
Hierarchical POMDP Controller Optimization
by Likelihood Maximization

Marc Toussaint
Computer Science

TU Berlin
Berlin, Germany

mtoussai@cs.tu-berlin.de

Laurent Charlin
Computer Science

University of Toronto
Toronto, Ontario, Canada

lcharlin@cs.toronto.edu

Pascal Poupart
Computer Science

University of Waterloo
Waterloo, Ontario, Canada
ppoupart@cs.uwaterloo.ca

Abstract

Planning can often be simplified by decom-
posing the task into smaller tasks arranged
hierarchically. Charlin et al. [4] recently
showed that the hierarchy discovery problem
can be framed as a non-convex optimization
problem. However, the inherent computa-
tional difficulty of solving such an optimiza-
tion problem makes it hard to scale to real-
world problems. In another line of research,
Toussaint et al. [18] developed a method
to solve planning problems by maximum-
likelihood estimation. In this paper, we show
how the hierarchy discovery problem in par-
tially observable domains can be tackled us-
ing a similar maximum likelihood approach.
Our technique first transforms the problem
into a dynamic Bayesian network through
which a hierarchical structure can naturally
be discovered while optimizing the policy.
Experimental results demonstrate that this
approach scales better than previous tech-
niques based on non-convex optimization.

1 Introduction

Planning in partially observable domains is notoriously
difficult. However, many planning tasks naturally de-
compose into subtasks that may be arranged hierar-
chically. For instance, the design of a soccer playing
robot is often decomposed into low-level skills such as
intercepting the ball, controlling the ball, passing the
ball, etc. [16]. Similarly, prompting systems that assist
older adults with activities of daily living (e.g., hand-
washing [8]) can be naturally decomposed into sub-
tasks for each step of an activity. When a decomposi-
tion or hierarchy is known a priori, several approaches
have demonstrated that planning can be simplified and
performed faster [13, 7]. However, the hierarchy is

not always known or easy to specify, and the optimal
policy may only decompose approximately. To that
effect, Charlin et al. [4] showed how a hierarchy can
be discovered automatically by formulating the plan-
ning problem as a non-convex quartically constrained
optimization problem with variables corresponding to
the parameters of the policy, including its hierarchical
structure. Unfortunately, the inherent computational
difficulty of solving this optimization problem prevents
the approach from scaling to real-world problems. Fur-
thermore, it is not clear that automated hierarchy dis-
covery simplifies planning since the space of policies
remains the same.

We propose an alternative approach that demonstrates
that hierarchy discovery (i) can be done efficiently
and (ii) performs a policy search with a different bias
than non-hierarchical approaches that is advantageous
when there exists good hierarchical policies. The ap-
proach combines Murphy and Paskin’s [10] factored
encoding of hierarchical structures (see also [17]) into
a dynamic Bayesian network (DBN) with Toussaint
et al.’s [18] maximum-likelihood estimation technique
for policy optimization. More precisely, we encode
POMDPs with hierarchical controllers into a DBN in
such a way that the policy and hierarchy parameters
are entries of some conditional probability tables. We
also consider factored policies that are more general
than hierarchical controllers. The policy and hierar-
chy parameters are optimized with the expectation-
maximization (EM) algorithm [5]. Since each iteration
of EM essentially consists of inference queries, the ap-
proach scales easily.

Sect. 2 briefly introduces partially observable Markov
decision processes, controllers and policy optimization
by maximum likelihood estimation. Sect. 3 reviews
previous work on hierarchical modeling and how to use
a dynamic Bayesian network to encode a hierarchical
structure. Sect. 4 describes our proposed approach,
which combines a dynamic Bayesian network encod-
ing with maximum likelihood estimation to simultane-

ously optimize a hierarchy and the controller. Sect. 5
demonstrates the scalability of the proposed approach
on benchmark problems. Finally, Sect. 6 summarizes
the paper and discusses future work.

