
Active Learning for Matching Problems

Laurent Charlin lcharlin@cs.toronto.edu

Richard Zemel zemel@cs.toronto.edu

Craig Boutilier cebly@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, ON M5S 3H5

Abstract

Effective learning of user preferences is crit-
ical to easing user burden in various types
of matching problems. Equally important
is active query selection to further reduce
the amount of preference information users
must provide. We address the problem of
active learning of user preferences for match-
ing problems, introducing a novel method for
determining probabilistic matchings, and de-
veloping several new active learning strate-
gies that are sensitive to the specific match-
ing objective. Experiments with real-world
data sets spanning diverse domains demon-
strate that matching-sensitive active learning
outperforms standard techniques.

1. Introduction

The burgeoning interest in recommender systems has
led to a plethora of techniques for predicting user
preferences or ratings for unseen items (e.g., prod-
ucts in e-commerce applications). Collaborative filter-
ing (CF) methods (Goldberg et al., 1992) have proven
especially popular and have attained impressive per-
formance (Koren, 2009). In practice, however, rec-
ommendations must not only account for user prefer-
ences in isolation; one usually has to tradeoff prefer-
ences for recommended items with various constraints
or objectives. For example, an online retailer may want
to limit the number of recommendations (to different
users) for any particular item so stock is not depleted
(which would create unsatisfied customers). The same
retailer may wish to facilitate serendipitous purchases
by ensuring items recommended to any single user are
diverse (McNee et al., 2006).

In this paper we focus on match-constrained recom-
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mendation, where the quality of a set of recommenda-
tions or matching is measured relative to constraints
or objectives that account for the entire set of users to
whom an item is recommended, the entire set of items
recommended to a single user, or both. These are
traded off against the predicted degree of preference of
individual recommendations. Match-constrained rec-
ommendation has wide application. For example, con-
sider the problem of assigning papers to reviewers:
given preferences (self-assessed expertise) of reviewers
for certain papers, we want to find the best assignment
of papers to reviewers. Recent work has used learning
techniques such as CF to predict missing preferences—
allowing reviewers to specify preferences for only a
small selection of papers—and finding high quality
matches subject to specific “collective” constraints on
the matching (e.g., number of papers per reviewer,
number of reviewers per paper) (Conry et al., 2009;
Charlin et al., 2011).

Eliciting preferences (e.g., in the form of item ratings)
imposes significant time and cognitive costs on users.
In domains such as paper matching, product recom-
mendation, or online dating, users will have limited pa-
tience for specifying preferences. While learning tech-
niques can be used to limit the amount of required in-
formation in match-constrained recommendation, the
intelligent selection of preference queries is just as im-
portant in reducing user burden. It is this problem
we address in this paper. We frame the problem as
one of active learning : our aim is to determine those
preference queries with the greatest potential to im-
prove the quality of the matching. This is a depar-
ture from most work in active learning, and, specifi-
cally, approaches tailored to recommender systems (as
we discuss below) where queries are selected to im-
prove the overall quality of ratings prediction. We de-
velop techniques that focus on queries whose responses
will directly impact—possibly indirectly by changing
predictions—the matching objective itself.

In this paper we propose several new active learning
methods for match-constrained recommendation. In
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contrast to previous active approaches, our methods
are sensitive to the matching objective. We also pro-
pose a new probabilistic matching technique that ac-
counts for uncertainty in predicted preferences when
constructing a matching. Finally, we test our methods
on several real-life datasets for online dating, confer-
ence reviewing, and assigning jokes to users. Our re-
sults show that active learning methods that are sen-
sitive to the matching task significantly outperform
a standard active learning method. Furthermore, we
show that our probabilistic methods can be success-
fully leveraged by active learning.

2. Related Work

We define our problem formally below, but informally,
assume a set of users must be matched to items sub-
ject to certain constraints or objectives on the overall
matching. Items are construed broadly to refer to any-
thing to which users might be matched: products in
e-commerce recommender systems, papers in reviewer
matching problems, even other users in roommate as-
signment, stable marriage or online dating. User pref-
erences over items are represented by suitability scores
which reflect the quality of matching a given item to
a user “in isolation.” Again, suitabilities should be
interpreted broadly as user preference, expertise, or
some other application-specific metric.

