Machine Learning |
80-629A

Apprentissage Automatique |
80-629

Neural Networks
— Week #5

This lecture

e Neural Networks
A. Modeling
B. Fitting
C. Deep neural networks
D. In practice

Some of today’s material is (adapted) from Joelle Pineau’s slides

Laurent Charlin — 80-629 2

From Linear Classification
to Neural Networks

Recall Linear
Classification

Recall Linear
Classification

y(X) =W ' X+ Wp

. (W'X+wp)>0 = @
Decision -
(W' X+Wp) <0 = @

Recall Linear
Classification

y(X) =W ' X+ Wp

. (W'X+wp)>0 = @
Decision -
(W' X+Wp) <0 = @

What If data is not
linearly separable?

Exclusive OR (XOR)

What If data is not
linearly separable?

Exclusive OR (XOR)

Use the joint decision of
several linear classifier?

What If data is not
linearly separable?

Exclusive OR (XOR)

Use the joint decision of
several linear classifier?

w ' X+ wg

w’ ' X 4+ W

Combining models

f(x
() (W'X+Wp) <0 = @
X2
" (W' 'X+wp) >0 — @
X):
WX+ Wo X) (W'Xx+WwWp) <0 — @
w’ ' X 4+ W

Combining models

| (W' X+ wp) <0 — @ |f(Xx) =@and fi(x) =0 =@
X2 f(x)=@and f'(x) =@ — @
f(x)=@and f'(x) =@ —= @

w ' X+ wpg

w ' X 4+ Wy

Combining models

(W'X+Wp) >0 — @
(WX +Wo) <0 — @ |f(x) =@and f'(x) =@ =@
*2 f(x)=@and f'(x) =@ — @
f(x)=@and f'(x) =@ —= @

f(X):

! f’(x)-(W/TX+W6) >0 =@
W' X+ Wg WX W) <0 — @

w’ ' X 4+ W
1. Evaluate each model 2.Combine the output of models

w ' X+ wpg

w’ ' X 4+ W

Combining models

f(X):

f'(X):

(W'X+Wp) >0 = @

(W'X+Wp) <0 = @

(W'Xx+wp) >0 —= @
(W'x+wWp) <0 =@

1. Evaluate each model

f(x)=@and f'(xX) =0 — @
f(x)=@and f'(X) =@ — @
f(x)=@and f'(x) =@ —= @

2.Combine the output of models

f(x) = threshold(w" T

Wo)

Combining model
(graphical view)

Combining model
(graphical view)

Combining model
(graphical view)

Combining model
(graphical view)

e
X
%o ./

Combining model
(graphical view)

X1 -
X ==
- {@0.,0}
‘“ /

Combining model
(graphical view)

Neural Network

X1 -
X ==
- {@0.,0}
‘“ /

Combining model
(graphical view)

Neural Network

X R \
>< - {0,0}

Perceptron/
Neuron

Feed-forward neural
nhetwork

e Each arrow denotes a connection

Input Layer Hidden Layer(s) Output Layer
o A sighal associated with a

. Q weight
'I >
>% \Q e Each node is the weighted sum

" of its input followed by a non-
linear activation

X2
o W2 O1l
/ (i |) e« Connections go left to right
U(Z WinX;) No connections within a layer

e No backward connections
(recurrent)

Laurent Charlin — 80-629

Feed-forward neural
nhetwork

Input Layer Hidden Layer(s) = Output Layer 1. Aninput layer

e Its size is the number of inputs + 1

) § Q\ 2. One or more hidden layer(s)
>% Q] e Their size is a hyper-parameter

3. An output layer

o Its size is the number of outputs
1

urent Charlin — 80-629 9

Compute a prediction
(forward pass)

Input Layer Hidden Layer(s) Output Layer
X1 >Q\A
X2 ’ 2.0() Wip0ni)
/ |
l.o (Z Wi Xi)
i

'I

Neural Networks

e Flexible model class
e Highly-non linear models

« Good for regression/classification/density
estimation

e Models behind “Deep Learning”

o Historical aspects

Laurent Charlin — 80-629 I

Learning the
Parameters of a
Neural Network

Fitting a neural network

Fitting a neural network

How do we estimate the model’'s parameters?

