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Machine Learning fundamentals
— Week #2



Today: what's a machine
learning problem

e Core concepts e Types of learning problems
« Modeling and parameters * Supervised learning
(generative and discriminative

e Bias/Variance models)

. . PY 1 I :
. Overfitting Unsupervised learning

, , « Reinforcement learning
e« Representing uncertainty
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Capsules

1. Machine Learning problem
2. Types of Learning problems
3. A first Supervised Model

4. Model Evaluation

5. Regularization

6. Bias/Variance
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o | will follow the exposition of Chapter 5 in “Deep
Learning”.

e “Operational” approach vs. a decision-theoretic/
probabilistic approach
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The components of
a learning problem



e | will follow the exposition of Chapter 5 in “Deep Learning”

e “Operational” approach vs. a decision-theoretic/
probabilistic approach
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Three main components

e Task (T)
e Performance measure (P)

e Experience (E)
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“A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, measured by P,
iImproves with experience E.”

—Tom Mitchell (1997)



Task (T)

e The end goal(s). The question you are answering.
e For example:

o Self-driving

o Differentiate cats from dogs

e« Recommend movies of interest to users

e Select a good portfolio of stocks
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Task (T)



Task (T)

e Determine the price of houses?
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Task (T)

e Determine the price of houses?
e Encode houses into a set of features

e area, number of rooms (bedrooms, bathrooms),
municipal evaluation, neighborhood, etc.

Rn
ft -
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Task (T)

e Determine the price of houses?
e Encode houses into a set of features

e area, number of rooms (bedrooms, bathrooms),
municipal evaluation, neighborhood, etc.

Rn
ft -

e Function from feature to house price
f: — price
. n
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Example tasks

e Regression: Assign a real value to an example
f:R" =R
o Classification: Classify instances in one of k classes
f:R" - {1,...,k}

e Clustering: Assign each instance to a cluster

f:R" - {1,...,k}
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More examples

e« Transcription (e.g., document classification)
f: RM™*M _; RK
o Multi-label classification (e.g., tag prediction)

f: R" - {0,1}™M

« Translation (e.g., sentence from French to English)

f.: R" - R™
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Model

e functions f are examples of models

e Model is a simpler representation of the world

https://www.istockphoto.com/ca/photos/toy-car

e Has parameters (w)
Model #1: f(X; W) = WiXy + WaX2 + ... + WpXn

f-R" >R
Model #2: f(X; W) = WiX7 + WaX? + W3Xo + ... + Wni1Xn
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The performance
measure (P)

e How to quantify the “goodness” of f? How to compare models?



The performance
measure (P)

e How to quantify the “goodness” of f? How to compare models?
o Specific to the task at hand

e E.g,, linear regression: squared error
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The performance
measure (P)

e How to quantify the “goodness” of f? How to compare models?
o Specific to the task at hand

e E.g,, linear regression: squared error

P Z (f(Xi) — Yi)z

fi Is better than f, if P; > P,
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The performance
measure (P)

e How to quantify the “goodness” of f? How to compare models?
o Specific to the task at hand

e E.g,, linear regression: squared error

P Z (f(Xi) — Yi)z

fi Is better than f, if P; > P,

e Encodes knowledge of what's important
« A model with perfect performance behaves perfectly
« Examples: accuracy, error rate, log-probability, F score.
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Experience (E)

e What data does f experience?
e (Focus on algorithms that experience whole datasets)
e Unsupervised. Examples alone.
{Xi}ito
e Supervised. Examples come with labels.

{(Xi,¥i) }ito

Laurent Charlin — 80-629 15



Laurent Charlin — 80-629



Different types of
experience

1. Unsupervised Learning
2.Supervised Learning

3. Reinforcement Learning
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Experience (E)

e What data does f experience?
e (Focus on algorithms that experience whole datasets)
e Unsupervised. Examples alone.
{Xi}ito
e Supervised. Examples come with labels.

{(Xi,¥i) }ito

Laurent Charlin — 80-629 18



1. Unsupervised



1. Unsupervised

e Experience examples alone

{Xi}Hlo
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1. Unsupervised

e Experience examples alone

{Xi}Hlo

e Learn “useful properties of the structure of the data”
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1. Unsupervised

e Experience examples alone
N
{Xi }i—o
e Learn “useful properties of the structure of the data”

e E.g., Clustering

- -

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
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1. Unsupervised

e Experience examples alone

N
{Xi }i—o
e Learn “useful properties of the structure of the data”

e E.g., Clustering

e Probabilistic models . .