Matching problems have been studied in economics
for decades, where the focus has been on incen-
tives and stability, especially in two-sided match-
ing domains where both users and items (e.g., other
users) express preferences over the other. Classic ex-
amples include stable marriages and college admis-
sions (Gale & Shapley, 1962), medical resident to hos-
pital matching (Roth, 1984) and (one-sided) housing
markets (Hylland & Zeckhauser, 1979). This work
typically assumes all preferences have been specified.

Considerable work in information retrieval and ma-
chine learning has dealt with predicting suitabilities
given only a partial set of scores or other relevant data.
CF is, of course, a prime example (Goldberg et al.,
1992). Recent work on reviewer-paper matching—
a domain we consider here—includes work using co-
authorship graphs (Rodriguez & Bollen, 2008), lan-
guage and topic models (Mimno & McCallum, 2007),
and CF (Conry et al., 2009; Charlin et al., 2011).
The latter work in particular shows that high-quality
matchings can be constructed while eliciting only a
small set of suitabilities, and that tuning the learning
objective to account for the matching objective can
improve match quality with limited data.

Active learning is a rich field (e.g., see (Settles, 2009)
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Figure 1. Match-constrained recommendation framework.
Observed scores are shown in red, unobserved in blue, and
assigned are circled.

for a recent survey). Closest to our work are active
learning methods developed for CF (Boutilier et al.,
2003; Jin & Si, 2004; Harpale & Yang, 2008). These
methods consider objectives that deal with recommen-
dation sets (somewhat akin to our matching objec-
tive). Rigaux (2004) considers an iterative elicitation
method for paper matching using neighborhood CF,
but requires an initial partitioning of reviewers, and
elicits scores (with the aim only of improving score pre-
diction quality) for the same papers from all reviewers
in a partition. In our work, we need not partition
users, and we focus on matching quality rather than
prediction accuracy. Our approach is thus conceptu-
ally similar to CF methods trained for specific rec-
ommendation tasks (e.g., (Weimer et al., 2007)). Fi-
nally, Bayesian optimization has been used for active
learning recently (Brochu et al., 2009); however, these
methods assume a continuous query space and some
similarity metric over item space, hence are not read-
ily adaptable to our match-constrained problems.

3. Match-constrained Recommendation

In this section, we describe a general framework for
exploiting learning in match-constrained recommen-
dation, adopting the model and principles used in
recent work on paper matching (Conry et al., 2009;
Charlin et al., 2011). We then introduce a new model
for probabilistic matching within this framework that
we exploit when considering active learning in Sec. 4.

3.1. Matching Framework

Our aim is to determine high quality matchings of
items to users while requiring users to specify pref-
erences or suitabilities over only a small fraction of all
items. Our overall framework is illustrated in Fig. 1,
and comprises three steps, which may be iterated in
the active learning setting (Sec. 4). We first elicit suit-
ability scores from users for certain items (A); we then
learn some model (e.g., CF) to predict unobserved
suitabilities (B); finally, some form of optimization is
used to determine a matching meeting certain objec-
tives and constraints, using both observed and pre-
dicted suitabilities (C). We first formalize the model,
then discuss components (B) and (C) in more detail.

Model Formulation We formalize our problem as
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follows. Let r ∈ R refer to users (e.g., reviewers, con-
sumers, etc.), p ∈ P to items (e.g., papers, products,
other users), with |R| = N and |P| = M . Every user-
item pair has a suitability score srp, the set of which
forms a suitability matrix S ∈ R

N×M . Only a subset
of the suitabilities are observed, namely, those elicited
from users. We denote this by So, and denote the ob-
served scores for a particular user r and item p by So

r

and So
p , respectively. Su, Su

r , Su
p are the analogous

collections of unobserved scores.

Estimating Unobserved Scores Estimating un-
observed scores given a (small) set of observed scores—
together with any side-information, e.g., word vectors
in submitted papers—is a straightforward supervised
learning task to which a variety of approaches can be
applied. Conry et al. (2009), for instance, use CF to
predict unknown scores in a paper matching domain.
While our framework is quite general, our experiments,
including those in Sec. 5 on paper matching and several
other domains, suggest that Bayesian probabilistic ma-
trix factorization (BPMF) (Salakhutdinov & Mnih,
2008a) is a very competitive CF method for match-
constrained recommendation. So we describe it here
as one method, of many, that can be used.