Fitting a neural network

How do we estimate the model’'s parameters?

e No-closed form solution

Laurent Charlin — 80-629 13

Fitting a neural network

How do we estimate the model’'s parameters?
e No-closed form solution

o Gradient-based optimization

Laurent Charlin — 80-629 13

Fitting a neural network

How do we estimate the model’'s parameters?
e No-closed form solution
o Gradient-based optimization

e Threshold functions are not differentiable

Laurent Charlin — 80-629 13

Fitting a neural network

How do we estimate the model’'s parameters?
e No-closed form solution
o Gradient-based optimization
« Threshold functions are not differentiable

o Replace by sigmoid (inverse logit). A soft
threshold.

sigmoid(a) := (1 + eXL(_a))

Laurent Charlin — 80-629 13

Fit the parameters (w)
(backward pass)

Input Layer ~ Hidden Layer(s) Output Layer . Derive a gradient wrt the parameters (w)

oy —y)* oy —f(32 wio;))3

X1 >‘)\Q 2 QWJ 8WJ
O/ o Oy = PO wirfo wixy)e)*
Xz//:

aWj

- The back-propagation starts from the

output node(s) and heads toward the
input(s)

'I

- In practice, the order of the computation

Is Iimportant

Laurent Charlin — 80-629 14

Gradient descent

e No closed-form formula
« Repeat the following steps (for t=0,1,2,... until convergence):
1. Calculate a gradient !

d
2. Apply the update wit! = W:c — aVWf-

1) J J
o Stochastic gradient descent
e One example at a time
« Batch gradient descent

o All examples at a time

Laurent Charlin — 80-629 15

What can an MLP learn?

1. A single unit (heuron)
e Linear classifier + non-linear output
2. A network with a single hidden layer

« Any continuous function (but may require exponentially
many hidden units as a function of the inputs)

3. A network with two (or more) hidden layers

« Any function can be approximated with arbitrary
accuracy.

Laurent Charlin — 80-629 16

The Importance of
Representations

From Neural Networks to
Deep Neural Networks

A neural Network

Laurent Charlin — 80-629 18

From Neural Networks to

Deep Neural Networks

A deep neural Network

A neural Network

18

Laurent Charlin — 80-629

From Neural Networks to
Deep Neural Networks

A neural Network A deep neural Network

A

Modern deep learning provides a powerful framework for supervised learning.
By adding more layers and more units within a layer, a deep network can represent
functions of increasing complexity.

Deep Learning — Part 11, p.163
http.//www.deeplearningbook.org/contents/part practical.html

Laurent Charlin — 80-629 1

http://www.deeplearningbook.org/contents/part_practical.html

Another View of deep learning

e Representations are important

Cartesian coordinates Polar coordinates

Representations

Input data
(pixels)

20 [From: Honglak Lee (and Graham Taylor]

Representations

No learning

l

Feature
representation
(engineered)

Input data
(pixels)

Image Low-level vision features
(e.g. SIFT, HOG, LBP, etc.) + some operations
(e.g. quantization, pooling)

20 [From: Honglak Lee (and Graham Taylor]

Representations

No learning

l

Feature
representation
(engineered)

Input data
(pixels)

Image Low-level vision features
(e.g. SIFT, HOG, LBP, etc.) + some operations
(e.g. quantization, pooling)

20 [From: Honglak Lee (and Graham Taylor]

Representations

No learning
|
Input data Feature. Learplng
P representation Algorithm
(engineered) (e.g. SVM)

Image Low-level vision features
(e.g. SIFT, HOG, LBP, etc.) + some operations Recognition or detection
(e.g. quantization, pooling)

20 [From: Honglak Lee (and Graham Taylor]

