Machine Learning I 80-629

Apprentissage Automatique I 80-629

Machine Learning fundamentals

— Week #2

Today: what's a machine learning problem

- Core concepts
 - Modeling and parameters
 - Bias/Variance
 - Overfitting
 - Representing uncertainty

- Types of learning problems
 - Supervised learning (generative and discriminative models)
 - Unsupervised learning
 - Reinforcement learning

Capsules

- 1. Machine Learning problem
- 2. Types of Learning problems
- 3. A first Supervised Model
- 4. Model Evaluation
- 5. Regularization
- 6. Bias/Variance

- I will follow the exposition of Chapter 5 in "Deep Learning".
 - "Operational" approach vs. a decision-theoretic/ probabilistic approach

The components of a learning problem

- I will follow the exposition of Chapter 5 in "Deep Learning"
 - "Operational" approach vs. a decision-theoretic/ probabilistic approach

Three main components

- Task (T)
- Performance measure (P)
- Experience (E)

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, measured by P, improves with experience E."

-Tom Mitchell (1997)

- The end goal(s). The question you are answering.
- For example:
 - Self-driving
 - Differentiate cats from dogs
 - Recommend movies of interest to users
 - Select a good portfolio of stocks

Determine the price of houses?

- Determine the price of houses?
 - Encode houses into a set of features
 - area, number of rooms (bedrooms, bathrooms), municipal evaluation, neighborhood, etc.

- Determine the price of houses?
 - Encode houses into a set of features
 - area, number of rooms (bedrooms, bathrooms), municipal evaluation, neighborhood, etc.

Function from feature to house price

f: price

 $\mathbf{f}:\mathbb{R}^{\mathbf{n}}
ightarrow \mathbb{R}^{+}$

Example tasks

• Regression: Assign a real value to an example

$$f:\mathbb{R}^{n}
ightarrow\mathbb{R}$$

Classification: Classify instances in one of k classes

$$f:\mathbb{R}^{n}
ightarrow \{1,\ldots,k\}$$

Clustering: Assign each instance to a cluster

$$f:\mathbb{R}^n o \{1,\ldots,k\}$$

More examples

• Transcription (e.g., document classification)

$$\mathbf{f}: \mathbb{R}^{\mathbf{n} imes \mathbf{m}} o \mathbb{R}^{\mathbf{k}}$$

• Multi-label classification (e.g., tag prediction)

$$f:\mathbb{R}^n \to \{0,1\}^m$$

Translation (e.g., sentence from French to English)

$$f:\mathbb{R}^n o \mathbb{R}^m$$

Model

- functions f are examples of models
 - Model is a simpler representation of the world

13

https://www.istockphoto.com/ca/photos/toy-car

Has parameters (w)
 Model #1:

$$f(x; w) = w_1x_1 + w_2x_2 + \ldots + w_nx_n$$

$$\mathsf{f}:\mathbb{R}^\mathsf{n} o \mathbb{R}$$

$$f(x; w) = w_1x_1 + w_2x_1^2 + w_3x_2 + ... + w_{n+1}x_n$$

How to quantify the "goodness" of f? How to compare models?

- How to quantify the "goodness" of f? How to compare models?
 - Specific to the task at hand
 - E.g., linear regression: squared error

- How to quantify the "goodness" of f? How to compare models?
 - Specific to the task at hand
 - E.g., linear regression: squared error

$$\frac{1}{P} := \sum_{i} (f(x_i) - y_i)^2$$

 f_1 is better than f_2 if $P_1 > P_2$

- How to quantify the "goodness" of f? How to compare models?
 - Specific to the task at hand
 - E.g., linear regression: squared error

$$\frac{1}{P} := \sum_{i} (f(x_i) - y_i)^2$$

 f_1 is better than f_2 if $P_1 > P_2$

- Encodes knowledge of what's important
 - A model with perfect performance behaves perfectly
- Examples: accuracy, error rate, log-probability, F score.