Standard PMF (Salakhutdinov & Mnih, 2008b) fac-
torizes the observed score matrix, So, into two low-
rank matrices, U ∈ R

N×k and V ∈ R
M×k, where

k ≪ min(M,N). Unobserved scores are predicted us-
ing their product: suij is predicted to be uiv

′

j . While
PMF can be given a probabilistic interpretation by as-
suming Gaussian noise with fixed standard deviation
σ, BPMF provides a Bayesian extension of PMF by as-
suming priors on U and V . Apart from outperforming
PMF on standard CF tasks, BPMF also provides a dis-
tribution over unobserved suitabilities, Pr(Su|So, θ),
instead of a simple point prediction.

Matching Optimization Matching uses both ob-
served and predicted suitability scores to assign items
to users. We focus primarily on domains where
constrained many-to-many matching is required, i.e.,
where an item is matched to multiple users and multi-
ple users are matched to a single item. Paper matching
is a prime example, where each paper needs a specific
number of reviewers, and each reviewer must be as-
signed a number of papers within some range.

While many objectives and constraints can be accom-
modated in our framework, we illustrate it using a sim-
ple paper matching problem. Treating self-reported in-
terest or expertise as observed suitabilities, standard
learning methods like BPMF are used to predict un-
observed scores. We then formulate the matching op-
timization (treating predicted scores as if observed) as

an integer program (IP) (Taylor, 2008):

maximize J(Y, S) =
∑
r

∑
p

srpyrp (1)

subject to yrp ∈ {0, 1}, ∀r, p (2)∑
r

yrp ≥ Rmin,
∑
r

yrp ≤ Rmax ∀p (3)

∑
p

yrp ≥ Pmin,
∑
p

yrp ≤ Pmax, ∀r. (4)

Here the binary variable yrp ∈ Y encodes the matching
of item p to user r; a matching is a complete instanti-
ation of these variables. Rmin (Rmax) is the minimum
(resp. maximum) number of users per item, while Pmin

(Pmax) represent the minimum (resp. maximum) user
capacities. Of course, many other criteria can be in-
corporated into the matching optimization. While IPs
of this form can quickly become intractable, the to-
tal unimodularity of the constraint matrix (Eqs. 2–4)
allows one to use the linear programming (LP) relax-
ation while retaining optimality.

3.2. Probabilistic Matching

While the LP optimization is straightforward, and pro-
vides optimal solutions when all scores are observed,
it has potential drawbacks when used with predicted
scores, and specifically, when used in conjunction with
active learning. First, the LP does not consider poten-
tially useful information contained in the uncertainty
of the (predicted) suitabilities. Second, it does not
express the range of possible matches that might opti-
mize total suitability (given the constraints).

While optimal matching given true scores can be
viewed as a deterministic process, score prediction is
inherently stochastic; and we can exploit this if our
prediction model outputs a distribution over unob-
served scores Su rather than a point estimate. Given
inputs consisting of observed scores So and possibly
additional side-information X, we can express our un-
certainty over the optimal matching as:

Pr(Y |So
, X, θ) =

∫
Y (Su

, S
o) Pr(Su|So

, X, θ) dSu
, (5)

where Pr(Su|So, X, θ) is our score prediction model
(assuming model parameters θ), and Y (·) (see Eq. 1)
is the optimal matching given a fixed set of scores.

With this in hand, we overcome the limitations of
pure LP-based optimization by developing a sampling
method for determining “soft” or probabilistic match-
ings that reflect the range of optimal matchings given
uncertainty in predicted suitabilities. While Eq. 5 ex-
presses the induced distribution over optimal match-
ings, the integral is intractable as it requires solving
a large number of matching problems (e.g., LPs). In-
stead we take a sampling approach: we independently
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Figure 2. A “toy” example with a synthetic score matrix
S, and matching results using LP (bottom) and the Y ap-
proximation with two different variance matrices.

sample each score from the posterior Pr(Su|So, X, θ)
to build a complete score matrix, then solve the match-
ing optimization (LP) using this sampled matrix. Re-
peating this process T times provides an estimated
distribution over optimal matchings. We can then
average the resulting match matrices, obtaining Y =
1
T

∑T

t=1 Y
(t). Each entry Y rp is the (estimated) proba-

bility that user-item pair rp is matched; and the prob-
ability of this match depends, as desired, on the dis-
tribution Pr(srp|S

o, X, θ).