Data

Layer 1

Layer 2

21

Classifier

Stapler

Output

Machine Translation

French Encoder \ / French Decoder

Universal
English Encoder | —» Sentence —» | English Decoder
Representation

Spanish Encoder Spanish Decoder

22

Machine learning
Make machines that can learn

Deep learning

A set of machine learning technigues
based on neural networks

ldea: Hugo Larochelle

Representation learning

Machine learning paradigm to
discover data representations

Machine learning
Make machines that can learn

Deep learning

A set of machine learning technigues
based on neural networks

ldea: Hugo Larochelle

Deep neural networks

very high level representation:

MAN]| |SITTING

e Several layers of hidden i
nodes A

. slightly higher level representation
e Parameters at different ‘

levels of representation

raw Input vector representation:

w=\23\19 20

U1y A Vn

Laurent Charlin — 80-629 24 [Figure from Yoshua Bengio]

—

-

et S

s T |

P,
2

v,
7

‘\
X

-

o o
L '.'_" "

S

Laurent Charlin — 80-629

‘;’ ;'s
| S " | Jn T
BB 8s
S UINT INSA N =
SRX | e/
11617
ST TSN 7

X 24

>
Te
N
:’
X

Diagonal
Line

r

x|
ox
Ny
P"‘x\
oxo
Nl
P

(@)
AN

s

25

AL SN AN Y
W AN e

[Figures from Yoshua Bengio]

Neural Network
Hyper-parameters

Hyperparameters

1. Model specific

o Activation functions (output & hidden), Network size
2. Optimisation Objective

« Regularization, Early-stopping, Dropout
3. Optimization procedure

e Momentum, Adaptive learning rates

Laurent Charlin — 80-629 27

Activation Functions

- Non-linear functions that transform the weighted sum
of the inputs, e.g.:
f(z WiX;)
i

Laurent Charlin — 80-629 28

Activation Functions

- Non-linear functions that transform the weighted sum
of the inputs, e.g.:
f(z WiX;)
i

Laurent Charlin — 80-629 28

Activation Functions

- Non-linear functions that transform the weighted sum
of the inputs, e.g.:
f(z WiX;)
i

-Non-linearities increase model representation power

Laurent Charlin — 80-629 28

Activation Functions

- Non-linear functions that transform the weighted sum
of the inputs, e.g.:
f(z WiX;)
i

-Non-linearities increase model representation power

-Non-linearities increase the difficult of optimization

Laurent Charlin — 80-629 28

Activation Functions

- Non-linear functions that transform the weighted sum
of the inputs, e.g.:
f(z WiX;)
i

-Non-linearities increase model representation power
-Non-linearities increase the difficult of optimization

. Different functions for hidden units and output units

Laurent Charlin — 80-629 28

Activation functions —
hidden units

. Traditional

» Logistic-like units
:

. f(z) = logit'(z) = e

. f(Z) = tanh(z)
. Saturate on both sides

- Derivable everywhere

Laurent Charlin — 80-629 29 [https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf]

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf

Activation functions —
hidden units

. Traditional

» Logistic-like units

—Rell

-I] — L-:Jgi'.;ztic

. f(Z) — |09it_1(z) — 1+ exp(_z) 4

. f(z) = tanh(2)

. Saturate on both sides

- Derivable everywhere

Laurent Charlin — 80-629 29 [https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf]

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf

Activation functions —
hidden units

- Rectified linear units (Relu)

- Traditional
f(z) = max{0, z}
» Logistic-like units

: I —ReLu ' - Non-derivable at a single
. f(z) = logit™'(z) = Jitoas voint
1+exp(—2) -
. f(z) = tanh(z) ? . Now Standard
. Saturate on both sides , - Better results / faster
training

- Derivable everywhere ,
- Shuts off units

- Leaky Relu
g(Z) = max{0,z} + amin{0, z;}

Laurent Charlin — 80-629 29 [https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf]

