

« Advantages over MapReduce

R Solution
1. Less restrictive computations graph itia e N
(DAG instead of Map then Reduce) o /

- Doesn’t have to write to disk in-between operations
2. Richer set of transformations

- map, filter, cartesian, union, intersection, distinct,
etc.

3. In-memory processing

Laurent Charlin — 60629 26

Spark History

o Started in Berkeley's AMPLab (2009)
e Version 1.0 2014

« Based on Resilient Distributed Datasets (RDDs)
e Version 2.0 June 2016

e V2.3 February 2018, V2.4.4 September 2019, V3.5.4 September 2024
e Pyton + Spark: pySpark
e Good (current) documentation:

1. Advanced Analytics with Spark, 2nd edition (2017).

2. Project docs: https://spark.apache.org/docs/latest/

Laurent Charlin — 60629 27

https://spark.apache.org/docs/latest/

DataFrames

« An extra abstraction on top of RDDs (resilient distributed
datasets)

e Encodes rows as a set of columns
e Each column has a defined type
o Useful for (pre-processed) machine learning datasets
e Same name as data. frame (R) or pandas.DataFrame
o Similar type of abstraction but for distributed datasets

« Two types of operations (for our needs): transformers, estimators.

Laurent Charlin — 60629 28

Spark’s “Hello World”

— data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)

Parallel gradient descent

e« Logistic Regression

1
T+ exp(—Wo — WXy — WXz — ... — WpXp)

e No closed-form solution, can use gradients

0 Loss(Y, X, w)

@Wi 0 Loss (Yo, Xo, W)
OW;
e Loss functions are often decomposable 9 Loss(Yy, X1, W)
8Wi
0 Loss(Y2, Xa, vﬁ

0 Loss(Yn, Xn, W)
8wi

OW; |

Laurent Charlin — 60629 30

ML setup

1. 2.
Machine Learning Library (MLlIib) Guide

MLIib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level,
it provides tools such as:

« ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
« Featurization: feature extraction, transformation, dimensionality reduction, and selection

» Pipelines: tools for constructing, evaluating, and tuning ML Pipelines

» Persistence: saving and load algorithms, models, and Pipelines

Loa d yO u r d a ta a S a Utilities: linear algebra, statistics, data handling, etc.
Spark DataFrame

Classification and Regression - RDD-based API

The spark.mllib package supports various methods for binary classification, multiclass classification, and regression analysis.
The table below outlines the supported algorithms for each type of problem.

Problem Type Supported Methods

Binary linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes
Classification

Multiclass logistic regression, decision trees, random forests, naive Bayes
Classification

Regression linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees,
isotonic regression

https://spark.apache.org/docs/latest/ml-guide.html

https://spark.apache.org/docs/latest/ml-guide.html

Takeaways

e Specialized hardware
e The go-to method for neural nets training
e Distributed computing is useful:
o for large-scale data (e.g., data that does not fit on a single computer)
o for faster computing (when you have multiple available computers)

e Current frameworks (e.g., spark) offer easy access to popular ML models +
algorithms

o Useful speedups by decomposing the computation into a number of
identical smaller pieces

« Still requires some engineering/coding

Laurent Charlin — 60629 32