Experience (E)

- What data does f experience?
 - (Focus on algorithms that experience whole datasets)
 - Unsupervised. Examples alone.

$$\{x_i\}_{i=0}^n$$

Supervised. Examples come with labels.

$$\{(x_i,y_i)\}_{i=0}^n$$

Different types of experience

- 1. Unsupervised Learning
- 2. Supervised Learning
- 3. Reinforcement Learning

Recall

Experience (E)

- What data does f experience?
 - (Focus on algorithms that experience whole datasets)
 - Unsupervised. Examples alone.

$$\{x_i\}_{i=0}^n$$

Supervised. Examples come with labels.

$$\{(x_i,y_i)\}_{i=0}^n$$

• Experience examples alone

$$\{x_i\}_{i=0}^n$$

• Experience examples alone

$$\{x_i\}_{i=0}^n$$

• Learn "useful properties of the structure of the data"

• Experience examples alone

$$\{x_i\}_{i=0}^n$$

- Learn "useful properties of the structure of the data"
 - E.g., Clustering

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

• Experience examples alone

$$\{x_i\}_{i=0}^n$$

- Learn "useful properties of the structure of the data"
 - E.g., Clustering
- Probabilistic models

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

• Density modeling p(x), PCA, FA.

Example from a non-linear dimensionality reduction technique (tsne) https://lvdmaaten.github.io/tsne/

2. Supervised

Experience examples and their label(s)

$$\{(x_i, y_i)\}_{i=0}^n$$

• Given an example (x) predict its label (y)

$$f: X \rightarrow Y$$

• E.g., regression, classification

[https://en.wikipedia.org/wiki/Regression_analysis]

Distinction can be blurry

Supervised data modeled jointly:

$$(\mathbf{x}, \mathbf{y}), \ \mathbf{p}(\mathbf{y} \mid \mathbf{x}) = \frac{\mathbf{p}(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{y}'} \mathbf{P}(\mathbf{x}, \mathbf{y}')}$$

Unsupervised data modeled as supervised data:

$$x \in \mathbb{R}^n, \ p(x) = \prod_{i=1}^n p(x_i \mid x_1, \ldots, x_{i-1}) P(x_0)$$

Conditional model: P(y | x)

Generative model: P(y, x)

Semi-supervised learning

 Idea: Can we augment a supervised dataset with unsupervised data

$$(\{(x_i,y_i)\}_{i=0}^n,\{x_j\}_{j=0}^m)$$

- Unlabelled data are cheap (images on the web).
 Labeled data are expensive
- Can the unlabelled data help model x and yield a better model for y?

[Dog]

3. Reinforcement learning

- The algorithm interacts with the environment
 - The algorithm observes its environment. Prototypical example is a robot navigating a maze

[https://www.oreilly.com/ideas/reinforcement-learning-explained]

The resulting dataset depends on the algorithm's choices

A first supervised example

Dataset(s)

- Each instance: Xi
- A dataset is a set of instances: $\{x_i\}$
- Often denoted as a matrix X, (design matrix)

 - (assumes that all instances can be encoded using a fixed-size vector)

Concrete full example: Linear regression

$$\begin{aligned} y_i &= w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2} + \dots + w_p x_{ip} \\ &= \sum_{j=0}^p w_j x_{ij} = w^\top x_i \end{aligned}$$

- W is a vector of parameters (weights)
 - W_j represents the effect of feature j on y
- Task: predict y from x using W Xi

Concrete full example: Linear regression

$$\mathbf{y} = \mathbf{w}^{\top} \mathbf{x}$$

- Task: predict y_i from x_i using $\mathbf{W}^{\top} \mathbf{X}_i$
- Performance: mean squared error

$$\begin{aligned} \text{MSE} &:= \frac{1}{n} \sum_{i} (y_i - w^\top x_i)^2 \\ &= \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2 \end{aligned}$$

• **Experience:** {(x,y)}

How do you find optimal parameters?

 Optimize the MSE with respect to the parameters of the model

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i} (\mathbf{y}_{i} - \mathbf{w}^{\top} \mathbf{x}_{i})^{2}$$

 Take the gradient of the MSE. Set equation to 0 and solve.

Take gradient of the Loss wrt its parameters

$$\begin{split} \nabla_{\mathbf{w}} L(\mathbf{w}) &= \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i} (\mathbf{y}_{i} - \mathbf{w}^{\top} \mathbf{x}_{i})^{2} \\ &= \frac{1}{n} \sum_{i} \nabla_{\mathbf{w}} (\mathbf{y}_{i} - \mathbf{w}^{\top} \mathbf{x}_{i})^{2} \\ &= \frac{1}{n} \sum_{i} 2(\mathbf{y}_{i} - \mathbf{w}^{\top} \mathbf{x}_{i})(-\mathbf{x}_{i}) \end{split}$$

Set gradient to 0.