2 Background

Throughout the paper we denote random variables by
upper case letters (e.g., X), values of random vari-
ables by their corresponding lower case letters (e.g.,
x ∈ dom(X)) and sets of values by upper case let-
ters with math calligraphy (e.g., X = {x1, x2, x3}).
We now review POMDPs (Sect. 2.1), how to represent
policies as finite state controllers (Sect. 2.2) and how
to optimize bounded controllers (Sect. 2.3).

2.1 POMDPs

Partially observable Markov decision processes
(POMDPs) provide a natural and principled frame-
work for planning. A POMDP can be formally
defined by a tuple 〈S,A,O, ps, ps′|as, po′|s′a, ras〉
where S is the set of states s, A is the set of actions
a, O is the set of observations o, ps = Pr(S0 = s) is
the initial state distribution (a.k.a. initial belief),
ps′|as = Pr(St+1 = s′ |At = a, St = s) is the transition
distribution, po′|s′a = Pr(Ot+1 = o′ |St+1 = s′, At = a)
is the observation distribution and ras = R(At =
a, St = s) is the reward function. Throughout the
paper, it is assumed that S, A and O are finite and
discrete. The goal is to select actions to maximize
the rewards. At any point in time, the information
available to select the next action consists of the
history of past actions and observations. Hence a
policy π is defined as a mapping from histories to
actions. However, since histories grow with time,
it is common practice to summarize histories with
a fixed-length sufficient statistic such as the belief
distribution bs = Pr(S= s), which corresponds to the
state distribution (conditioned on the history of past
actions and observations). The belief distribution
b can be updated at each time step, based on the
action a taken and the observation o′ made according
to Bayes’ theorem: bao

′

s′ = k
∑
s bsps′|aspo′|s′a (k

is a normalization constant). Policies can then be
defined as mappings from beliefs to actions (e.g.,
π(b) = a). The value V π(b) of a policy π starting
in belief b is measured by the discounted sum of
expected rewards: V π(b) =

∑
t γ

tEbt|π[rπ(bt)bt
] where

rab =
∑
s bsras. An optimal policy π∗ is a policy with

the highest value V ∗ for all beliefs: V ∗(b) ≥ V π ∀π, b.
The optimal value function also satisfies Bellman’s
equation: V ∗(b) = maxa rab +

∑
o′ po′|abV

∗(bao
′
)

where po′|ab =
∑
ss′ bsps′|aspo′|s′a.

2.2 Finite State Controllers

A convenient representation for an important class of
policies consists of finite state controllers [6]. Instead
of using beliefs as sufficient statistics of histories, the
idea is to use a finite internal memory to retain relevant
bits of information from histories. Each configuration
of this memory can be thought of as a node in a finite
state controller, where nodes select actions to be exe-
cuted and edges indicate how to update nodes based
on the observations received. A controller with a finite
set N of nodes n can encode a stochastic policy π with
three distributions: Pr(N0 =n) = pn (initial node dis-
tribution), Pr(At=a |Nt=n) = pa|n (action selection
distribution) and Pr(Nt+1 = n′ |Nt = n,Ot+1 = o′) =
pn′|no′ (successor node distribution). Such a policy
can be executed by starting in a node n sampled from
pn, executing an action a sampled from pa|n, receiving
observation o′, transitioning to node n′ sampled from
pn′|no′ and so on. The value of a controller can be com-
puted by solving a linear system: Vns =

∑
a pa|n[ras+

γ
∑
s′o′n′ ps′|aspo′|s′apn′|no′Vn′s′] ∀ns. The value at a

given belief b is then V π(b) =
∑
n

∑
s bspnVns.

2.3 Policy Optimization

Several techniques have been proposed to optimize
controllers of a given size, including gradient as-
cent [9], stochastic local search [2], bounded policy it-
eration [14], non-convex quadratically constrained op-
timization [1] and likelihood maximization [18]. We
briefly describe the last technique since we will use it
in Sect. 4.

