Machine Learning I MATH80629A

Apprentissage Automatique I MATH80629

Sequential Decision Making I

— Week #12

Today

- Motivation and introduction
 - Toward Reinforcement learning
- Planning
 - Markov Decision Process (MDP)
 - Value iteration
 - Policy iteration
- Next week: Reinforcement learning

Reinforcement Learning Motivation

Three main components

- Task (T)
- Performance measure (P)
- Experience (E)

Supervised learning

- Experience a fixed data set
 - Fit a model using this data
 - Use the model to make predictions about unseen data (and to understand the data)
 - Predictions may be used downstream to inform decision-making (e.g., Operations Research)

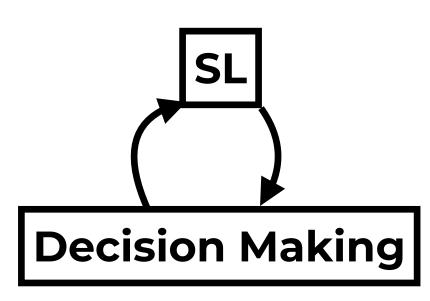
An example of learning and decision making

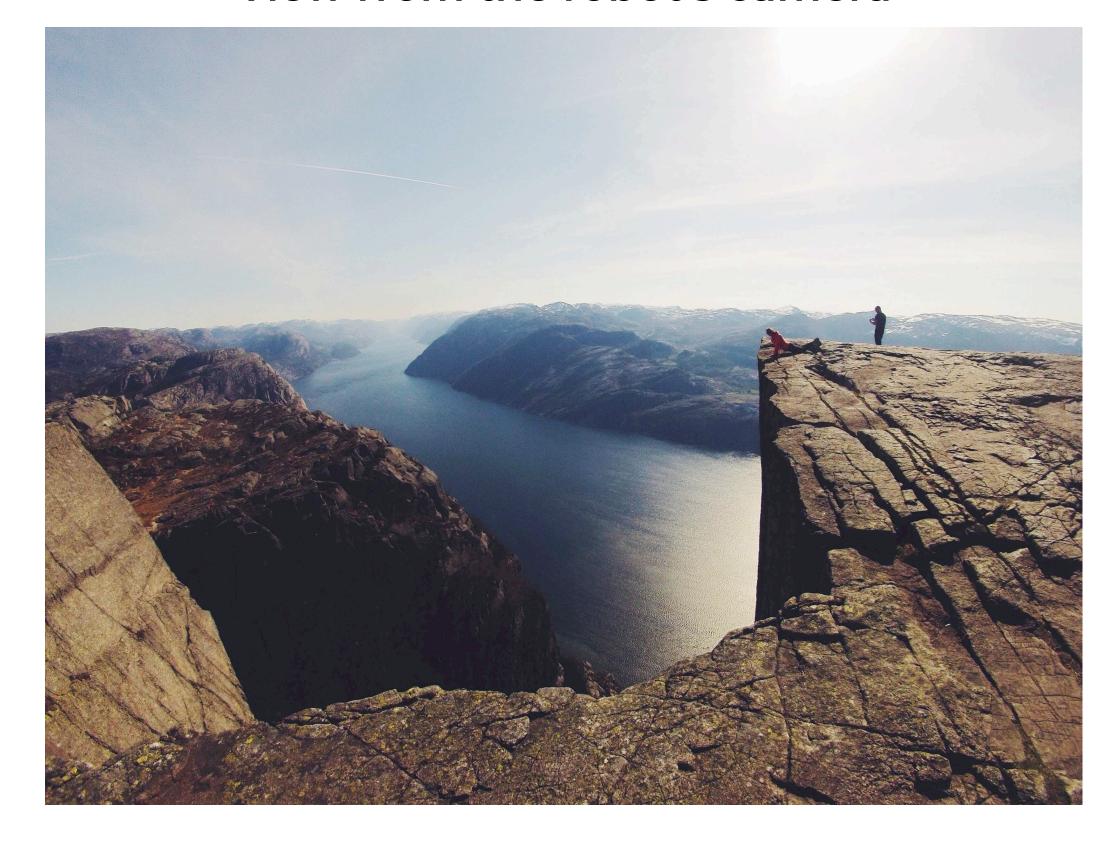
An example of learning and decision making

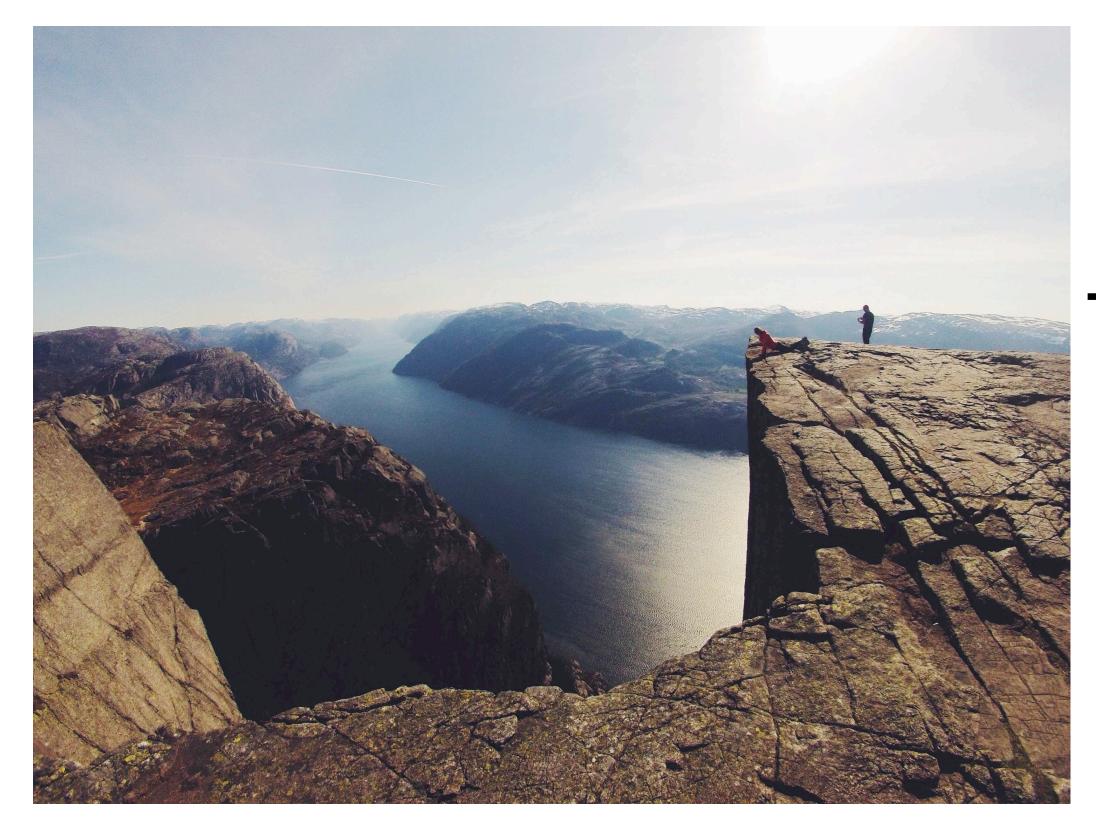
- Imagine building a robot that must navigate autonomously
 - The robot has wheels and a camera

An example of learning and decision making

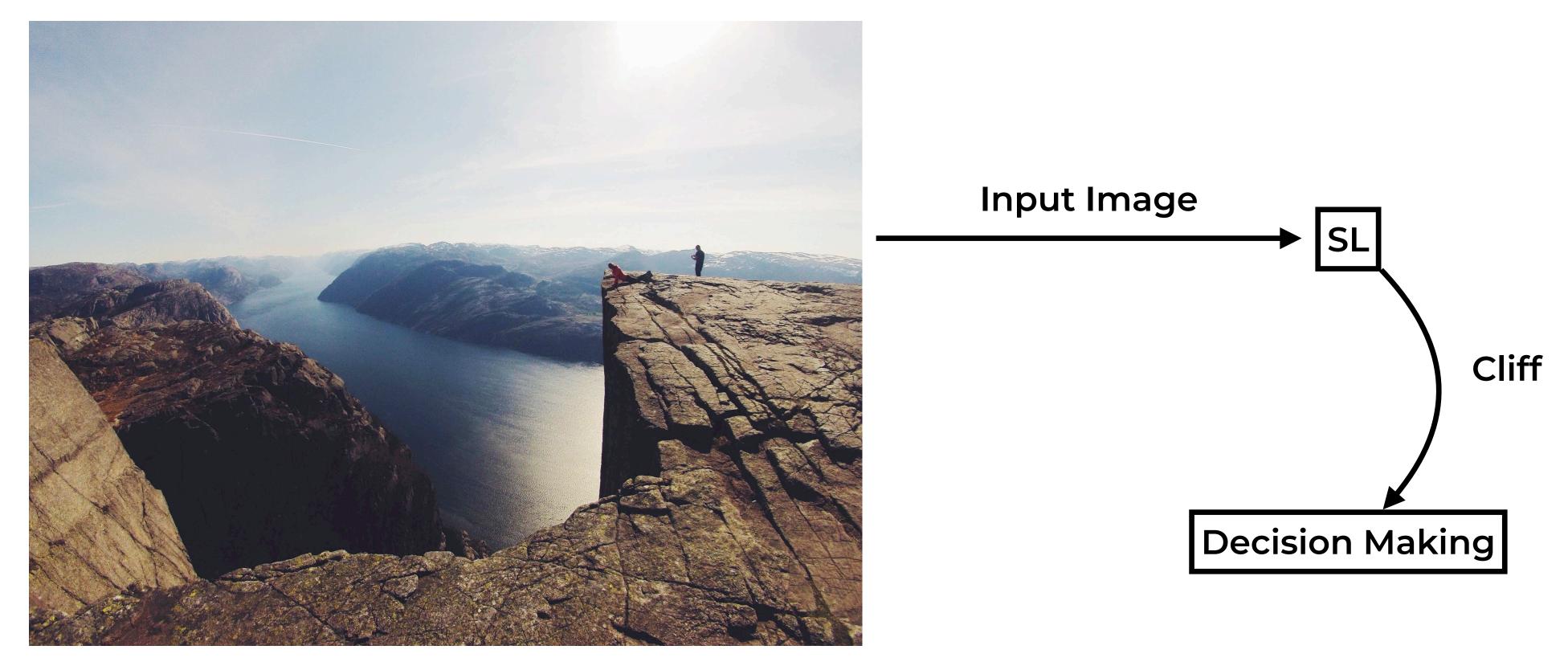
- Imagine building a robot that must navigate autonomously
 - The robot has wheels and a camera
- You think about using a two-stage approach:
 - 1. Use supervised learning to identify objects in scenes
 - 2. Given scene content have a decision-making module that controls its wheels