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/

e Density modeling p(x), PCA, FA.
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Example from a non-linear
dimensionality reduction
technique (tsne)
https://lvdmaaten.github.io/tsne/
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2. Supervised

e Experience examples and their label(s)

{(Xi,¥i) }ito

e« Given an example (x) predict its label (y)

f:X—=Y

P(Y|x)

e E.g., regression, classification

10

.
o .*
<
: + ¢
. * - ® 2o ©
B .. - B
L
oo . o °
NE R .00.
- o . .
’, L . .- L" .
. .
-

28 .10 10 20 30 40

[https://en.wikipedia.org/wiki/Regression_analysis]

21 [https://jaxenter.com/machine-learning-an-introduction-for-

programmers-122135.html]
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Distinction can be blurry

e Supervised data modeled jointly:

(X,¥), PY|X)= Zp(;&/ )y,)
y’ ’

e Unsupervised data modeled as supervised data:
x € R", p(x pr,|x1,.. . Xi_1)P(Xo)

Conditional model: P(y | x)

Generative model: P(y, x)
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Semi-supervised
learning

e Ildea: Can we augment a supervised dataset with
unsupervised data

({(Xi, ¥i) Fito» {Xj}20)

e Unlabelled data are cheap (images on the web).
Labeled data are expensive

e Can the unlabelled data help model x and yield a

better model for y? .
O i
il .
[]

h’:.
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3. Reinforcement
learning

« The algorithm interacts with the environment

e The algorithm observes its environment. Prototypical
example is a robot navigating a maze

Exit

ﬁ ‘
0 ﬁ‘b

[https://www.oreilly.com/ideas/reinforcement-learning-explained]

e The resulting dataset depends on the algorithm’s
choices
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A first supervised
example
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Dataset(s)

e Each instance: X

o A dataset is a set of instances: {Xi}

« Often denoted as a matrix X, (design matrix)

e rows are instances

e columns are features

Nb.bed. Area

Neigh.

Xo | 1 0 O O
Xi 1 100 1 2
Xz 3 200 0
X3 1 150 1 4
x | 2 210 2 5

Yo
Y
y2
ys3
Ys

Price

125000
150000
350000
275000

| 225000

e« (assumes that all instances can be encoded using a

fixed-size vector)

27
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Concrete full example:
Linear regression

Yi = WoXjo + WiXj) + W2Xjz2 + - -+ + WpXjg
D
-
= ) WiXj =W'X
J=0

e W is a vector of parameters (weights)
« Wj represents the effect of feature jony

e Task: predict y from x using WTXi

28

w € RP



Concrete full example:
Linear regression

Yy =W X
e Task: predict y; from X; using WTXi

« Performance: mean squared error

1
MSE := — ) (yi— W' X)’

N =
] 5
~ i Z(Yi — Yi)z

o Experience: {(x,y)}
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How do you find optimal
parameters?

e Optimize the MSE with respect to the parameters of
the model

L(w) = = >7(yi — w'x;)?

e Take the gradient of the MSE. Set equation to O and
solve.
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Take gradient of the Loss wrt its parameters

Vwl(w) = Vw% Z(YI — WTXi)Z

% Z Vw(Yi — W' X;)?
— ZZ — W' X;)(=X;)

Set gradient to O.

1

0=— Z(—ZXM +2(W ' Xi)X)

= ) 2(W X)X = ) 2Xy;

w(X'X)=X"Y
=w=(X"X)"'X"'Y
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y = WiXy

; Linear regression example - Optimization of w
2 0.50
| 0.45
0.40

> 0

Cg 0.35
— 0.30
—2 0.25
_3 0.20

—1.0 —-0.5 0.0 0.5 1.0 0.5 1.0 1.5

T1 w1

[Figure 5.1, Chapter 5, Deep Learning]
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Model evaluation



The goal of ML

e Predict on new inputs ( X"¢%)

e Given the price of houses this year (X, Y), | want to
predict the price of houses next year ( X"¢W)