Toussaint et al. [18] recently proposed to convert
POMDPs into equivalent dynamic Bayesian networks
(DBNs) by normalizing the rewards and to optimize
a policy by maximizing the likelihood of the nor-
malized rewards. Let R̃ be a binary variable corre-
sponding to normalized rewards. The reward func-
tion ras is then replaced by a reward distribution
pr̃|sat = Pr(R̃ = r̃ |At = a, St = s, T = t) that as-
signs probability ras/(rmax − rmin) to R̃ = 1 and
1 − ras/(rmax − rmin) to R̃ = 0 (rmin = minas ras
and rmax = maxas ras). An additional time variable
T is introduced to simulate the discount factor and the
summation of rewards. Since a reward is normally dis-
counted by a factor γt when earned t time steps in the
future, the prior pt = Pr(T = t) is set to γt(1−γ) where
the factor (1−γ) ensures that

∑∞
t=0 pt = 1. The result-

ing dynamic Bayesian network is illustrated in Fig. 1.
It can be thought of as a mixture of finite processes of
length t with a 0-1 reward R̃ earned at the end of the
process. The nodes Nt encode the internal memory of
the controller. Given the controller distributions pn,
pa|n and pn′|no′ , it is possible to evaluate the controller

...

... Atmax

T = 1

N0

A0

S0

N1

O1

S1

A1

R̂

T = 0

N0

A0

S0

S0

A1

S1

O1A0

N1N0 Ntmax

Otmax

Stmax R̂

T = tmax

R̂

Figure 1: POMDP represented as a mixture of finite
DBNs. For an infinite horizon, a large enough tmax
can be selected at runtime to ensure that the approx-
imation error is small.

by computing the likelihood of R̃ = 1. More precisely,
V π(ps) = (Pr(R̃=1)− rmin)/[(rmax − rmin)(1− γ)].

Optimizing the policy can be framed as maximizing
the likelihood of R̃ = 1 by varying the distributions
pn, pa|n and pn′|no′ encoding the policy. Toussaint et
al. use the expectation-maximization (EM) algorithm.
Since EM is guaranteed to increase the likelihood at
each iteration, the controller’s value increases mono-
tonically. However, EM is not guaranteed to converge
to a global optimum. An important advantage of the
EM algorithm is its simplicity both conceptually and
computationally. In particular, the computation con-
sists of inference queries that can be computed using
a variety of exact and approximate algorithms.

3 Hierarchical Modeling

While optimizing a bounded controller allows an ef-
fective search in the space of bounded policies, such
an approach is clearly suboptimal since the optimal
controller of many problems grows doubly exponen-
tially with the planning horizon and may be infinite
for infinite horizons. Alternatively, hierarchical rep-
resentations permit the representation of structured
policies with exponentially fewer parameters. Several
approaches were recently explored to model and learn
hierarchical structures in POMDPs. Pineau et al. [13]
sped up planning by exploiting a user specified ac-
tion hierarchy. Hansen et al. [7] proposed hierarchi-
cal controllers and an alternative planning technique
that also exploits a user specified hierarchy. Charlin et
al. [4] proposed recursive controllers (which subsume
hierarchical controllers) and an approach that discov-
ers the hierarchy while optimizing a controller. We
briefly review recursive controllers in Sect. 3.1 since

we will empirically compare our approach to the non-
convex optimization techniques used to optimize recur-
sive controllers. In another line of research, Murphy
and Paskin [10] proposed to model hierarchical hidden
Markov models (HMMs) with a dynamic Bayesian net-
work (DBN). Theocharous et al. [17] also used DBNs
to model hierarchical POMDPs. We briefly review this
DBN encoding in Sect. 3.2 since we will use it in our
approach to model factored controllers.