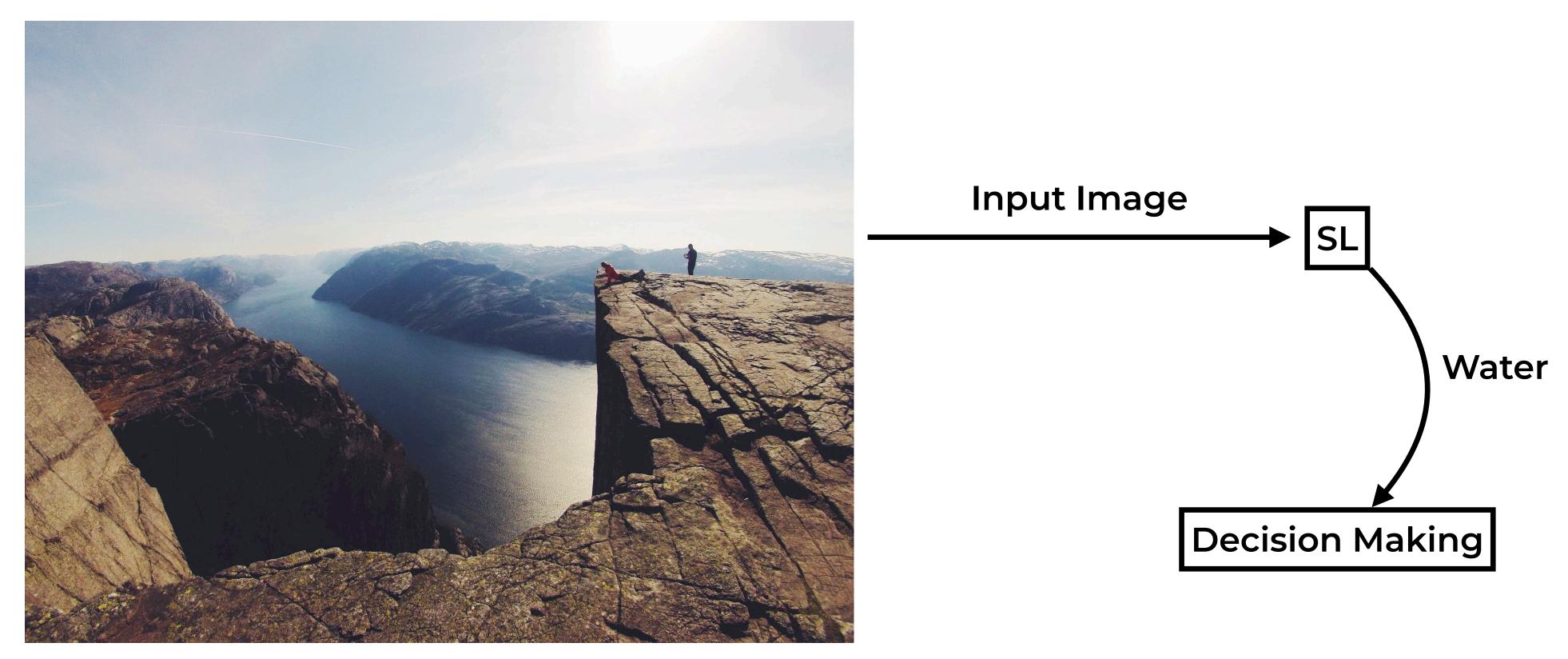






Input Image





Limitations of two-stage approach

- Supervised learning doesn't know about the decision-making
 - Its objective is, for example, to maximize accuracy

Limitations of two-stage approach

- Supervised learning doesn't know about the decision-making
 - Its objective is, for example, to maximize accuracy
- For decision making, different errors have different costs
 - E.g., missing the cliff could have dire consequences. missing sky less so.
 - Incorporating these costs into the learning objective is tough

Limitations of two-stage approach

- Supervised learning doesn't know about the decision-making
 - Its objective is, for example, to maximize accuracy
- For decision making, different errors have different costs
 - E.g., missing the cliff could have dire consequences. missing sky less so.
 - Incorporating these costs into the learning objective is tough
- Several other limitations:
 - need labeled data
 - improvements in SL do not necessarily lead to improvements in decision making

• ...

Alternative: Reinforcement learning (RL)

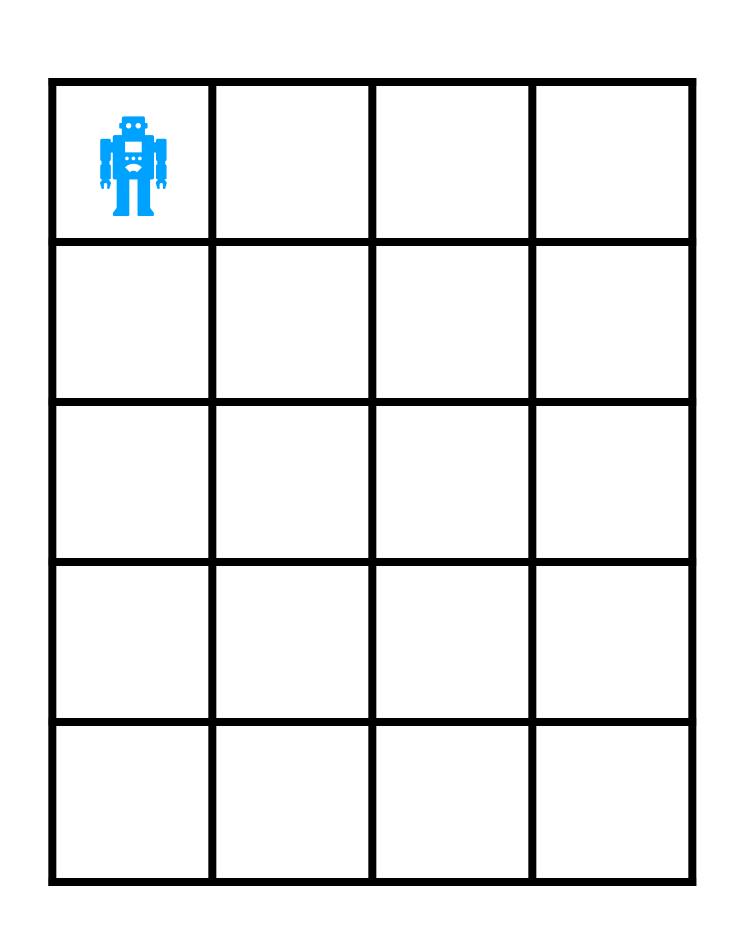
- Incorporates both stages in a single framework
- Incorporates the ideas of:
 - state (observation)
 - action
 - reward

Planning: A first step towards reinforcement learning

Alternative: Reinforcement learning (RL)

- Incorporates both stages in a single framework
- Incorporates the ideas of:
 - state (observation)
 - action
 - reward