Nb.bed. Area Neigh. - : Price Nb.bed. Area Neigh. - : Price
xo [ 1 0 O O O | v /[ 125000 xo [ 1 O O 0 O |w]|[ ?
" 1 100 1 2 5|y | 150000 " 2 50 1 3 8 | y| 7
X5 5 200 0 1 .2 y. | 350000 X5 1 100 1 5 14 V2 7
X3 1 150 1 4 ] ys | 275000 X3 4 170 0, 7 .4 V3 7
| 2 210 2 5 11|y, | 225000 x| 1 120 3 9 5|y | 2
- — - ———e-— e ~—n—

X Y Xnew ynew

e We can use our estimated (w): YW — w ' x"ew
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Generalization

Price
Yo 7
e Loss*Y) : The one you can evaluate ;: Z
y3 !
e LossX" Y ) :The one that you care about vo |7
ynow

e In general minimizing the former will not yield the
best loss on the latter:

new new
arg min LossXY) # arg min LossX Y )
W w’

Optimization of w
0.55 | . .

0.50
0.45
0.40
0.35

MSE

0.30
0.25

0.20 ' ' '
0.5 1.0 1.5

w1
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[Figure 5.2, Chapter 5, Deep Learning]
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Loss1(X’Y) > Lossgx’Y) > LosséX’Y)
Loss = MSE
S P S
L L X

[Figure 5.2, Chapter 5, Deep Learning]
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Loss1(X’Y) > Lossgx’Y) > LosséX’Y)
Loss = MSE
S P S
L L X

[Figure 5.2, Chapter 5, Deep Learning]
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LOSS1(X’Y) S Lossgx’Y) S Losséx’w
Loss = MSE
P P P
Loss1<x < Lossgx YU < Lossgx Y

[Figure 5.2, Chapter 5, Deep Learning]
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Some Terminology




Some Terminology

e (X,Y):training set
o (X"W YNEW) . test set
e LossXY): train loss (error)

e Loss® Y : test/generalization loss (error)
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Some Terminology

e (X,Y):training set
o (X"W YNEW) . test set
e LossXY): train loss (error)

new new
XNew y

e Loss! ) : test/generalization loss (error)

Our goal in ML is (to train the model) to obtain small generalization error
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Some Terminology

e (X,Y):training set
o (X"W YY) test set

e LossXY): train loss (error)

(Xnew Ynew

e Loss ) : test/generalization loss (error)

Our goal in ML is (to train the model) to obtain small generalization error

o Capacity: “The ability of a model to fit a variety of functions” [DL]

capacity(w, x? + w;, x) > capacity(w; x)
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Underfitting zone| Overfitting zone

Error

0 Optimal Capacity

Capacity
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ITraining error

(zeneralization error

[Figure 5.3, Chapter 5, Deep Learning]



Synthetic data is generated
using a degree 5 polynomial

Y = WsX° + WX + Wizx> + Wox? + wix!

sob .. XN ... — - DBayes error 1
=l Train (quadratic)
25 NN s
7 - Test (quadratic)
= 20 oo NN | -k
— - Test (optimal capacity)
1 S (L EE LT P . . Wk
é ° == Train (optimal capacity)
1.0f- At Py ——— _
° ° ° B _T_ I —
Tralning set size U] o7 & B SEEEEEREREEL GREE. o s T T TR -
: 0.0
also plays an important 1o 0 v " " e
role in a model's capacity Number of training examples
: 0
to generalize = 20 e e
= : : : :
= : : : :
= 1 3 A i o ' ]
= . . . .
S . . . .
L Z ' : :
S : : : :
S A0t L e .
z - / - - -
E 5 | | 5 E
5 5L S S
S F : : : : :
E : : : : :
e n m - o o - o
= y 0 1 2 3 4 5
S 10 10 10 10 10 10
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Number of training examples

[Figure 5.4, Chapter 5, Deep Learning]



Formal learning
guarantees

e Itis possible to bound the generalization gap
« Bounds involve:
e the size of the training set

e the capacity of the learning model
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Informally

e« Larger datasets (train) are helpful

« Allow you to better fit models and/or fit more
complex models

e Larger capacity models can be better but (all being
equal) they will require more data
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Regularization



