Machine Learning |
MATH80629A

Apprentissage Automatique |
MATH80629

Sequential Decision Making |
— Week #12

Today

« Motivation and introduction
« Toward Reinforcement learning
 Planning
« Markov Decision Process (MDP)
e Value iteration
e Policy iteration

« Next week: Reinforcement learning

Laurent Charlin — 80-629 2

Reinforcement Learning
Motivation

:
Three main components

e Task (T)
e Performance measure (P)

« Experience (E)

Laurent Charlin — 80-629 4

Supervised learning

e Experience a fixed data set
 Fit a model using this data

e Use the model to make predictions about unseen data
(and to understand the data)

e Predictions may be used downstream to inform
decision-making (e.g., Operations Research)

Laurent Charlin — 80-629 5

Laurent Charlin — 80-629

An example of learning
and decision making

An example of learning
and decision making

« Imagine building a robot that must navigate autonomously

e The robot has wheels and a camera

Laurent Charlin — 80-629 §)

An example of learning
and decision making

« Imagine building a robot that must navigate autonomously
e The robot has wheels and a camera
e You think about using a two-stage approach:

1. Use supervised learning to identify objects in scenes

2. Given scene content have a decision-making module
that controls its wheels

Decision Making

Laurent Charlin — 80-629 §)

View from the robot’'s camera

Laurent Charlin — 80-629

View from the robot’'s camera

Input Image

Laurent Charlin — 80-629

View from the robot’'s camera

Input Image

Cliff

Decision Making

Laurent Charlin — 80-629

View from the robot’'s camera

Input Image

Water

Decision Making

Laurent Charlin — 80-629

Limitations of two-stage
approach

e Supervised learning doesn’t know about the decision-making

o Its objective is, for example, to maximize accuracy

Laurent Charlin — 80-629 8

Limitations of two-stage
approach

e Supervised learning doesn’t know about the decision-making

e Its objective is, for example, to maximize accuracy
o For decision making, different errors have different costs
o E.g., missing the cliff could have dire consequences. missing sky less so.

e INncorporating these costs into the learning objective is tough

Laurent Charlin — 80-629 8

Limitations of two-stage
approach

e Supervised learning doesn’t know about the decision-making

o Its objective is, for example, to maximize accuracy

o For decision making, different errors have different costs
o E.g., missing the cliff could have dire consequences. missing sky less so.
e INncorporating these costs into the learning objective is tough

o Several other limitations:

e need labeled data

e iImprovements in SL do not necessarily lead to improvements in decision making

Laurent Charlin — 80-629 8

Alternative:
Reinforcement learning (RL)

e Incorporates both stages in a single framework
e Incorporates the ideas of:

o state (observation)

e action

e reward

Laurent Charlin — 80-629 9

Planning:
A first step towards
reinforcement learning

Laurent Charlin — 80-629

Alternative:
Reinforcement learning (RL)

e Incorporates both stages in a single framework
e Incorporates the ideas of:

o state (observation)

e action

e reward

11

Laurent Charlin — 80-629

Initial example with

grid world

Each cell is a state (S)

Actions indicate which
movements are
possible: A :={L,R,U,D}

Rewards encode the
task: R(s)

Transition probabilities
encode the outcome of
an action: P(s’ | s, a)

12

Initial example with
grid world

e Each cell is a state (S)

e Actions indicate which Planning

movements are This week we
possible: A:={L,R,U D} | discuss a

version of RL
e Rewards encode the where these are

task: R(s) observed

o Transition probabilities
encode the outcome of
an action: P(s’ | s, a)

Laurent Charlin — 80-629 12

o 20 states. Start state is top-left
« Bottom right is absorbing

] |f S/ — S,
P(s'[Sabsorbing, @) = {o otherwise

o All rewards are O except for the
bottom-right state (goal state)

e Actions:A = {L,R,U,D}

e 80% of the time actions lead to
where they are supposed to.
e The rest of the time (20%) they
lead to a random adjacent state

Laurent Charlin — 80-629

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

30-629

Laurent Charlin

Markov Decision Process (MDP)

 Provide a framework for decision-making under
uncertainty

« Markov process with decisions and utilities

il]l

o« Assumes stationarity (i.e., transitions are fixed

across time) . ..