Initial example with grid world



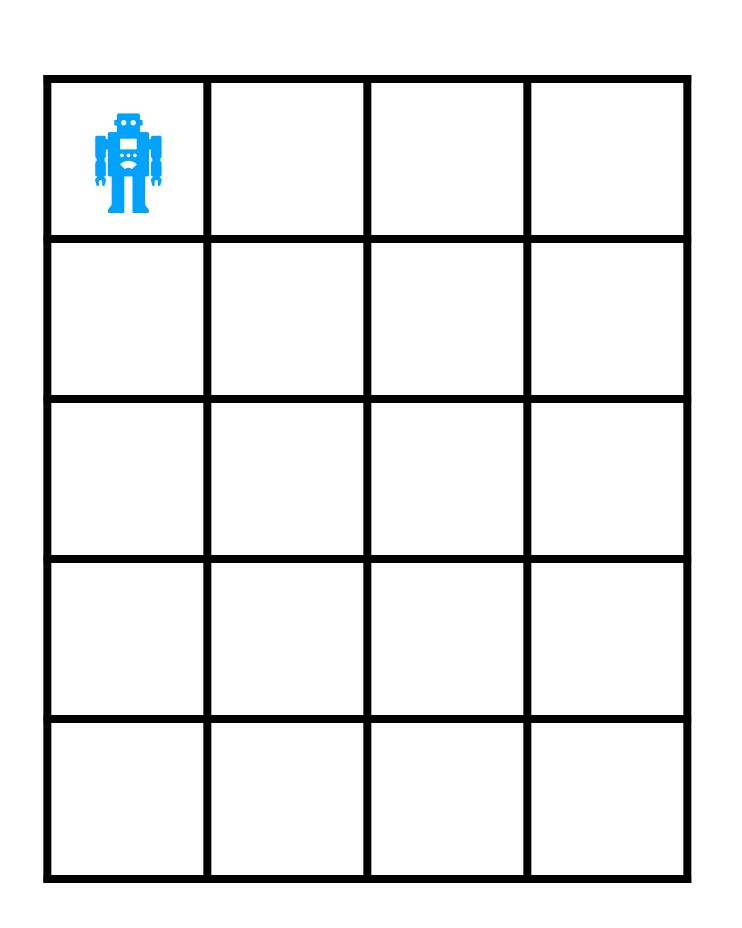
Each cell is a state (S)

 Actions indicate which movements are possible: A := {L, R, U, D}

• Rewards encode the task: R(s)

• Transition probabilities encode the outcome of an action: $P(s' \mid s, a)$

Initial example with grid world



- Each cell is a state (S)
- Actions indicate which movements are possible: A := {L, R, U, D}
- Rewards encode the task: R(s)
- Transition probabilities encode the outcome of an action: $P(s' \mid s, a)$

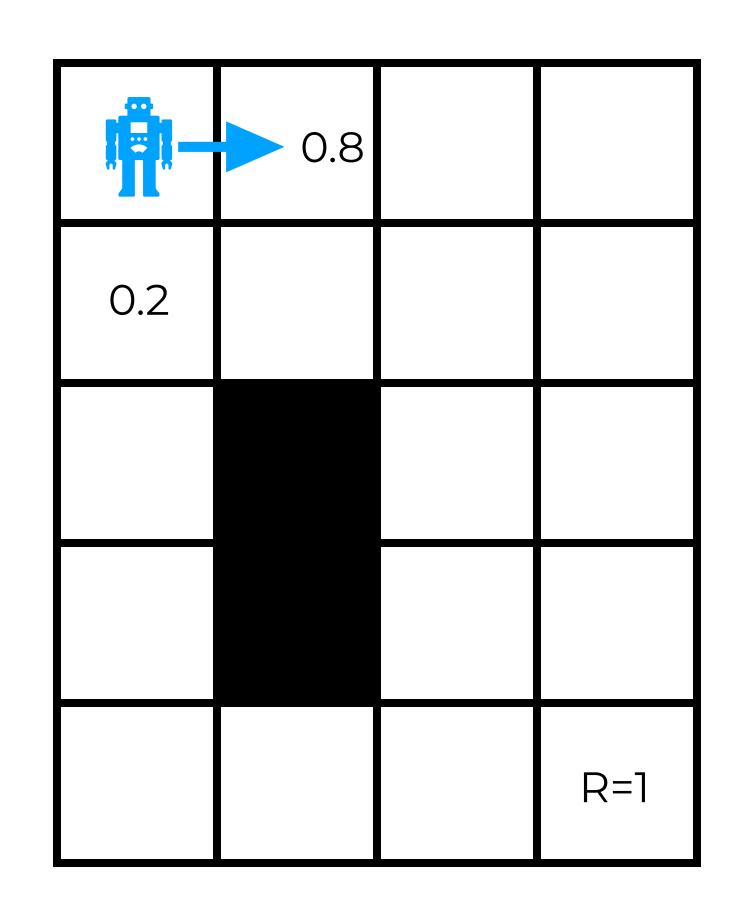
Planning

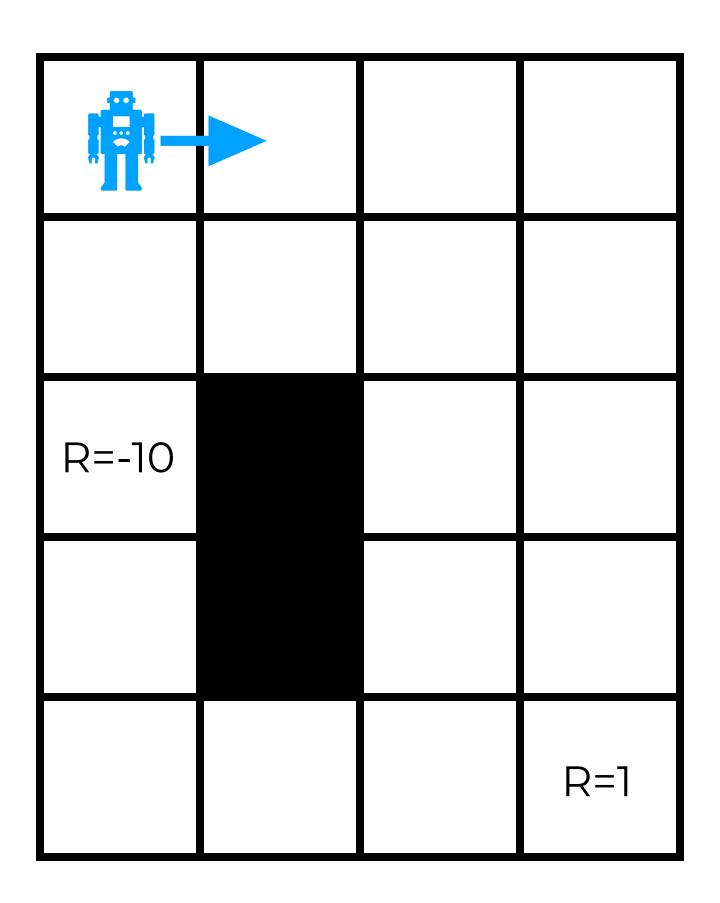
This week we discuss a version of RL where these are observed

- 20 states. Start state is top-left
 - Bottom right is absorbing

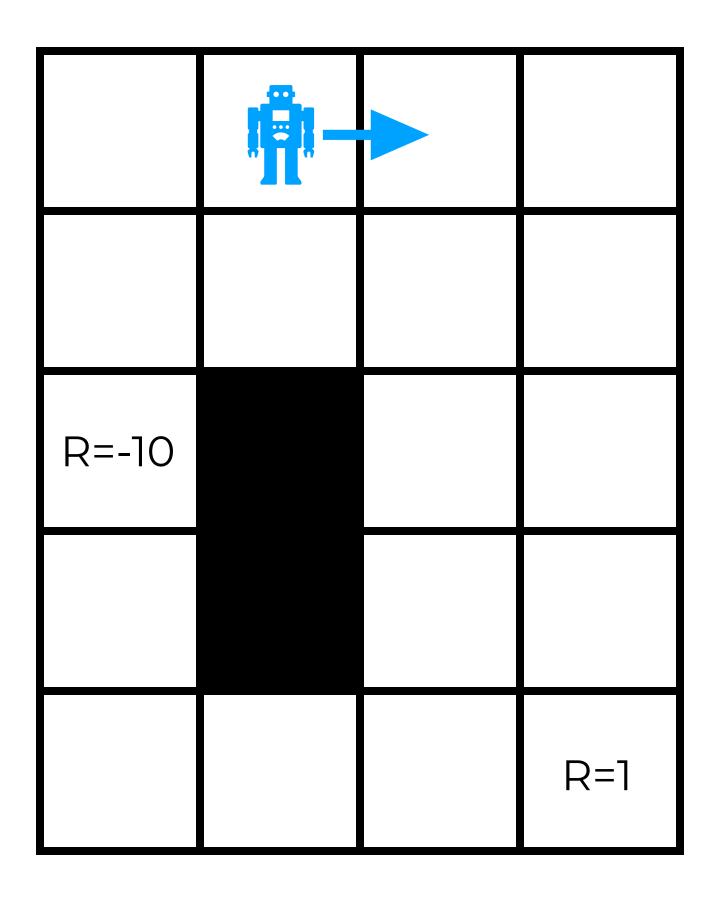
$$P(s'|s_{absorbing},a) = \begin{cases} 1 & \text{if } s' = s, \\ 0 & \text{otherwise}. \end{cases}$$

- All rewards are 0 except for the bottom-right state (goal state)
- Actions: A := {L, R, U, D}
- 80% of the time actions lead to where they are supposed to.
 - The rest of the time (20%) they lead to a random adjacent state