3.1 Recursive Controllers

A recursive controller [4] consists of a recursive au-
tomaton with concrete nodes n and abstract nodes n̄.
Abstract nodes call a subcontroller before selecting an
action. A controller is said to be recursive when it
can call itself, essentially encoding an infinite hierar-
chy. Formally, a recursive controller is parametrized
by an action selection distribution for each node (e.g.,
pa|n and pa|n̄), a successor node distributions for each
node (e.g., pn′|no′ and pn′|n̄o′) and a child node dis-
tribution for each abstract node (e.g., pn′|n̄)1. Exe-
cution of a recursive controller is performed by exe-
cuting the action selected by each node visited and
continuing to the successor node selected by the ob-
servation made. However, when an abstract node is
visited, before executing the action selected, its sub-
controller is called and started in the child node se-
lected by the child node distribution. A subcontroller
returns control to its parent node when a special end
node is reached. Charlin et al. [4] show that optimizing
a recursive controller with a fixed number of concrete
and abstract nodes can be framed as a non-convex
quartically constrained optimization problem. The hi-
erarchical structure is discovered as the controller is
optimized since the variables of the optimization prob-
lem include the child node distributions which implic-
itly encode the hierarchy. Three techniques based on
a general non-linear solver, a mixed-integer non-linear
approximation and a form of bounded hierarchical pol-
icy iteration are experimented with, but do not scale
beyond toy problems. Furthermore, Charlin et al. do
not demonstrate whether searching in the space of hi-
erarchical controllers can speed up planning. Although
it is clear that planning is simplified when a hierarchy
is given a priori since the policy space is reduced, it
is not clear that hierarchy discovery is beneficial since
the policy space remains the same while the param-
eter space changes. In Sect. 5, we demonstrate that
hierarchy discovery can be beneficial when a simple
hierarchical policy of high value exists.

1The pa|n and pn′|no′ distributions are combined in one
distribution pn′a|no′ in [14]

...

S0
1

E1

S1
2

S1
2

O1 O2O0

E0

S0
0

S1
0 S1

1

Figure 2: DBN encoding of a 2-level hierarchical
HMM.

3.2 Hierarchical HMMs

Murphy and Paskin [10] proposed to model hierar-
chical hidden Markov models (HMMs) as dynamic
Bayesian networks (DBNs). The idea is to convert a
hierarchical HMM of L levels into a dynamic Bayesian
network of L state variables, where each variable en-
codes abstract states at the corresponding level. Here,
abstract states can only call sub-HMMs at the pre-
vious level. Fig. 2 illustrates a two-level hierarchical
HMMs encoded as a DBN. The state variables Slt are
indexed by the time step t and the level l. The Et vari-
ables indicate when a base-level sub-HMM has ended,
returning its control to the top level HMM. The top-
level abstract state transitions according to the top
HMM, but only when the exit variable Et indicates
that the base-level concrete state is an exit state. The
base-level concrete state transitions according to the
base-level HMM. When an exit state is reached, the
next base-level state is determined by the next top-
level abstract state. Factored HMMs subsume hierar-
chical HMMs in the sense that there exists an equiv-
alent factored HMM for every hierarchical HMM. In
Sect. 4.1, we will use a similar technique to convert
hierarchical controllers into factored controllers.

4 Factored Controllers

We propose to combine the DBN encoding techniques
of Murphy et al. [10] and Toussaint et al. [18] to con-
vert a POMDP with a hierarchical controller into a
mixture of DBNs. The hierarchy and the controller
are simultaneously optimized by maximizing the re-
ward likelihood of the DBN. We also consider factored
controllers which subsume hierarchical controllers.

4.1 DBN Encoding

Fig. 3a illustrates two consecutive slices of one DBN in
the mixture (rewards are omitted) for a three-level hi-
erarchical controller. Consider a POMDP defined by
the tuple 〈S,A,O, ps, ps′|as, po′|s′a, ras〉 and a three-
level hierarchical (non-recursive) controller defined by

the tuple 〈pa|nl , pnl−1|nl , pn′l|nlo′〉 ∀l. The conditional
probability distributions of the mixture of DBNs (de-
noted by p̂) are:

• transition distribution: p̂s′|as = ps′|as

• observation distribution: p̂o′|s′a = po′|s′a

• reward distribution:
p̂r̃|as = (ras − rmin)/(rmax − rmin)