Fig. 2 illustrates Y , comparing it to the LP solution,
on a randomly-generated “toy” problem with 3 review-
ers and 6 papers (1 reviewer per paper, 2 papers per
reviewer). Assuming a fixed predicted score matrix S,
two versions of Y are shown, one when all estimated
variances are low, the other when they are higher.1

Note that the Y matrices respect the matching con-
straints by design (for visualization purposes we round
matching probabilities). With low variances, Y agrees
with the LP, but with higher variances, we observe the
inherent uncertainty in the optimal matching; e.g., col-
umn one shows all three match probabilities to be rea-
sonably high. In addition, the last column shows that
even though the second and third users have scores
that differ by 2, the high variance in their scores gives
both users a reasonable probability of being matched.

4. Active Querying for Matching

Since it is impractical to elicit or otherwise observe the
preferences of all users for all items, supervised learn-
ing, as discussed above, can be used to effectively es-
timate unobserved suitabilities for match-constrained
recommendation (Conry et al., 2009; Charlin et al.,
2011). However, little work has considered strategies
for actively querying the “most informative” prefer-
ences from users, thus further reducing the elicitation
burden on users. Random selection of user-item pairs
for assessment will generally be sub-optimal, since
query selection is uninformed by the learned model,
the objective function, or any previous data. By con-

1Variances are sampled uniformly at random; in a real
problem they would be given by the prediction model.

trast, an active approach, in which queries are tailored
to both the current preference model and the current
best matching, will typically give rise to better match-
ings with fewer queries.2

In this section we describe several distinct strategies
for query selection: we review a standard active learn-
ing technique and introduce several novel methods
that are sensitive to the matching objective. Our
methods can be broadly categorized based on two
properties: whether they evaluate in score space S

or matching space Y ; and whether they select queries
with the maximal value M, or maximal entropy E.

Score Entropy (SE): Uncertainty sampling is a com-
mon approach in active learning, which greedily se-
lects queries involving (unobserved) user-item pairs for
which the model is most uncertain (Settles, 2009). In
our context, this corresponds to selecting the user-item
pair with maximum score entropy w.r.t. the score dis-
tribution produced by the learned model. The ratio-
nale is clear: uncertainty in score predictions may lead
to poor estimates of match quality. Of course, this
approach fails to explicitly account for the matching
objective (the term Y (Su, So) in Eq. 5), instead focus-
ing (myopically) on entropy reduction in the predictive
model (the term Pr(Su|So, X, θ)).

Score Max (SM): An alternative, simple strategy
is to select queries involving user-item pairs with
highest predicted score w.r.t. MAP score estimates
given our predictions of unobserved scores: Ŝu ≡
argmaxSu Pr(Su|So, X, θ). This may be especially ad-
vantageous for matching problems where scores for
matched user-item pairs contribute an amount equal
to their value in the matching objective (see Eq. 1).

An obvious shortcoming of both SE and SM is their
insensitivity to the matching objective. Queries that
reduce prediction entropy may have no influence on
the resulting matching (e.g., if surp has high entropy,
but a much lower mean than some “competing” sur′p,
user r′ may remain matched to p with high probability
regardless of the response to query rp). One remedy is
to use expected value of information (EVOI) to mea-
sure the improvement in matching quality given the re-
sponse to a query (taking expectation over predicted
responses). This approach has been used effectively
in (non-constrained) CF (Boutilier et al., 2003); but
EVOI is notoriously hard to evaluate. In our context,
we would (in principle) have to consider each possible
query rp, estimate the impact of each possible response
sorp on the learned model (the term Pr(Su|So, X, θ) in

2In our settings one can elicit a rating or suitability
score from a user for any item (e.g., paper, date, joke); so
the full set Su

r serves as potential queries for user r.
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Eq. 5), and re-solve the estimated matching (the term
Y (Su, So) in Eq. 5). Instead, we consider several more
tractable strategies.

Y -Max (YM): A simple way to select queries in a
match-sensitive fashion is to consider the solution re-
turned by the LP w.r.t. the observed scores, So, and
the MAP solution of the unobserved scores, Ŝu. We
query the unknown pair rp that contributes the most
to the value of the objective: argmax(rp)∈Su yrpŝrp,

where yrp ∈ Y (So, Ŝu) is the binary match value for
user r and item p, and srp the corresponding MAP
score value. In other words, we query the unobserved
pair among those actually matched with the highest
predicted score. We refer to this strategy as Y-Max
(YM). It reflects the intuition that we should either
confirm or refute scores for matched pairs, i.e., those
pairs that, under the current model, that directly de-
termine the value of the matching objective. However,
YM is insensitive to score uncertainty.