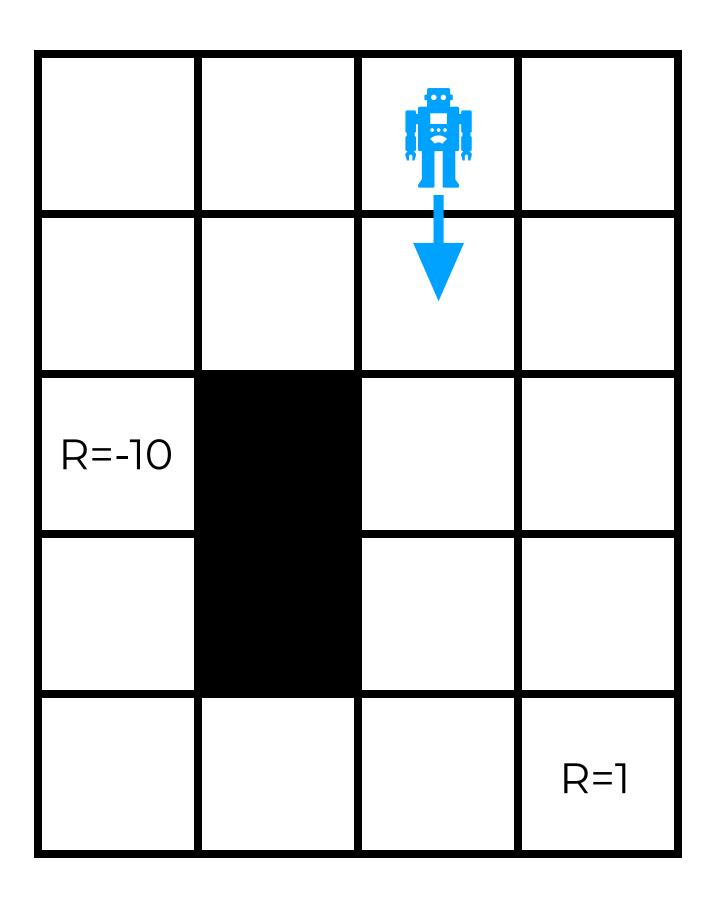




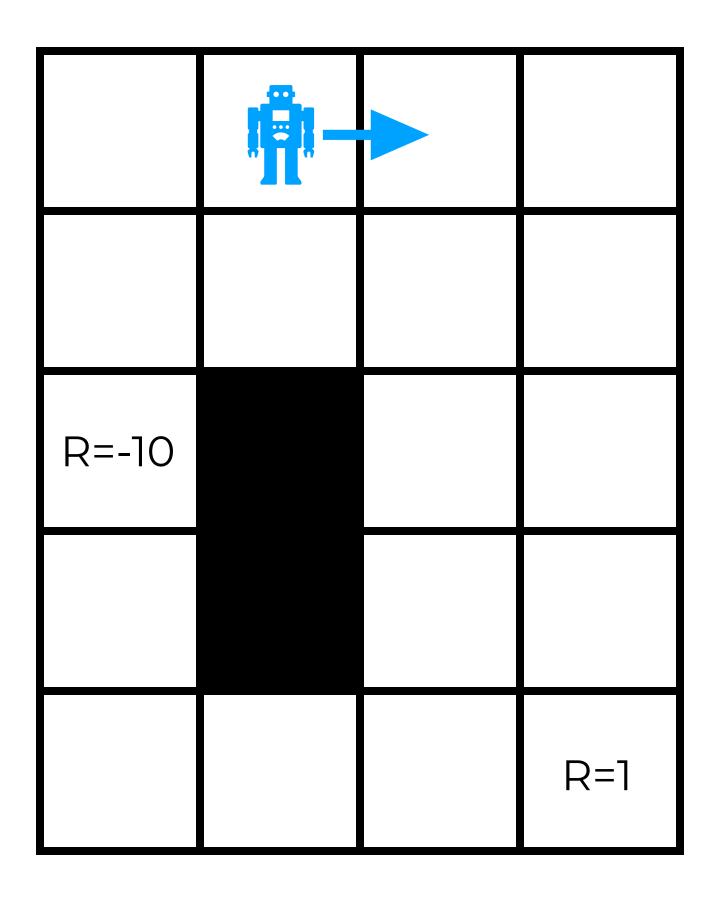
R=-10		
		R=1



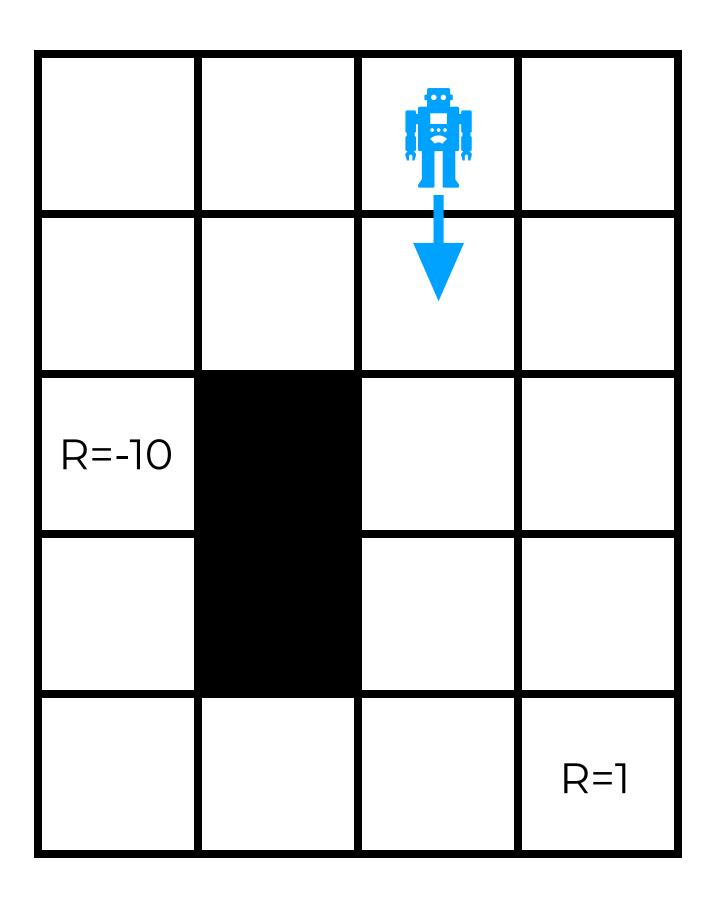
R=-10		
		R=1



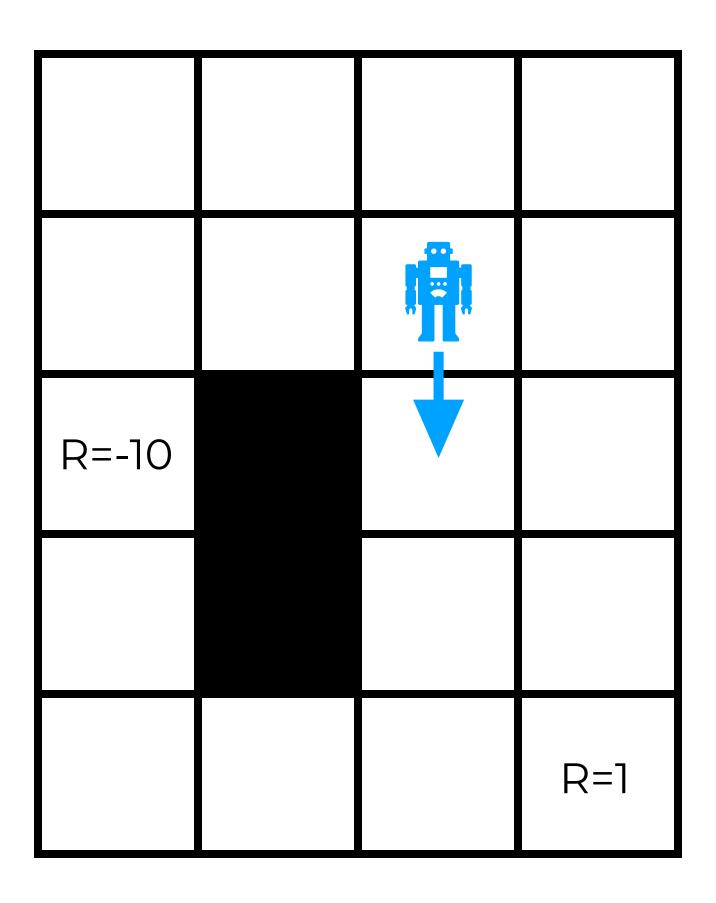
R=-10		
		R=1



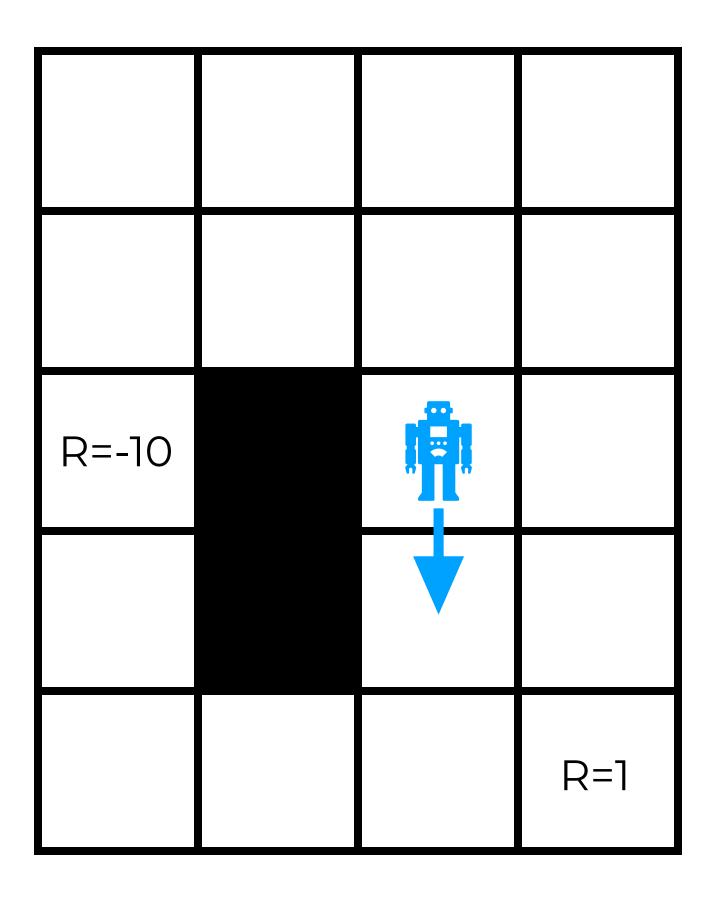
R=-10		
		R=1



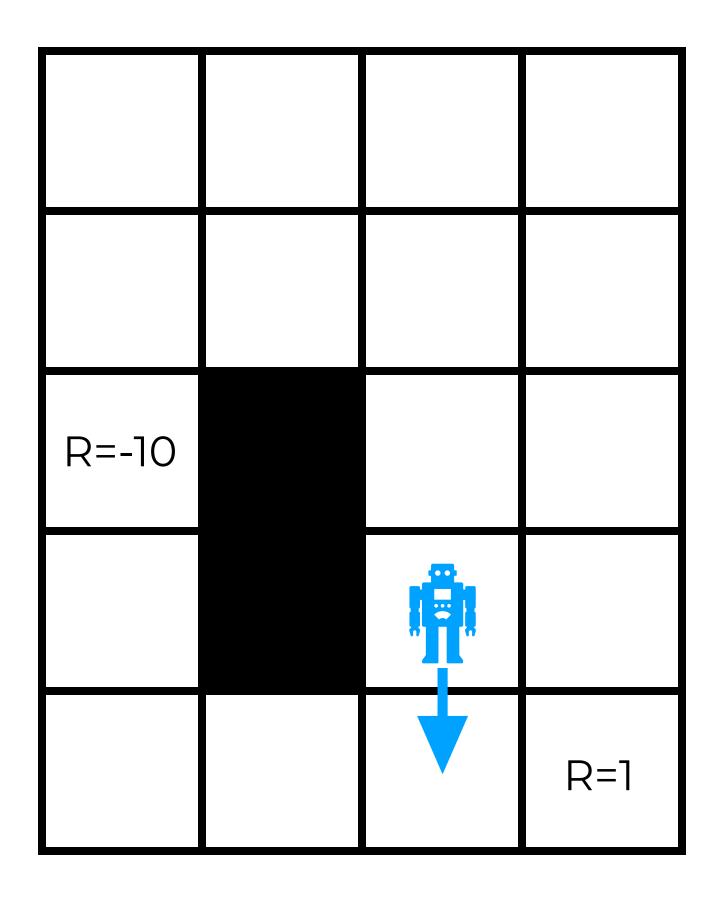
R=-10		
		R=1

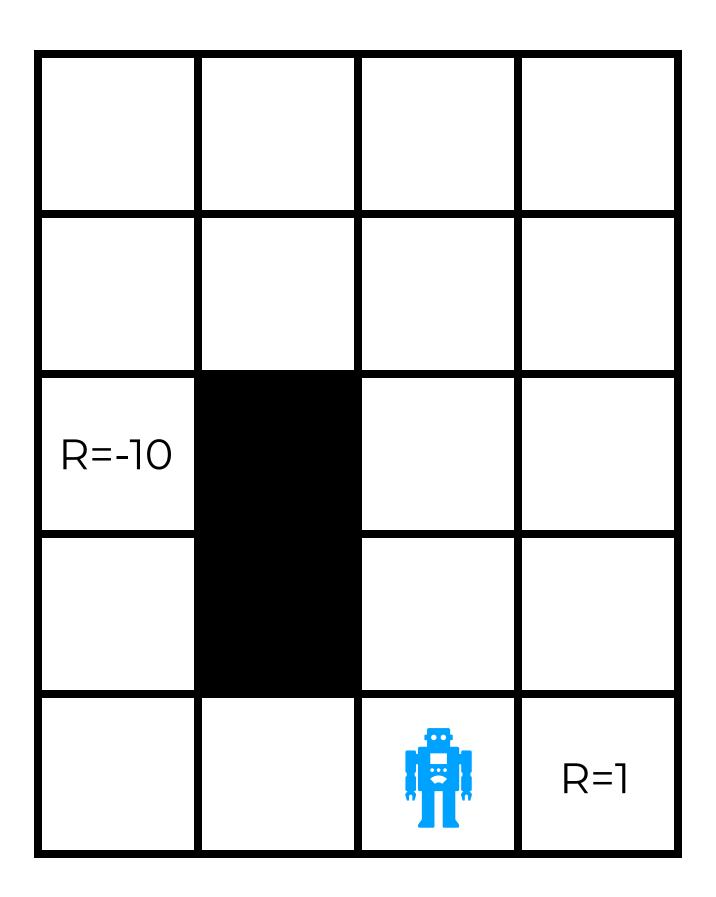


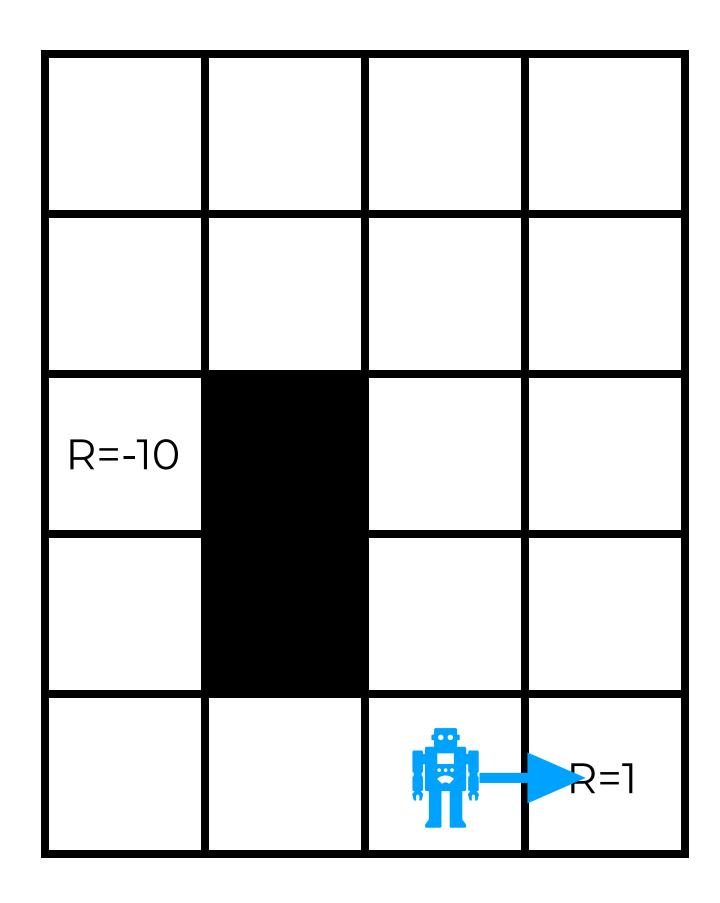
R=-10		
		R=1

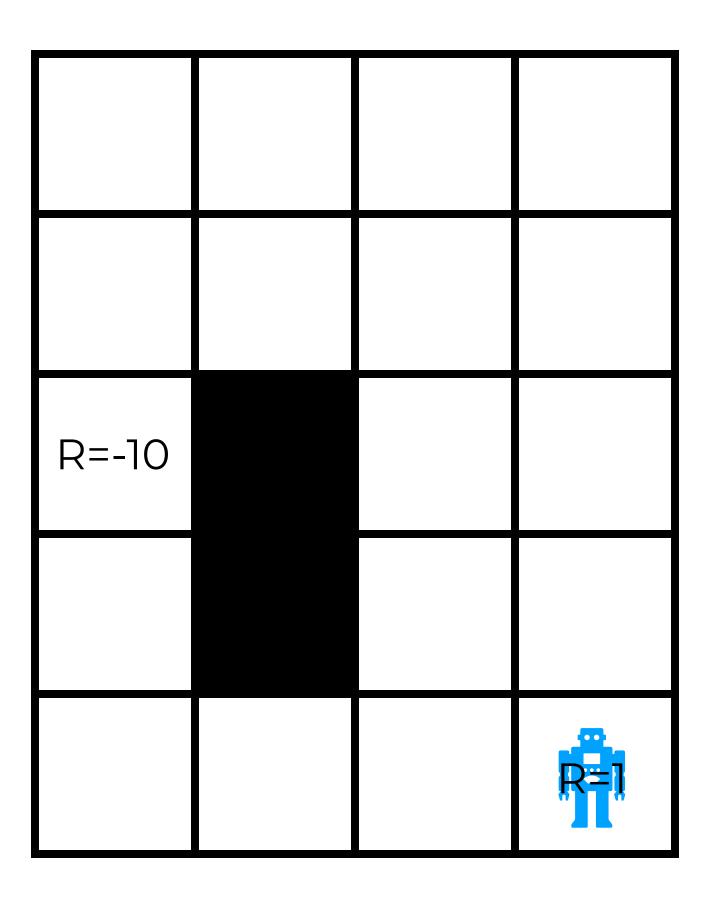


R=-10		
		R=1

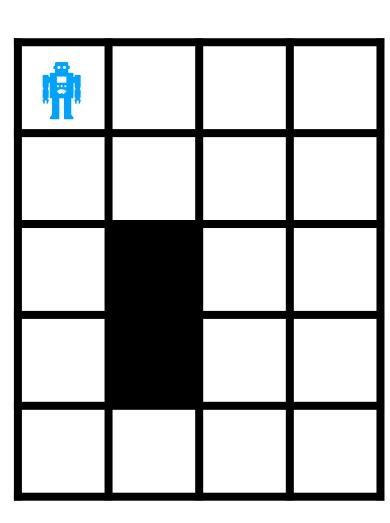




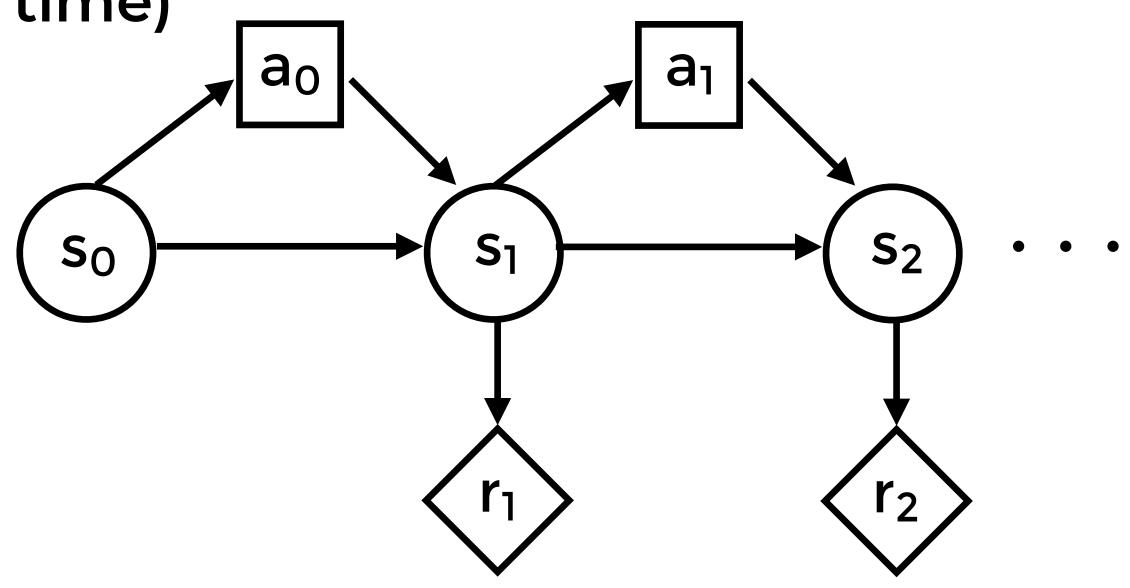


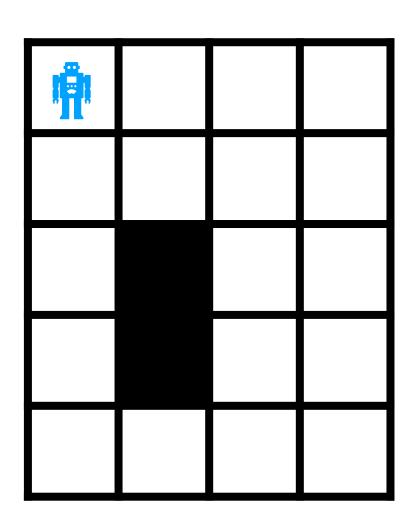


- Provide a framework for decision-making under uncertainty