$$\begin{split} 0 &= \frac{1}{n} \sum_i (-2x_i y_i + 2(w^\top x_i) x_i) \\ \Rightarrow \sum_i 2(w^\top x_i) x_i &= \sum_i 2x_i y_i \\ \Rightarrow w(X^\top X) &= X^\top Y \\ \Rightarrow w &= (X^\top X)^{-1} X^\top Y \end{split}$$

$y = w_1x_1$

[Figure 5.1, Chapter 5, Deep Learning]

Model evaluation

The goal of ML

- Predict on new inputs (X^{new})
 - Given the price of houses this year (X, Y), I want to predict the price of houses next year (X^{new})

	Nb.bed.	Area	Neigh.	•	•		Price		
x _o	1	0	0	0	0] y _o [125000		
X 1	1	100	1	.2	.5	y 1	150000		
X ₂	3	200	0	.1	.2	y ₂	350000		
X3	1	150	1	.4	.1	y 3	275000		
X4	2	210	2	.5	1.1		225000		
X							Y		

	Nb.bed.	Area	Neigh.	•	•		Price
x _o	1	0	0	0	0] y _o [?]
x ₁	2	50	1	.3	.8	y 1	?
x ₂	1	100	1	.5	1.4	y ₂	?
X ₃	4	170	0	.7	.4	y ₃	?
X4	1	120	3	.9	.5	у 4 [?
		Ynew					

• We can use our estimated ($\hat{\mathbf{w}}$): $\mathbf{Y}^{\text{new}} = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{X}^{\text{new}}$

Generalization

- Loss^(X,Y): The one you can evaluate
- Loss^(Xnew,Ynew): The one that you care about

• In general minimizing the former will not yield the best loss on the latter:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \operatorname{\mathsf{Loss}}^{(\mathbf{X},\mathbf{Y})} \neq \underset{\mathbf{w}'}{\operatorname{arg\,min}} \operatorname{\mathsf{Loss}}^{(\mathbf{X}^{\mathsf{new}},\mathbf{Y}^{\mathsf{new}})}$$

[Figure 5.2, Chapter 5, Deep Learning]

[Figure 5.2, Chapter 5, Deep Learning]

[Figure 5.2, Chapter 5, Deep Learning]

[Figure 5.2, Chapter 5, Deep Learning]

- (X,Y): training set
- (X^{new}, Y^{new}): test set
- Loss^(X,Y): train loss (error)
- Loss (X^{new}, Y^{new}): test/generalization loss (error)

- (X,Y): training set
- (X^{new}, Y^{new}): test set
- Loss^(X,Y): train loss (error)
- Loss (X^{new}, Y^{new}): test/generalization loss (error)

Our goal in ML is (to train the model) to obtain small generalization error

- (X,Y): training set
- (X^{new}, Y^{new}): test set
- Loss^(X,Y): train loss (error)
- Loss (X^{new}, Y^{new}): test/generalization loss (error)

Our goal in ML is (to train the model) to obtain small generalization error

• Capacity: "The ability of a model to fit a variety of functions" [DL]

$$capacity(w_2^\top x^2 + w_1^\top x) > capacity(w_1^\top x)$$

Synthetic data is generated using a degree 5 polynomial

$$y = w_5 x^5 + w_4 x^4 + w_3 x^3 + w_2 x^2 + w_1 x^1$$

Training set size also plays an important role in a model's capacity to generalize

Number of training examples

[Figure 5.4, Chapter 5, Deep Learning]

Formal learning guarantees

- It is possible to bound the generalization gap
 - Bounds involve:
 - the size of the training set
 - the capacity of the learning model

Informally

- Larger datasets (train) are helpful
 - Allow you to better fit models and/or fit more complex models
- Larger capacity models can be better but (all being equal) they will require more data

Regularization

Regularization

- Can affect a model's effective capacity
 - Instead of changing the model (reminder: polynomials)
 - Focusses on particular (good) solutions

L2-regularization

A popular form of regularization

- Penalizes the size of the weights
 - Smaller weights means simpler models (next slide)

$\mathsf{Loss} := \mathsf{MSE}^{\mathsf{train}} + \lambda \mathbf{w}^{\top} \mathbf{w}$

[Figure 5.5, Chapter 5, Deep Learning]

Validating a model

Recall

Generalization

- \bullet Loss^(X,Y): The one you can evaluate
- Loss^(Xnew,Ynew): The one that you care about

 In general minimizing the former will not yield the best loss on the latter:

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \underset{\mathbf{w}'}{\operatorname{Loss}^{(\mathbf{X},\mathbf{Y})}} \neq \underset{\mathbf{w}'}{\operatorname{arg\,min}} \underset{\mathbf{w}'}{\operatorname{Loss}^{(\mathbf{X}^{\mathsf{new}},\mathbf{Y}^{\mathsf{new}})}}$$

Validation set

- How do we choose the right model and set its hyper parameters (e.g. λ)?
 - Use a validation set
 - Split the original data into two:
 - 1. Train set
 - 2. Validation set
 - Proxy to the test set
 - Train different models/hyperparameter settings on the train set
 - Pick the best according to their performance on the validation set

Cross-validation (CV)

- Splitting the data into train/validation can be detrimental
 - e.g., if data is small to begin with (small train and validation sets)
- K-fold CV: Split the data into k-folds

Pick the model/hyperparameters that does best (e.g., smallest loss) according to the average of the validation sets

Train

Validation

Bias/Variance: A second perspective on generalization

 $F(x) = linear regression with parameters w^*$

$$F(x) = w_0^* + w_1^*x + w_2^*x^2 + w_3^*x^3$$

 $F(x) = linear regression with parameters w^*$

$$F(x) = w_0^* + w_1^*x + w_2^*x^2 + w_3^*x^3$$

 $F(x) = linear regression with parameters w^*$

$$F(x) = w_0^* + w_1^*x + w_2^*x^2 + w_3^*x^3$$

An alternate framework

An alternate framework

 $\mathbf{w}^* := \mathbf{the} \ \mathbf{value} \ \mathbf{of} \ \mathbf{parameters} \ \mathbf{that} \ \mathbf{generated} \ \mathbf{the} \ \mathbf{data}$

 $\hat{\mathbf{w}} := \mathbf{estimator} \ \mathbf{of} \ \mathbf{the} \ \mathbf{true} \ \mathbf{w}^*$

An alternate framework

 $\mathbf{w}^* :=$ the value of parameters that generated the data $\widehat{\mathbf{w}} :=$ estimator of the true \mathbf{w}^*

$$\begin{aligned} \mathsf{MSE} &:= \mathbb{E}[(\widehat{\mathsf{w}} - \mathsf{w}^*)^2] \\ &= \mathsf{Bias}(\widehat{\mathsf{w}})^2 + \mathsf{Var}(\widehat{\mathsf{w}}) \end{aligned}$$

An alternate framework

 $\mathbf{w}^* := \mathbf{the} \ \mathbf{value} \ \mathbf{of} \ \mathbf{parameters} \ \mathbf{that} \ \mathbf{generated} \ \mathbf{the} \ \mathbf{data}$ $\mathbf{\hat{w}} := \mathbf{estimator} \ \mathbf{of} \ \mathbf{the} \ \mathbf{true} \ \mathbf{w}^*$

$$\begin{aligned} \mathsf{MSE} &:= \mathbb{E}[(\widehat{\mathbf{w}} - \mathbf{w}^*)^2] \\ &= \mathsf{Bias}(\widehat{\mathbf{w}})^2 + \mathsf{Var}(\widehat{\mathbf{w}}) \end{aligned}$$

$$\begin{aligned} \mathbf{Bias}(\widehat{\mathbf{w}}) &= \mathbb{E}[\widehat{\mathbf{w}}] - \mathbf{w}^* \\ \mathbf{Var}(\widehat{\mathbf{w}}) &= \mathbb{E}[(\widehat{\mathbf{w}} - \mathbb{E}[\widehat{\mathbf{w}}])^2] \end{aligned}$$

- The goal is to hit the bull's eye
- Each blue dot represents the "performance" of a fixed model on different data from the same distribution

- The goal is to hit the bull's eye
- Each blue dot represents the "performance" of a fixed model on different data from the same distribution

[Figure 9.2. Pattern Classification. Duda, Hart, Stork. 2001]

over

Other frameworks

- Bayesian
 - Uncertainty indicates you degree of belief
 - Unknown quantities are random variables

Other evaluations

- Is test set evaluation enough?
 - The test error may be a proxy for what you are really trying to evaluate
 - You model may be used inside a larger system
 - How can you convince that an X % improvement in test error is meaningful?

Other evaluations

- Model exploration
 - Are the parameter values it has learned sensible?
 - Plot the residuals
 - Dive into your model's predictions
 - Where does it do better/worse than others?
- Model criticism
 - How do generated data from your fitted model look like?