Y -Max (YM)): This method exploits our probabilistic
matching model to select queries. As with YM, YM
queries the unobserved pair rp that contributes the
most to the objective value: argmax(rp)∈Su Y rpŝrp.
The difference is that we use the probabilistic match,
exploiting prediction uncertainty in query selection.

Y -Entropy (Y E): This method exploits the probabilis-
tic match Y as well, but unlike YM, Y E queries un-
known pairs whose entropy in the match distribution is
greatest. Specifically, we view each Yrp as a Bernoulli
random variable with (estimated) success probabil-
ity Y rp. We then query that pair with maximum
match entropy: argmax(rp)∈Su

[

− Y rp log Pr(Y rp) −

(1− Y rp) log Pr(1− Y rp)
]

.

One important point to note is that the match-
sensitive strategies, YM, YM, Y E, all attempt to
query unobserved pairs that occur (possibly stochas-
tically) in the optimal match. When the LP does not
match on any unobserved pairs, a fall-back strategy is
needed. All three strategies resort to random query-
ing as a fall-back, selecting a random unobserved item
score for any specific user as its query. For YM and
Y E, we refer to any query that corresponds to a user-
item pair with less than a 1% chance of being matched
as a “random” query.

5. Experiments

We test the active learning approaches described above
on three data sets, each with very different characteris-
tics. We begin with a brief description of the data sets
and matching tasks, then describe our experimental
setup, before proceeding to a discussion of our results.

Data sets We first describe our three data sets and
define the corresponding matching tasks.

Jokes data set: The Jester data set (Goldberg et al.,
2001) is a standard CF data set in which over 60,000
users have each rated a subset of 100 jokes on a scale
of -10 to 10. It has a dense subset in which all users
rate ten common jokes. Our experiments use a data
set consisting of these ten jokes and 300 randomly se-
lected users. We convert this to a matching problem by
requiring the assignment of a single joke to each user
(e.g., to be told at a convention or conference), and re-
quiring that each joke be matched to between 25 and
35 users (to ensure jocular diversity at the convention).
Fig. 3(a) provides a histogram of the suitabilities for
the Jester sub-data set.

Conference data set: This data is derived from the
NIPS 2010 conference. It contains suitability scores
for 1251 paper submissions provided for 48 area chairs
(henceforth, reviewers). Scores range from 0 (“paper
lies outside my expertise”) to 3 (“very qualified to re-
view”). Suitabilities for a subset of papers were elicited
in two rounds. In the first round scores were elicited
for about 80 papers per reviewer, with queries selected
using the YM procedure described above (where the
initial scores were estimated using a simple language
model (Balog et al., 2006) using reviewers’ published
papers). In the second round, unobserved scores were
estimated using both the language model and a re-
stricted Boltzmann machine (RBM) trained on the
first-round scores and paper word-frequency vectors.
Each reviewer was queried about 143 papers on aver-
age (excluding one outlier), and each paper received an
average of 3.3 suitability assessments (std. dev. 1.3).
The mean suitability score was 1.14 (std. dev. 1.1); a
histogram of scores is shown in Fig. 3(b). Each paper
was then assigned to one reviewer, and each reviewer
received 20–30 papers.

Dating data set: The third data set
comes from an online dating website (see
http://www.occamslab.com/petricek/data/). It
contains over 17 million ratings from roughly 135,000
users of 168,000 items (other users). We use a denser
subset of 32,000 ratings from 250 users (each with
at least 59 ratings) over 250 items (other users); see
Fig. 3(c). Since items are users with preferences
over their matches, dating is generally treated as a
two-sided problem. While two-sided matching can
fit within our general framework, the focus of our
current work is on one-sided matching. As such, we
only consider user preferences for “items” and not
vice versa. Each user is assigned 25–35 items (and
vice versa since “items” are users).

http://www.occamslab.com/petricek/data/
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Figure 3. Histograms of known suitabilities for (a) Jokes,
(b) Conference, and (c) Dating data sets.