 - Markov process with decisions and utilities
 - Assumes stationarity (i.e., transitions are fixed across time)



- Provide a framework for decision-making under uncertainty
 - Markov process with decisions and utilities
 - Assumes stationarity (i.e., transitions are fixed across time)
- Square nodes: decisions
- Circle nodes: States
- Diamond nodes: utility

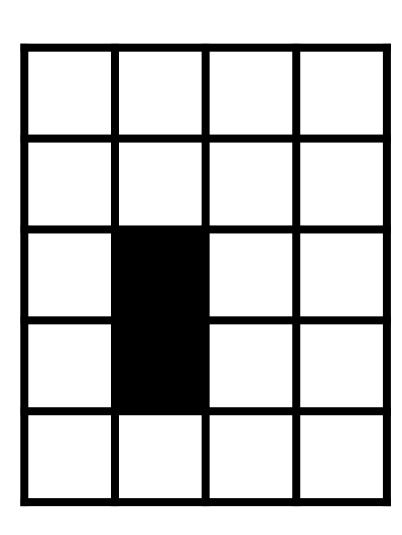




The objective of MDPs

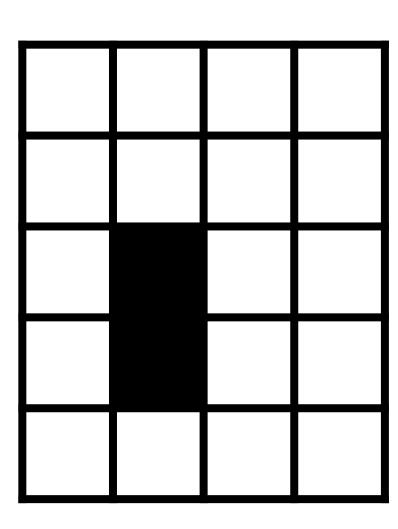
$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- A: set of actions
- P(S' | S,A): transition probabilities
- R(S): reward function
- γ : discount factor \in [0, 1]



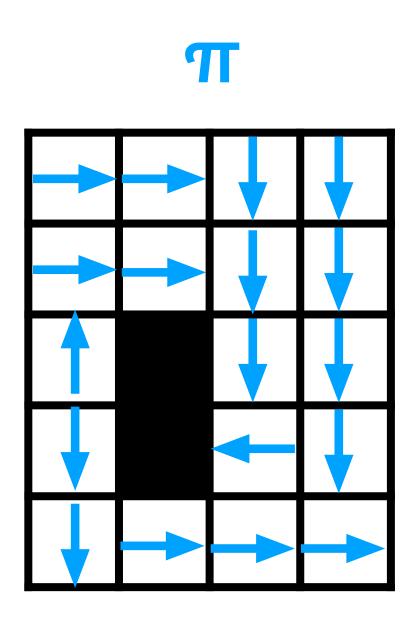
$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- A: set of actions