• mixture distribution: p̂t = (1− γ)γt

• action distribution: p̂a|n0 = pa|n0

• base level node distribution: p̂n′0|n0n′1o′e0

=
{
pn′0|n′1 if e0 =exit
pn′0|o′n0 otherwise

• middle level node distribution: p̂n′1|n1n′2o′e0e1

=

 pn′1|n′2 if e1 =exit
pn′1|o′n1 if e0 =exit and e1 6=exit
δn′1n1 otherwise

• top level node distribution: p̂n′2|o′n2e1

=
{
pn′2|o′n2 if e1 =exit
δn′2n2 otherwise

• base-level exit distribution: p̂e0|n0

=
{

1 if n0 is an end node
0 otherwise

• middle-level exit distribution: p̂e1|n1e0

=
{

1 if e0 =exit and n1 is an end node
0 otherwise

While the Elt variables help clarify when the end of
a sub-controller is reached, they are not necessary.
Eliminating them yields a simpler DBN illustrated in
Fig. 3b. The conditional probability distributions of
the N l

t variables become:

• base level node distribution: p̂n′0|n0n′1o′

=
{
pn′0|n′1 if n0 is an end node
pn′0|o′n0 otherwise

• middle level node distribution: p̂n′1|n1n′2o′

=

 pn′1|n′2 if n1 and n0 are end nodes
pn′1|o′n1 if n0 is an end node, but not n1

δn′1n1 otherwise

• top level node distribution: p̂n′2|n2o′e1

=
{
pn′2|n2o′ if n1 and n0 are end nodes
δn′2n2 otherwise

Note that ignoring the above constraints in the con-
ditional distributions yields a factored controller that
is more flexible than a hierarchical controller since the
conditional probability distributions of the N l

t vari-
ables do not have to follow the structure imposed by
a hierarchy

(a)

N ′1

N2

N1

N0

O

S S′

O′A

N ′0

E0

E1

N ′2 (b) N ′2N2

N1

N0

O

S

A

S′

O′

N ′0

N ′1

(c) N2

N1

N0

S S′

N ′0

N ′1

N ′2 (d)
N2N1N0SS′

N2N1N0S′

N2N′2N1N0S′

N′2N1N0S′

N′2N1N′1N0S′

N′2N′1N0S′

N′2N′1N0N′0S′

Figure 3: (a) Two slices of the DBN encoding the hier-
archical POMDP controller. (b) A version where exit
variables are eliminated. (c) Variables O and A are
eliminated. (d) The corresponding junction tree (or
rather chain) for inference.

4.2 Maximum Likelihood Estimation

Following Toussaint et al.’s technique [18], we optimize
a factored controller by maximizing the reward like-
lihood. Since the policy parameters are conditional
probability distributions of the DBN, the EM algo-
rithm can be used to optimize them. Computation
alternates between the E and M steps below. We de-
note by ntop and nbase the top and base nodes in a
given time slice. We also denote by φ(V) and φ(v) the
parents of V and a configuration of the parents of V .

E-step: expected frequency of the hidden variables
Entop = Pr(N top

0 =ntop|R̃=1)
Eanbase =

∑
t Pr(At=a,N base

t =nbase|R̃=1)
En′lφ(n′l) =∑

t Pr(N l
t+1 =n′l, φ(N l

t+1)=φ(nlt+1)|R̃=1) ∀l

M-step: relative frequency computation
pntop = Entop/

∑
ntop Entop

pa|nbase = Eanbase/
∑
aEanbase

pn′l|φ(n′l) = En′lφ(n′l)/
∑
n′l En′lφ(n′l) ∀l

4.2.1 Parameter initialization

W.l.o.g. we initialize the start node N top
0 of the top

layer to be the first node (i.e., Pr(N top
0 =1) = 1). The

node conditional distributions pn′l|φ(n′l) are initialized
randomly as a mixture of three distributions:

pn′l|φ(n′l) ∝ c1 + c2Un′lφ(n′l) + c3δn′lnl

The mixture components are a uniform distribution, a
random distribution Uφ(n′l) (an array of uniform ran-
dom numbers in [0, 1]), and a term enforcing nl to stay
unchanged. For the node distributions at the base level
we choose c1 = 1, c2 = 1, c3 = 0 and for all other levels
we choose c1 =1, c2 =1, c3 =10. Similarly we initialize
the action probabilities as

pa|nbase ∝ c1 + c2Uanbase + c3δa(nbase%a)

with c1 = 1, c2 = 1, c3 = 100, where the last term en-
forces each node nbase= i to be associated with action
a= i%a.