5.1. Experimental Procedures

Our experiments simulate the typical interaction of a
recommendation or matching engine with its users. All
experiments start with a few observed preferences for
each user and go through several rounds of querying.
At each round, a querying strategy selects queries to
ask one or more users. Note that in practice we restrict
the strategies to only query (unobserved) scores avail-
able in our data sets. Once all users have responded,
the system re-trains the learning model with newly
and previously observed preferences, then proceeds to
select the next batch of queries. This is a somewhat
simplified model that assumes semi-synchronous user
communication. We also assume for simplicity that
the same fixed number of queries per user is asked in
each round. The initial goal is simply to assess the rel-
ative performance of each method; we do relax some
of these assumptions in Sec. 5.2.

There are a variety of reasonable interaction modes
for eliciting user preferences. For example, in paper-
reviewer matching, posing a single query per round is
undesirable, since a reviewer, after assessing a single
paper, must wait for other reviewer responses—and
the system to re-train—before being asked a subse-
quent query. Reviewers generally prefer to assess their
expertise off-line w.r.t. a collection of papers. Conse-
quently batch interaction is most appropriate where,
at each round, users are asked to assess K items.
While batch frameworks for active learning have re-
ceived recent attention (e.g., (Guo & Schuurmans,
2007)), here we are interested in comparing different
query strategies, hence use a very simple greedy batch
approach where we elicit the “top” K preferences from
a user, where the “top” queries are ranked by the spe-
cific active strategy under consideration. Appropriate
choice of K is application dependent: smaller values
of K may lead to better recommendations with fewer
queries, but require more frequent user interaction and
user delay. We test different values of K below.

We use BPMF to generate our predictions and its
uncertainty model for unobserved scores. A pro-
cedure for setting some of the hyper-parameters of
BPMF is outlined in (Salakhutdinov & Mnih, 2008a).
We use a validation set for the other methods giv-
ing (using notation from the original paper) Jokes:

D = 1, α = 0.1, β0u = 0.1, β0v = 10; Conference:
D = 15, α = 2, β0u = β0v = 0.1; and Dating:
D = 2, α = 2, β0u = β0v = 0.1. Each observed score is
assigned a fixed small uncertainty value of 1e−3. For
Y -based methods, which require sampling, we use 50
samples in all experiments.

We compare query selection methods w.r.t. their
matching performance—i.e., the matching objective
value of Eq. 1—using the match matrix given by the
LP using estimated scores and known scores So, eval-
uated on the full set of available scores. We use a
random querying strategy, which selects unobserved
items uniformly at random for each user, as a base-
line. All figures show the number of queries per user
on the x-axis. The y-axis indicates the difference in the
matching objective value between a specific querying
strategy and the baseline. Positive differences indi-
cate better performance relative to the baseline. The
magnitude of this difference can be best understood
relative to the number of users in the data set. For
example, a difference of 300 in objective value for the
300 users in the Jokes data set means that users are
better by one “score unit” on average. Note that as we
increase the number of queries, even random queries
will eventually find good matches—in the limit, where
all scores are observed, matching performance of all
methods will be identical (hence the bell-shape curves
and asymptotic convergence in our results).

We don’t focus on running time in our experiments
since query determination can often be done off-line
(depending on batch sizes). Having said that, even
the most intense querying techniques are fast and can
support online interaction: (a) in all 3 data sets, solv-
ing the LP takes a fraction of a second; (b) BPMF can
be trained in a matter of a few minutes at most, but
can be run asynchronously with query selection (which
will use the most “up-to-date” learned model avail-
able); and (c) sampling scores is very fast as the pos-
terior distribution is Gaussian. Furthermore, given the
above, our methods should scale to larger datasets al-
though the training time of BPMF may preclude fully
online interaction.

5.2. Results

We first investigate the performance of the different
querying strategies on our three data sets using default
batch sizes—these K values were deemed to be natu-
ral given the domains (different K values are discussed
below). Fig. 4(a) shows results for Jokes using batches
of 10 queries per user per round (K = 10). Figs. 4(b)
and (c) show Conference and Dating results, respec-
tively, both with a batch size of 20. All users start
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Figure 4. Matching performance for active learning results for (a) Jokes data set (10 queries per batch per user: qbu);
(b) Conference (20 qbu); (c) Dating (20 qbu). Standard error is also shown. The overlaid figures represent the usage
frequency of the fall-back query strategy for Y , YM and Y E. The triangle plot (using the right vertical axis) shows the
absolute matching value of the random strategy.

with 20 observed scores: 15 are used for training and
5 for validation. We also experimented with a more
realistic setting where some users have few observed
scores (e.g., new users)—results are qualitatively very
similar.