- P(S' | S,A): transition probabilities
- R(S): reward function
- γ : discount factor \in [0, 1]
- A policy: $\pi : S \rightarrow A$



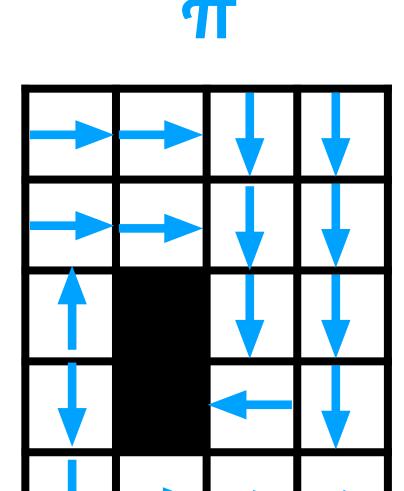
$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- A: set of actions
- P(S' | S,A): transition probabilities
- R(S): reward function
- γ : discount factor \in [0, 1]
- A policy: $\pi : S \rightarrow A$



$$\langle \mathsf{A}, \mathsf{S}, \mathsf{P}, \mathsf{R}, \gamma \rangle$$

- A: set of actions
- P(S' | S,A): transition probabilities
- R(S): reward function
- γ : discount factor \in [0, 1]
- A policy: $\pi : S \rightarrow A$
- Goal: find the optimal policy



Optimal policy?

