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Today

A. Faster computing for machine learning 

• Specialized hardware 

• Distributed computations  

• Short introduction to MapReduce/Hadoop & Spark 

Note: Most lectures so far used stats concepts. Today 
we’ll turn to computer science.
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Data & Computation
• We generate massive quantities of data 

1. Google 4K searches/s, Twitter: 6K tweets/s, Amazon: 100s sold products/s 

2. Banks, insurance companies, etc. 

3. Modestly-sized websites 

• Both large n and large p 

• In general computation will scale up with the data 

• Often fitting an ML models requires one or multiple operations that looks 
at the whole dataset
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(source: internetlifestats.com)

w = (X�X)�1X�Ye.g., Linear regression
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Issues with massive 
datasets

1. Storage 

2. Computation
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Moore’s Law

[https://en.wikipedia.org/wiki/Moore%27s_law]

https://en.wikipedia.org/wiki/Moore's_law
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Modern Computation 
paradigms

1. “Single” computers 

• Large Computers 

• 1,102 petaFlops*
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3. Specialized hardware  

• Focusses on subset of 
operations 

• Graphical Processing 
Unit (GPU), Field 
Programmable Gated 
Array (FPGA) 

• ~1,000 TFlops*

2. Distributed computation 

• 2,3 exaFlops*  
(Folding@home)

• Floating point operations per second (Flop) 

• Smartphone ~ 11 TeraFlops 

• 1 Tera: 1,000 Giga, 1 Peta: 1,000 Tera, 1 Exa: 1,000 Peta

https://www.top500.org/lists/top500/list/2020/06/

Photo from Riken

*: these numbers are given as indications and are subject to changes and precisions.



GPUs & other 
specialized hardware
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Hardware

• Central Processing Unit (CPU) 

• Computer’s cognition 

• Executes all the instructions from software 

• Arithmetics, read/writes, logic, etc.
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http://www.personal.psu.edu/users/d/l/dlm99/cpu.html
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Neural Networks
• Linear Algebra: 

• Multiplication vector X matrix 

• Neuron activation of multiple neurons  

• Neuron activation for multiple datum  

• Multiplication matrix X matrix 

• Activation of multiple neurons for multiple datum 

• The exact dimensions of these vector & matrix depend on 
the data size (mini batch) and the number of neurons
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Parallelizing neural 
network computations

• The values of C can be computed 
independently from one another 

• Matrix multiplication can be 
parallelized  

• When parallelizing we can then 
obtain very significative gains 

•  Depend on the size of C 

• In practice, divide in tiles 

• Note: not all linear algebra operations can be as easily 
parallelized. Notably, the matrix inverse.
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Specialized hardware

• Graphical Processing Unit (GPU) 

• Initially designed for 3D games 

• Specialized for linear algebra operations 

• Thousands of cores (vs. a few tens for CPUs) 

• Fast access to memory 

• Multi-GPUs for a single computer
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https://cryptomining-blog.com/tag/multi-gpu-mining-rig/

NVidia
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Even more specialized 
hardware

• Tensorflow Processing Unit (TPU) 

• Developed by Google for neural networks 

• Supports matrix multiplication operations 

• Training & Test 

• Precision of operations is lower compared to GPUs 

• Multiple TPUs per “machine”
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https://en.wikipedia.org/wiki/Tensor_Processing_Unit
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https://colab.research.google.com/github/lcharlin/
80-629/blob/master/week10-ParallelComputations/
CPU_GPU_TPU.ipynb  

• With a few small changes, we can start using a GPU 
or even a TPU (Google platform only)
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https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
https://colab.research.google.com/github/lcharlin/80-629/blob/master/week10-ParallelComputations/CPU_GPU_TPU.ipynb
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Distributed Computing

• Faster computers can help 

• What about a large of “slow” computers working together? 

• Divide the computation into small problems 

1. All (slow) computers solve a small problem at the 
same time 

2. Combine the solution of small problems into initial 
solution
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Building our intuition 
with a simple example

• You are tasked with counting the number of houses in Montreal 

1. Centralized (single computer): 

• Ask a marathon runner to jog around the city and count 

• Build a system to count houses from satellite imagery 

2. Distributed (many computers): 

• Ask 1,000 people to each count houses from a  small 
geographical area 

• Once they are done they report their result at your HQ
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Distributed Computing 
using MapReduce
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Outline

• MapReduce 

• Fundamentals and bag-of-words example 

• Spark 

• Fundamentals & MLlib
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MapReduce

• From Google engineers 

“MapReduce: Simplified Data Processing on Large Clusters”, 
Jeffrey Dean and Sanjay Ghemawat, 2004 

• Now also known as (Apache) Hadoop 

• Google built large-scale computation from commodity hardware 

• Specific distributed interface 

• Useful for algorithms that can be expressed using this interface
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MapReduce
• Two types of tasks:  

A. Map: Solve a subproblem (filtering operation) 

• Sorting is then performed 

B. Reduce: Combine the results of map workers (summary operation)
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A. Map

B. Reduce

TASK: Create a document’s 
bag-of-word representation

. 