Laurent Charlin — 80-629 32

Markov Decision Process (MDP)

 Provide a framework for decision-making under
uncertainty

« Markov process with decisions and utilities

il]l

o« Assumes stationarity (i.e., transitions are fixed

across time)

« Square nodes: decisions .I\ .\ . ..
« Circle nodes: States ee e e o o
« Diamond nodes: utility

32

Laurent Charlin — 80-629

The objective of MDPs

Markov Decision Process (MDP)

(A,S.P,R,~)

o A:set of actions

e P(S’|S,A): transition probabilities
e R(S): reward function

7 :discount factor € [0, 1]

Laurent Charlin — 80-629 34

Markov Decision Process (MDP)

(A,S.P,R,~)

o A:set of actions

e P(S’|S,A): transition probabilities
e R(S): reward function

7 :discount factor € [0, 1]

e Apolicy: m:S — A

Laurent Charlin — 80-629 34

Markov Decision Process (MDP)

(A,S.P,R,~)
o A:set of actions m
e P(S'|S,A): transition probabilities
e R(S): reward function

7 :discount factor € [0, 1]

e Apolicy: m:S — A

Laurent Charlin — 80-629 34

Markov Decision Process (MDP)

(A,S.P,R,~)
o A:set of actions m
e P(S'|S,A): transition probabilities
e R(S): reward function

7 :discount factor € [0, 1]

e Apolicy: m:S — A

e Goal: find the optimal policy

Laurent Charlin — 80-629 34

Optimal policy?

e Agent is trying to maximize its rewards (utility)
o Utility simply assigns a real value to a state

e Typically combine rewards with an additive function

> R(st)

Laurent Charlin — 80-629 35

Discounting (V)

e The sum of rewards could be infinite/unbounded

i
fim, 2 R(s)

Laurent Charlin — 80-629 36

Discounting (V)

e The sum of rewards could be infinite/unbounded

T
lim R(St)

T— 00

A typical solution is to use a discount factor 0 < ~ <1

-
lim Z v'R(st)
t

T— 00

Laurent Charlin — 80-629 36

Discounting (V)

e The sum of rewards could be infinite/unbounded

T
lim R(St)

T— 00

A typical solution is to use a discount factor 0 < ~ <1
T
§ ‘R(s
dm 2 VR(s)
RmaX

11—~
e INntuition: would rather have rewards sooner

e Geometric series. Bounded by:

Laurent Charlin — 80-629 36

Laurent Charlin — 80-629

R

-10

R

]

R=-10

R=1

You cannot calculate the sum of the rewards directly:

Laurent Charlin — 80-629

R=-10

You cannot calculate the sum of the rewards directly:

> 7'R(st)

t

Laurent Charlin — 80-629

R=-10

R=1

You cannot calculate the sum of the rewards directly:

Z tR(S) Rewards are uncertain
i t - They depend on the transition probabilities
t

Laurent Charlin — 80-629

Maximize Expected Utility

« Maximize Expected Utility (MEU)

e In short: optimal decision under uncertainty is the one
with greatest expected utility

o Variability comes from: environment uncertainty

o Justification for MEU: Rational agents must obey
constraints which lead to optimizing expected utility

Laurent Charlin — 80-629 38

Solving an MDP

« Find the optimal policy of an MDP

M (S) Vs

Laurent Charlin — 80-629 39

Solving an MDP

« Find the optimal policy of an MDP

M (S) Vs

o Policies are evaluated using their expected utility:

EU(T) = > 7' > P(sti1 | st, m(st))R(St41)
t=0

St+1

Laurent Charlin — 80-629 39

Solving an MDP

« Find the optimal policy of an MDP

M (S) Vs

o Policies are evaluated using their expected utility:

EU () Z P(St11 | St, T(St) |R(St+1)
t=0

St+1

Laurent Charlin — 80-629 39

Solving an MDP

« Find the optimal policy of an MDP

M (S) Vs

o Policies are evaluated using their expected utility:

EU () Z P(St11 | St, T(St) |R(St+1)
t=0

St+1

e The optimal policy is the one with highest
expected utility: EU(7*) > EU(m) VT

Laurent Charlin — 80-629 39

Solving MDPs
(obtaining the optimal policy)

Solving an MDP

e Three well-known techniques:
1. Value iteration
2. Policy Iteration

3. Linear Programming

Laurent Charlin — 80-629 41

Value Function

e V(St): The value of being in state s at time t

Laurent Charlin — 80-629 42

Value Function

e V(St): The value of being in state s at time t

V(s¢) := expected sum of rewards of being in s

Laurent Charlin — 80-629 42

Finite horizon

e Assume that the process has T steps

Laurent Charlin — 80-629 43

Finite horizon

e Assume that the process has T steps

e The value atstep T is

Laurent Charlin — 80-629 43

Finite horizon

e Assume that the process has T steps

e The value at step T is V(st) = R(s7)

Laurent Charlin — 80-629 43

Finite horizon

e Assume that the process has T steps
e The value at step T is V(st) = R(s7)

e The value at step T-1is

V(ST_'|) — Imax {R(ST'|) Y Z P(ST ‘ ST11, aT1)R(sT)}

ar—1 S
T

Laurent Charlin — 80-629 43

Finite horizon

e Assume that the process has T steps
e The value at step T is V(st) = R(s7)

e The value at step T-1is

V(ST_'|) — Imax {R(ST'|) Y Z P(ST ‘ ST11, aT1)R(sT)}

ar—1 S
T

e« The value atsteptis(0<t<T)