- Agent is trying to maximize its rewards (utility)
 - Utility simply assigns a real value to a state
 - Typically combine rewards with an additive function

$$\sum_{t} R(s_t)$$

Discounting (γ)

The sum of rewards could be infinite/unbounded

$$\lim_{T \to \infty} \sum_{t}^{T} R(s_t)$$

Discounting (γ)

The sum of rewards could be infinite/unbounded

$$\lim_{T \to \infty} \sum_{t}^{T} R(s_t)$$

• A typical solution is to use a discount factor 0 $\leq \gamma \leq$ 1

$$\lim_{\mathsf{T}\to\infty}\sum_{\mathsf{t}}^{\mathsf{T}}\gamma^{\mathsf{t}}\mathsf{R}(\mathsf{s}_{\mathsf{t}})$$

Discounting (7)

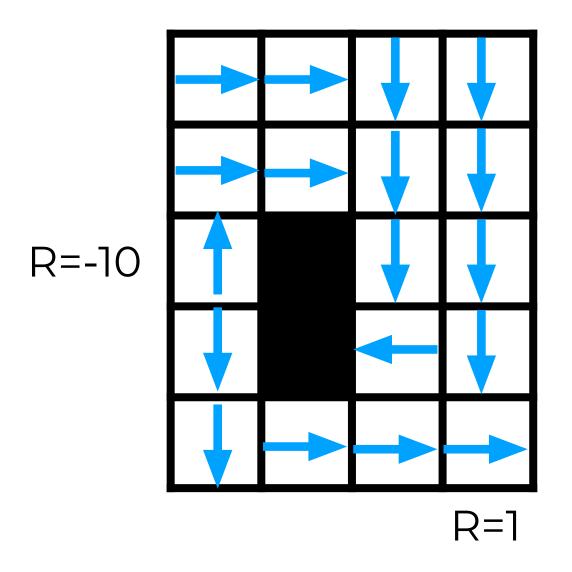
• The sum of rewards could be infinite/unbounded

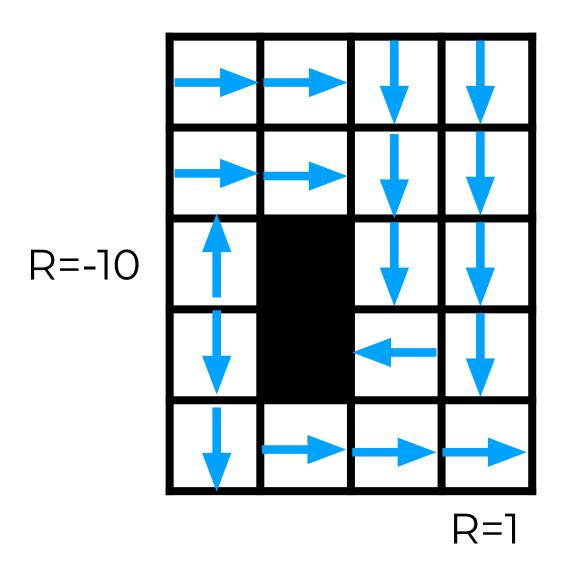
$$\lim_{T \to \infty} \sum_{t}^{T} R(s_t)$$

• A typical solution is to use a discount factor 0 $\leq \gamma \leq$ 1

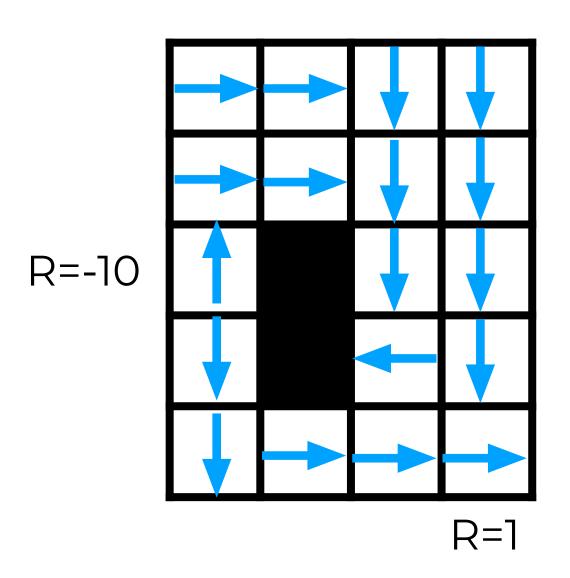
$$\lim_{\mathsf{T} \to \infty} \sum_{\mathsf{t}}^{\mathsf{T}} \gamma^{\mathsf{t}} \mathsf{R}(\mathsf{s}_{\mathsf{t}})$$

- Geometric series. Bounded by: $\frac{\mathsf{R}_{\max}}{\mathsf{1}-\gamma}$
- Intuition: would rather have rewards sooner



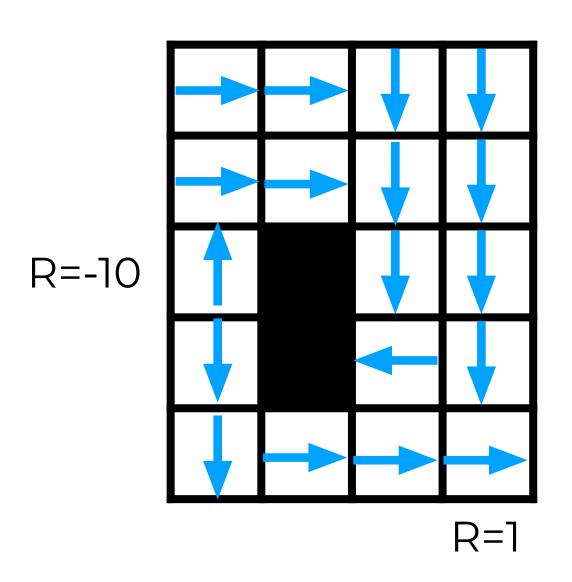


You cannot calculate the sum of the rewards directly:



You cannot calculate the sum of the rewards directly:

$$\sum_{\mathsf{t}}^{\mathsf{T}} \gamma^{\mathsf{t}} \mathsf{R}(\mathsf{s}_{\mathsf{t}})$$



You cannot calculate the sum of the rewards directly:

$$\sum_{\mathsf{t}}^{\mathsf{I}} \gamma^{\mathsf{t}} \mathsf{R}(\mathsf{s}_{\mathsf{t}})$$

Rewards are uncertain

- They depend on the transition probabilities

Maximize Expected Utility

- Maximize Expected Utility (MEU)
 - In short: optimal decision under uncertainty is the one with greatest expected utility
 - Variability comes from: environment uncertainty
- Justification for MEU: Rational agents must obey constraints which lead to optimizing expected utility

Find the optimal policy of an MDP

 $oldsymbol{\pi}^*(s)$ $\forall s$

Find the optimal policy of an MDP

$$oldsymbol{\pi}^*(s)$$
 $orall s$

Policies are evaluated using their expected utility:

$$\mathsf{EU}(\pi) = \sum_{t=0}^{\infty} \gamma^t \sum_{\mathsf{s}_{t+1}} \mathsf{P}(\mathsf{s}_{t+1} \mid \mathsf{s}_t, \pi(\mathsf{s}_t)) \mathsf{R}(\mathsf{s}_{t+1})$$

Find the optimal policy of an MDP

$$oldsymbol{\pi}^*(s)$$
 $orall s$

Policies are evaluated using their expected utility:

$$\mathsf{EU}(\pi) = \sum_{t=0}^{\infty} \gamma^t \sum_{\mathbf{s}_{t+1}} \mathsf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \pi(\mathbf{s}_t)) \mathsf{R}(\mathbf{s}_{t+1})$$

Find the optimal policy of an MDP

$$\boldsymbol{\pi}^*(s) \ \forall s$$

Policies are evaluated using their expected utility:

$$\mathsf{EU}(\boldsymbol{\pi}) = \sum_{t=0}^{\infty} \gamma^t \sum_{\mathbf{s}_{t+1}} \mathsf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \boldsymbol{\pi}(\mathbf{s}_t)) \boxed{\mathsf{R}(\mathbf{s}_{t+1})}$$

• The optimal policy is the one with highest expected utility: $\mathsf{EU}(\pi^*) \geq \mathsf{EU}(\pi) \ \ \forall \pi$

Solving MDPs (obtaining the optimal policy)

- Three well-known techniques:
 - 1. Value iteration
 - 2. Policy Iteration
 - 3. Linear Programming

Value Function

• $V(s_t)$: The value of being in state s at time t

Value Function

• $V(s_t)$: The value of being in state s at time t

 $V(s_t) := expected sum of rewards of being in s$

Assume that the process has T steps

- Assume that the process has T steps
- The value at step T is

- Assume that the process has T steps
- The value at step T is $V(s_T) = R(s_T)$

- Assume that the process has T steps
- The value at step T is $V(s_T) = R(s_T)$
- The value at step T-1 is

$$\mathbf{V}(\mathbf{s_{T-1}}) = \max_{\mathbf{a_{T-1}}} \left\{ \mathbf{R}(\mathbf{s_{T-1}}) + \gamma \sum_{\mathbf{s_{T}}} \mathbf{P}(\mathbf{s_{T}} \mid \mathbf{s_{T-1}}, \mathbf{a_{T-1}}) \mathbf{R}(\mathbf{s_{T}}) \right\}$$

- Assume that the process has T steps
- The value at step T is $V(s_T) = R(s_T)$
- The value at step T-1 is

$$\mathbf{V}(\mathbf{s_{T-1}}) = \max_{\mathbf{a_{T-1}}} \left\{ \mathbf{R}(\mathbf{s_{T-1}}) + \gamma \sum_{\mathbf{s_{T}}} \mathbf{P}(\mathbf{s_{T}} \mid \mathbf{s_{T-1}}, \mathbf{a_{T-1}}) \mathbf{R}(\mathbf{s_{T}}) \right\}$$