. 

.

. 

. 

.

. 

. 

.

The black dog 
A black cat 

The blue cat 
. 
. 
.

The black dog

The blue cat

A black cat

The, 1 
 black, 1  
dog, 1

A, 1  
black, 1  

cat, 1

The, 1 
 blue, 1 
 cat, 1

Partition 
by key

The, 1 
The, 1 

 black, 1 
black, 1  
dog, 1 
cat, 1 
cat, 1

The, 2 
black, 2 
dog, 1 
cat, 2 

. 

. 

.
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Some details
• Typically the number of subproblems is higher than 

the number of available machines 

• ~linear speed-up wrt to the number of machines 

• If a node crashes, need to recompute its subproblem 

• Input/Output 

• Data is read from disk when beginning map/reduce 

• Data is written to disk at the end of map/reduce
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MapReduce is quite 
versatile 

• When I was at Google the saying was (roughly): 

“If your problem cannot be framed as MapReduce you 
haven’t thought hard enough about your problem.” 

• A few examples of “map-reduceable” problems: 

• Intuition: Your problem needs to be decomposable into 
map functions and reduce functions 

• Sorting, filtering, distinct values, basic statistics 

• Finding common friends, sql-like queries, sentiment 
analysis
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MapReduce for machine 
learning

1. Training linear regression 

• Reminder: there is a closed-form solution 

2. Other models we studied have a closed form solution (e.g., Naive Bayes and LDA) 

3. Hyper-parameter search 

• A neural network with 2 hidden layers and 5 hidden units per layer and another 
with 3 hidden layers and 10 hidden units
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Shortcomings of 
MapReduce

• Many models are fitted with iterative algorithms 

• Gradient descent:  

1. Find the gradient for the current set parameters 

2. Update the parameters with the gradient 

• Not ideal for MapReduce  

• Would require several iterations of MapReduce 

• Each time the data is read/written from/to the disk
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Distributed 
computing using 

Apache Spark
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(Apache) Spark
• Advantages over MapReduce 

1. Less restrictive computations graph                                    
(DAG instead of Map then Reduce)  

• Doesn’t have to write to disk in-between operations 

2. Richer set of transformations 

• map, filter, cartesian, union, intersection, distinct, 
etc. 

3. In-memory processing

26

Initial 
Problem

Solution
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Spark History
• Started in Berkeley’s AMPLab (2009)  

• Version 1.0 2014 

• Based on Resilient Distributed Datasets (RDDs) 

• Version 2.0 June 2016 

• V2.3 February 2018, V2.4.4 September 2019, V3.5.4 September 2024 

• Pyton + Spark: pySpark 

• Good (current) documentation:  

1. Advanced Analytics with Spark, 2nd edition (2017). 

2. Project docs: https://spark.apache.org/docs/latest/ 

27

https://spark.apache.org/docs/latest/
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DataFrames

• An extra abstraction on top of RDDs (resilient distributed 
datasets) 

• Encodes rows as a set of columns  

• Each column has a defined type 

• Useful for (pre-processed) machine learning datasets 

• Same name as data.frame (R) or pandas.DataFrame 

• Similar type of abstraction but for distributed datasets 

• Two types of operations (for our needs): transformers, estimators.
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Spark’s “Hello World”

data = spark.read.format("libsvm").load("hdfs://...") 

model = LogisticRegression(regParam=0.01).fit(data)

DataFrame

Estimator
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Parallel gradient descent

• Logistic Regression 

• No closed-form solution, can use gradients 

• Loss functions are often decomposable
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ML setup

https://spark.apache.org/docs/latest/ml-guide.html

Load your data as a  
Spark DataFrame

1. 2.

https://spark.apache.org/docs/latest/ml-guide.html
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Takeaways
• Specialized hardware  

• The go-to method for neural nets training 

• Distributed computing is useful:  

• for large-scale data (e.g., data that does not fit on a single computer) 

• for faster computing (when you have multiple available computers)  

• Current frameworks (e.g., spark) offer easy access to popular ML models + 
algorithms 

• Useful speedups by decomposing the computation into a number of 
identical smaller pieces 

• Still requires some engineering/coding
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