V(st) = max q R(st) + 7 > P(st41 | st,at)V(St)

St+1

Laurent Charlin — 80-629 43

Finite horizon

e Assume that the process has T steps
e The value at step T is V(st) = R(s7)

e The value at step T-1is

V(ST_'|) — Imax {R(ST'|) Y Z P(ST ‘ ST11, aT1)R(sT)}

ar—1 S
T

e« The value atsteptis(0<t<T)

V(st) = max q R(st) + 7 > P(st41 | st,at)V(St)

St+1

Laurent Charlin — 80-629 43

Bellman equation

e Value of state s

V(St) — Hlaa;X {R(St) + 7Y Z P(St_|_1 ‘ St, at)V(st+1)} VS

St+1

Laurent Charlin — 80-629 44

Bellman equation

e Value of state s

V(St) — Hlaa;X {R(St) + 7Y Z P(St_|_1 ‘ St, at)V(st+1)} VS

St+1

e Recursive equations

Laurent Charlin — 80-629 44

Bellman equation

e Value of state s

V(St) — max R(St) + Y Z P(St_|_1 ‘ St, at)V(st+1) VS

dt
St+1

e Recursive equations

e The value of a state only depends on the state’s reward
and the neighbours’ value

Laurent Charlin — 80-629 44

Bellman equation

e Value of state s

V(St) — max R(St) + Y Z P(St_|_1 ‘ St, at)V(st+1) VS

dt
St+1

e Recursive equations

e The value of a state only depends on the state’s reward
and the neighbours’ value

e This is also known as a dynamic programming equation

Laurent Charlin — 80-629 44

Dynamic Programming
(in 1 slide)

e Solution technique that decomposes a problem
Into a set of subproblems

e The solution to each subproblem is part of the
solution of the original problem

e E.g,

Montreal Quebec

Laurent Charlin — 80-629 45

Dynamic Programming
(in 1 slide)

e Solution technique that decomposes a problem
Into a set of subproblems

e The solution to each subproblem is part of the
solution of the original problem

e E.g,

Trois-Rivieres

Montreal Quebec

Drummondyville

Laurent Charlin — 80-629 45

Dynamic Programming
(in 1 slide)

e Solution technique that decomposes a problem
Into a set of subproblems

e The solution to each subproblem is part of the
solution of the original problem

e E.g,

Trois-Rivieres

Montreal ‘ \ ‘/‘ Quebec
@

Drummondyville

Laurent Charlin — 80-629 45

Value iteration (VI)

o Iteratively update V(s) for each state until convergence

Laurent Charlin — 80-629 46

Value iteration (VI)

o Iteratively update V(s) for each state until convergence

o (Initialize V(s) for every state)

Laurent Charlin — 80-629 46

Value iteration (VI)

o Iteratively update V(s) for each state until convergence

o (Initialize V(s) for every state)

e Fori=12,3,...

e Fors=1.,...,S

Laurent Charlin — 80-629 46

Laurent Charlin — 80-629

Value iteration (VI)

Iteratively update V(s) for each state until convergence

(Initialize V(s) for every state)

For i=1,2,3,...

e Fors=1.,...,S

The policy is implicit

a

« Once converged: T’ (S) = arg max {R(s) + Z P(s'|s,a

46

Policy Iteration (Pl)

« Improve policy explicitly.

Policy Iteration (Pl)

« Improve policy explicitly.

Start with any (e.g., random) policy

Laurent Charlin — 80-629 47

Policy Iteration (Pl)

« Improve policy explicitly.
Start with any (e.g., random) policy
Ilterate until convergence:

1. Given current policy get the value of each state

V™(s) =R(s) +~) _P(s'|s,m(s))V"(s') Vs

Laurent Charlin — 80-629 47

Policy Iteration (Pl)

« Improve policy explicitly.
Start with any (e.g., random) policy
Ilterate until convergence:

1. Given current policy get the value of each state

V™(s) =R(s) +~) _P(s'|s,m(s))V"(s') Vs

2. Update the current policy

m'(S) = arg max {R(S)

Laurent Charlin — 80-629 47

Policy Iteration (Pl)

« Improve policy explicitly.
Start with any (e.g., random) policy
Ilterate until convergence:

Policy 1. Given current policy get the value of each state

Evaluation

V™(s) =R(s)+v» P(s'|s,m(s)V"(s) Vs

. 2. Update the current policy
Policy

Update ‘IT/(S) — arg mgxx {R(S)

Laurent Charlin — 80-629 47

Pl vs. VI

o Value iteration is faster per iteration

o Policy iteration converges in fewer iterations

Laurent Charlin — 80-629 48

e Some of these slides were adapted from Pascal
Poupart’s slides (CS686 U.Waterloo)

Laurent Charlin — 80-629 49