Regularization

e« Can affect a model’s effective capacity
e Instead of changing the model (reminder: polynomials)

e Focusses on particular (good) solutions
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L2-regularization

e A popular form of regularization

Loss := MSE'™@" L xw'w
\/-/

w2

e Penalizes the size of the weights

e Smaller weights means simpler models (nhext slide)
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Loss := MSEY@" 4+ xw'w

Underfitting Appropriate weight decay Overtitting
(Excessive \) (Medium \) (A —0)

[Figure 5.5, Chapter 5, Deep Learning]
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Validating a model



Generalization

Price
Yo 7
e Loss*Y) : The one you can evaluate ;’; Z
y3 !
e LossX" Y ) :The one that you care about vo |7
ynow

e In general minimizing the former will not yield the
best loss on the latter:

new new
arg min LossXY) - arg min LossX Y )
W w’

Optimization of w
0.55 | . .

0.50
0.45
0.40
0.35

MSE

0.30
0.25

0.20 ' ' '
0.5 1.0 1.5

w1
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Validation set

« How do we choose the right model and set its hyper parameters (e.g.\)?
« Use a validation set

o Split the original data into two:

Train Validation

1. Train set

2. Validation set
e Proxy to the test set
o Train different models/hyperparameter settings on the train set

e Pick the best according to their performance on the validation set
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Cross-validation (CV)

« Splitting the data into train/validation can be detrimental
e e.g., If data is small to begin with (small train and validation sets)

o K-fold CV: Split the data into k-folds
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5-fold

Train
Validation

Y 4

Pick the model/hyperparameters that
does best (e.g., smallest loss) according to
the average of the validation sets
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Bias/Variance:
A second perspective
on generalization
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F(X) = linear regression with parameters w*

F(X) = W§ + WiX + Wix? + wix>
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F(X) = linear regression with parameters w*

F(X) = W§ + WiX + Wix? + wix>
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F(X) = linear regression with parameters w*

F(X) = W§ + WiX + Wix? + wix>
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Bias/Variance tradeoff
(In 4 slides)

e An alternate framework



Bias/Variance tradeoff
(In 4 slides)

e An alternate framework

w”* := the value of parameters that generated the data
W := estimator of the true w*
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Bias/Variance tradeoff
(In 4 slides)

e An alternate framework

w”* := the value of parameters that generated the data
W := estimator of the true w*

MSE := E[(W — w*)?]

— Bias(W)?% + Var(w)
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Bias/Variance tradeoff
(In 4 slides)

e An alternate framework

w”* := the value of parameters that generated the data
W := estimator of the true w*

MSE := E[(W — w*)?]

— Bias(W)?% + Var(w)

Bias(w) = EwW] —w

Var(w) = E[(w — E[w])
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« The goalis to hit the bull's eye

« Each blue dot represents the
“performance” of a fixed model
on different data from the same
distribution
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Low Variance High Variance

L
« The goalis to hit the bull's eye ,
« Each blue dot represents the .
“performance” of a fixed model
on different data from the same
distribution
Q
o o, ¢
.

http://scott.fortmann-roe.com/docs/BiasVariance.html

Low Bias

High Bias
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g(X) = Wo + WiX + Wax? + wzx>

g(x) = fixed g(X) = Wo + WX
y Yy learned Yy learned
g(x)
®  Fx)
g(x) 9 Y,
L
o
X
Yy
o
F(x)
g(x)
o ® ®
X X X X
Y Yy Yy Y
X g(x) ® Fx) ® F(x) 5% F ot
3 o g(x) o L o
o o o L
g(x)
o o o L]
X X X X
Histogram p » » »
of the error
over bias | bias bigs | bias
training sets /\
| E E L] E ] E

[Figure 9.2. Pattern Classification.
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Underfitting zone Overfitting zone

(zeneralization

a®
Variance

Optimal Capacity
capacity
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Other frameworks

e Bayesian
e« Uncertainty indicates you degree of belief

« Unknown quantities are random variables
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Other evaluations

e |s test set evaluation enough?

e The test error may be a proxy for what you are really
trying to evaluate

e You model may be used inside a larger system

e How can you convince that an X % improvement in
test error is meaningful?
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Other evaluations

e Model exploration
o« Are the parameter values it has learned sensible?
e Plot the residuals
o Dive into your model’s predictions
« Where does it do better/worse than others?
e Model criticism

e How do generated data from your fitted model look like?
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