The relative performance of each of the active meth-
ods exhibits a fairly consistent pattern across all three
domains, which permit us to draw some reasonably
strong conclusions.3 First, we see that all methods ex-
cept for SE outperform the baseline in all domains.
Recall that SE is essentially uncertainty sampling, a
classic (match-insensitive) active learning model often
used as a general baseline method for active learning.
It outperforms the random baseline only occasionally,
most significantly after the first round of elicitation
in Dating. Second, all of our proposed match-sensitive
techniques outperform SE consistently on all data sets.
Third, the match-sensitive approaches that leverage
uncertainty over scores, namely, YM and Y E, typically
outperform YM, especially after the initial rounds of
elicitation. This difference in performance behavior is
most pronounced in the Conference domain.

We gain further insight into these results by examin-
ing the inner workings of these strategies. The overlay
in Figs. 4(a–c) show the number of random (or fall-
back) queries used (on average) by each of YM, YM
and Y E. On all data sets YM resorts to the fall-back
strategy significantly earlier than the others, explain-
ing YM’s fall-off in performance and indicating that
the diversity of potential matches identified by our
probabilistic matching technique plays a vital role in
match-sensitive active learning.

Finally, when considering the performance of these

3We do not report the performance of SM— it is con-
sistently outperformed by the baseline in all experiments.
We have observed that SM typically selects all queries from
among only a few items, namely, those with high predicted
average score; hence it acquires no information about the
vast majority of items.

methods on score prediction, we found no correla-
tion between score prediction and matching perfor-
mance. This further highlights the benefit of match-
constrained active learning methods.

Sequential Querying We employed a semi-
synchronous querying procedure above, where all users
are queried in parallel at each round. We now consider
a different mode of interaction where, at each round,
users are queried sequentially in round robin fashion.
This allows the responses of earlier users within a
round to influence the queries asked to later users—
potentially reducing the total number of queries at
the expense of increased synchronization (and delay)
among users. Fig. 5(a) shows that our methods are
robust to this modification in the querying procedure.

Batch Sizes The choice of the number of queries
K per batch affects both the frequency with which
the user interacts with the system as well as the over-
all match performance. For example, high values of
K reduce the number of user “interactions” needed
for a specific level of performance, at the expense of
query efficiency (improvement in matching objective
per query). The “optimal” value for K depends on the
actual recommendation application. Figs. 5(b) and (c)
shows results with different values of K on Conference,
using 10 and 40 queries per round, respectively. The
relative performance of the active methods remains
almost identical. As expected, absolute performance
w.r.t. query efficiency is better with smaller values of
K. The matching-sensitive strategies clearly outper-
form the score-based techniques. Results are similar
across all data sets.

Matching constraints Our results are also robust
to different matching constraints, specifically, bounds
on the numbers of items per user and vice versa (i.e.,
Rmin, Rmax, Pmin, Pmax). Using the Conference data
set, we increase to two (from one) the number of re-
viewers assigned to each paper. Fig. 5(d) shows that
the behavior of the methods changes little, with both
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Figure 5. Matching performance for active learning results for: (a) Jokes data set (10 queries per batch per user, sequen-
tial); (b) Conference (10 queries per batch, parallel); (c) Conference (40 queries per batch, parallel); and (d) Conference
data set with larger user and item constraints.

Y -methods still outperforming all other methods. The
other domains (not shown) exhibit similar results.

6. Conclusion

We investigated the problem of active learning for
match-constrained recommendation systems. We
explored several different approaches to generating
queries that are guided by the matching objective, and
introduced a novel method for probabilistic matching
that accounts for uncertainty in predicted scores. Ex-
periments demonstrate the effectiveness of our meth-
ods in determining high-quality matches with signif-
icantly less elicitation of user preferences than that
required by uncertainty sampling, a standard active
learning method. Our results highlight the importance
of choosing queries in a manner that is sensitive to
the matching objective and uncertainty over predicted
scores.

There are many promising avenues of future research
in match-constrained recommendation. We are cur-
rently exploring different matching objectives (e.g.,
two-sided matching with stability constraints) and
methods for eliciting side-information from users in
a way that is guided by the recommendation objec-
tive. Finally, higher-level, abstract queries (such as
preferences over item categories or features) may sig-
nificantly boost “gain per query” performance.
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