• The value at step t is $(0 \le t \le T)$

$$V(\textbf{s}_{t}) = \max_{\textbf{a}_{t}} \left\{ \textbf{R}(\textbf{s}_{t}) + \gamma \sum_{\textbf{s}_{t+1}} \textbf{P}(\textbf{s}_{t+1} \mid \textbf{s}_{t}, \textbf{a}_{t}) V(\textbf{s}_{t+1}) \right\}$$

- Assume that the process has T steps
- The value at step T is $V(s_T) = R(s_T)$
- The value at step T-1 is

The value at step 1-1 is
$$V(s_{T-1}) = \max_{a_{T-1}} \left\{ R(s_{T-1}) + \gamma \sum_{s_T} P(s_T \mid s_{T-1}, a_{T-1}) R(s_T) \right\}$$
 The value at step t is $(0 \le t \le T)$

• The value at step t is $(0 \le t \le T)$

The value at step t is
$$(0 \le t \le T)$$

$$V(s_t) = \max_{a_t} \left\{ R(s_t) + \gamma \sum_{s_{t+1}} P(s_{t+1} \mid s_t, a_t) V(s_{t+1}) \right\}$$

Bellman equation

Value of state s

$$\mathbf{V}(\mathbf{s}_t) = \max_{\mathbf{a}_t} \left\{ \mathbf{R}(\mathbf{s}_t) + \gamma \sum_{\mathbf{s}_{t+1}} \mathbf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) \mathbf{V}(\mathbf{s}_{t+1}) \right\} \quad \forall \mathbf{s}$$

Bellman equation

Value of state s

$$\mathbf{V}(\mathbf{s}_t) = \max_{\mathbf{a}_t} \left\{ \mathbf{R}(\mathbf{s}_t) + \gamma \sum_{\mathbf{s}_{t+1}} \mathbf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) \mathbf{V}(\mathbf{s}_{t+1}) \right\} \quad \forall \mathbf{s}$$

Recursive equations

Bellman equation

Value of state s

$$\mathbf{V}(\mathbf{s}_t) = \max_{\mathbf{a}_t} \left\{ \mathbf{R}(\mathbf{s}_t) + \gamma \sum_{\mathbf{s}_{t+1}} \mathbf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) \mathbf{V}(\mathbf{s}_{t+1}) \right\} \quad \forall \mathbf{s}$$

- Recursive equations
- The value of a state only depends on the state's reward and the neighbours' value

Bellman equation

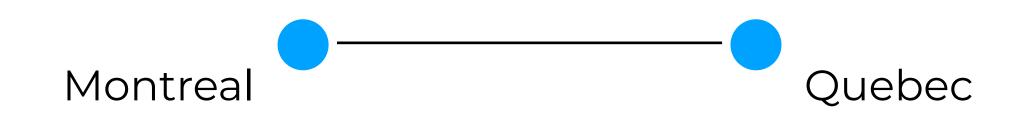
Value of state s

$$\mathbf{V}(\mathbf{s}_t) = \max_{\mathbf{a}_t} \left\{ \mathbf{R}(\mathbf{s}_t) + \gamma \sum_{\mathbf{s}_{t+1}} \mathbf{P}(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) \mathbf{V}(\mathbf{s}_{t+1}) \right\} \quad \forall \mathbf{s}$$

- Recursive equations
- The value of a state only depends on the state's reward and the neighbours' value
- This is also known as a dynamic programming equation

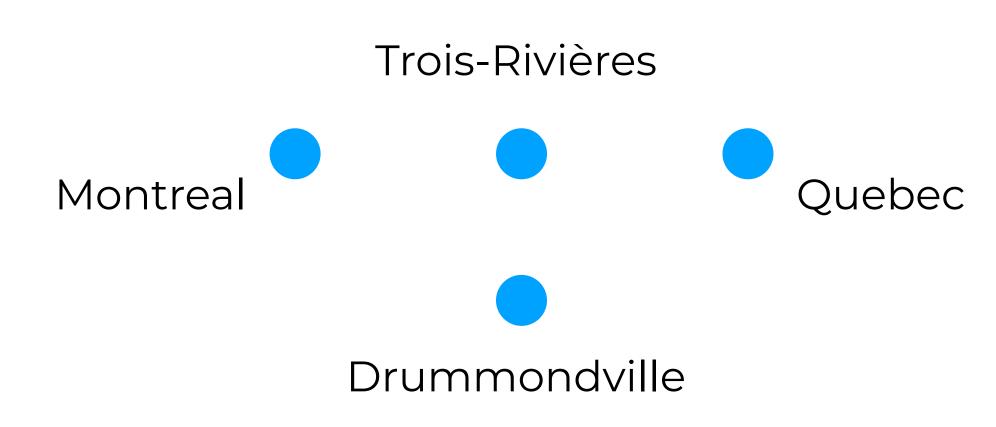
Dynamic Programming (in 1 slide)

- Solution technique that decomposes a problem into a set of subproblems
 - The solution to each subproblem is part of the solution of the original problem
 - E.g.,



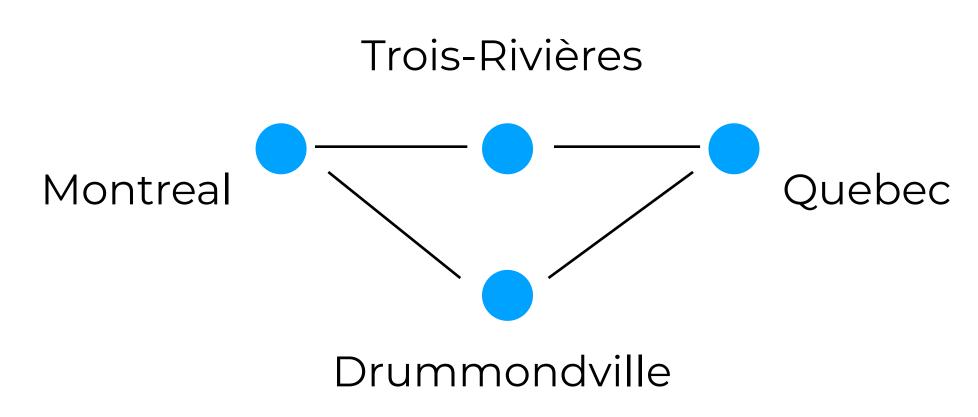
Dynamic Programming (in 1 slide)

- Solution technique that decomposes a problem into a set of subproblems
 - The solution to each subproblem is part of the solution of the original problem
 - E.g.,



Dynamic Programming (in 1 slide)

- Solution technique that decomposes a problem into a set of subproblems
 - The solution to each subproblem is part of the solution of the original problem
 - E.g.,



• Iteratively update V(s) for each state until convergence

- Iteratively update V(s) for each state until convergence
- (Initialize V(s) for every state)

- Iteratively update V(s) for each state until convergence
- (Initialize V(s) for every state)
- For i=1,2,3,...

• For s=1,...,S
$$\mathbf{V}(\mathbf{s}) = \max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}(\mathbf{s}') \right\}$$

- Iteratively update V(s) for each state until convergence
- (Initialize V(s) for every state)
- For i=1,2,3,... $V(s) = \max_{a} \left\{ R(s) + \gamma \sum_{s'} P(s' \mid s, a) V(s') \right\}$
- The policy is implicit
 - Once converged: $\pi^*(s) = \arg\max_{s} \left\{ R(s) + \gamma \sum_{s'} P(s' \mid s, a) V^*(s') \right\} \ \forall s$

• Improve policy explicitly.

• Improve policy explicitly.

Start with any (e.g., random) policy π

Improve policy explicitly.

Start with any (e.g., random) policy π

Iterate until convergence:

1. Given current policy get the value of each state

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V^{\pi}(s')$$
 $\forall s$

• Improve policy explicitly.

Start with any (e.g., random) policy π

Iterate until convergence:

1. Given current policy get the value of each state

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V^{\pi}(s')$$
 $\forall s$

2. Update the current policy

$$\boldsymbol{\pi}'(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^{\boldsymbol{\pi}}(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

• Improve policy explicitly.

Start with any (e.g., random) policy π

Iterate until convergence:

1. Given current policy get the value of each state

$$\mathbf{V}^{\pi}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{\pi}(\mathbf{s})) \mathbf{V}^{\pi}(\mathbf{s}')$$
 $\forall \mathbf{s}$

2. Update the current policy

$$\boldsymbol{\pi}'(\mathbf{s}) = \arg\max_{\mathbf{a}} \left\{ \mathbf{R}(\mathbf{s}) + \gamma \sum_{\mathbf{s}'} \mathbf{P}(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) \mathbf{V}^{\boldsymbol{\pi}}(\mathbf{s}') \right\} \ \forall \mathbf{s}$$

Policy Evaluation

> Policy Update

PI vs. VI

- Value iteration is faster per iteration
- Policy iteration converges in fewer iterations

 Some of these slides were adapted from Pascal Poupart's slides (CS686 U.Waterloo)