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/40811.pdf

Activation functions —
Output units

Equivalent Statistical

Output type Distribution
: ” 1
Binary (0,1) sigmoid(z) = ;— exp(—2) Bernoulli
. exp(Z;) . .
Categorical (0,1,2,3,k softmax(z;) = Multinoulli
g () S exp(z;)
Continuous ldentity(z) = z Gaussian

mean, (co-)variance,

Mixture of Gaussians
components

Multi-modal

Laurent Charlin — 80-629 30

Regularization

e Weight decay on the parameters
e L2 penalty on the parameters
o Early stopping of the optimization procedure

e Monitor the validation loss and terminate when it
stops improving

e Number of hidden layers and hidden units per layer

Laurent Charlin — 80-629 31

Momentum

wil = wt — VW' (Gradient Descent)

v = 8v — aVW' (Gradient Descent w. momentum)

wtl =wt +v

e« Pro: Can allow you to jump over small local optima

e Pro: Goes faster through flat areas by using acquired speed
e Con: Can also jump over global optima

e Con: One more hyper-parameter to tune

e More advanced adaptive steps: adagrad, adam

Laurent Charlin — 80-629 32

Wide or Deep?

Wide or Deep?

96.5
96.0
95.9
95.0
94.5
94.0
93.95
93.0
92.5 |

92.0
3 1 O 6 7 3 9 10 11

Layers

Test accuracy (percent)

[Figure 6.6, Deep Learning, book]

Laurent Charlin — 80-629 33

https://www.deeplearningbook.org/contents/mlp.html

Wide or Deep?

o—e 3 convolutional
+—+ 3, fully connected

V—V 11, convolutional

Test accuracy (percent)

0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x10°

[Figure 6.7, Deep Learning, book]

Laurent Charlin — 80-629 34

https://www.deeplearningbook.org/contents/mlp.html

Dropout

e Standard regularization technique

e At training drop a percentage of the units

e Used for non-output layer 0*@

« Prevents co-adaptation / Bagging o Q

1etwork

<i)@@/@
Y

mble of subnetworks

o At test: use the full network

e Normalize the weights

o
®
o™

Laurent Charlin — 80-629 35 [Figure 7.6, Deep Learning]

Laurent Charlin — 80-629

Neural Network
Takeaways

Neural Networks
takeaways

o Very flexible models

e Composed of simple units (heurons)

o Adapt to different types of data
e (Highly) non-linear models

« E.g.,, Can learn to order/rank inputs easily
e« Scale to very large datasets

o« May require “fiddling” with model architecture + optimization hyper-parameters

o Standardizing data can be very important

Laurent Charlin — 80-629 38

Where do NNs shine

e Input is high-dimensional discrete or real-valued

e Output is discrete or real valued, or a vector of values
e Possibly noisy data

e Form of target function is unknown

« Human interpretability is not important

e The computation of the output based on the input has to be fast

Laurent Charlin — 80-629 39

Most tasks that consist of mapping an input vector to an output vector, and that are easy for a person
to do rapidly, can be accomplished via deep learning, given sufficiently large models and
sufficiently large datasets of labeled training examples.

Other tasks, that cannot be described as associating one vector to another, or that are difficult
enough that a person would require time to think and reflect in order to accomplish the task,
remain beyond the scope of deep learning for now.

Deep Learning — Part 11, p.163
http://www.deeplearningbook.org/contents/part practical.html

Laurent Charlin — 80-629 40

http://www.deeplearningbook.org/contents/part_practical.html

Neural Networks In
Practice

In practice

o Software now derives gradients automatically
e You specify the architecture of the network
« Connection pattern
e Number of hidden layers
« Number of layers
e Activation functions
e Learning rate (learning rate updates)
e Dropout

e For intuitions: https://playground.tensorflow.org

Laurent Charlin — 80-629 42

https://playground.tensorflow.org

A selection of standard tools
(in python)

e Scikit-learn

scikit-learn

Machine Learning in Python

e Machine learning toolbox

« Feed-forward neural networks
« Neural network specific tools
e PyTorch, Tensorflow
e Keras
« More specific tools for specific tasks:

o caffe for computer vision, pySpark for distributed computations,
NLTK for natural language processing

Laurent Charlin — 80-629 43