4.2.2 E-step

To speed up the computation of the inference queries
in the E-step, we compute intermediate terms using a
forward-backward procedure. Let tmax be the largest
value of T , then a simple scheme that answers each
query separately takes O(t2max) time since there are
O(tmax) queries and each query takes O(tmax) time
to run over the entire network. However, since part
of the computation is duplicated in several queries,
it is possible to compute intermediate terms α and β
in O(tmax) time from which each expectation can be
computed in constant time (w.r.t. tmax). To simplify
notation, N and n denote all the nodes and their joint
configuration in a given time slice.

Forward term: αtns = Pr(Nt=n, St=s)
α0

ns = pnps
αtn′s′ =

∑
n,s α

t−1
ns pn′s′|ns

Backward term: βτns = Pr(R̃= 1|Nt−τ = n, St−τ =
s, T = t)
β0
ns =

∑
a pa|nras

βτns =
∑

n′,s′ pn′s′|nsβ
τ−1
n′s′

To fully take advantage of the structure of the DBN,
we first marginalize the DBN w.r.t. the observations
and actions to get the DBN in Fig. 3c. This 2-slice
DBN corresponds to the joint transition distribution
pn′s′|ns used in the above equations. Then we com-
pile this 2-slice DBN into the junction tree (actually
junction chain) given in Fig. 3d.

Let βns =
∑
τ Pr(T = τ)βτns and αns =

∑
t Pr(T =

t)αtns, then the last two expectations of the E-step

can be computed as follows:2

Eanbase ∝
∑
s,n−{nbase} αnspa|nbase

[
ras+

γ
∑
s′,o′,n′ ps′|aspo′|s′apn′|o′nβn′s′

]
En′lφ(n′l) ∝

∑
s,s′,a,n−φ(n′l),n′−l αnspa|nbaseps′|as

po′|s′apn′|o′n
[
ras + γβn′s′

]
∀l

4.2.3 M-step

The standard M-step adjusts each parameter pv|φ(v)

by normalizing the expectations computed in the E-
step, i.e., pnew

v|φ(v) ∝ Evφ(v). To speed up convergence,
we instead use a variant that performs a soften greedy
M-step. In the greedy M-step, each parameter pnew

v|φ(v)

is greedily set to 1 when v = argmaxv̄ fv̄φ(v̄) and 0
otherwise, where fvφ(v) = Evφ(v)/p

old
v|φ(v). The greedy

M-step can be thought of as the limit of an infinite
sequence of alternating partial E-step and standard
M-step where the partial E-step keeps f fixed. The
combination of a standard M-step with this specific
partial E-step updates pv|φ(v) by a multiplicative factor
proportional to fvφ(v). In the limit, the largest fvφ(v)

ends up giving all the probability to the correspond-
ing pv|φ(v). EM variants with certain types of partial
E-steps ensure monotonic improvement of the likeli-
hood when the hidden variables are independent [11].
This is not the case here, however by softening the
greedy M-step we can still obtain monotonic improve-
ment most of the time while speeding up convergence.
We update pv|φ(v) as follows:

v∗ = argmax
v

fvφ(v)

pnew
v|φ(v) ∝ p

old
v|φ(v)[δvv∗ + c+ ε] .

For c = 0 and ε = 0 this is the greedy M-step. We
use c = 3 which softens (shortens) the step and im-
proves convergence. Furthermore, adding small Gaus-
sian noise ε ∼ N (0, 10−3) helps to escape local minima.

4.2.4 Complexity

For a flat controller, the number of parameters (ne-
glecting normalization) is |O||N |2 for pn′|o′n and
|A||N | for pa|n. The complexity of the forward (back-
ward) procedure is O(tmax(|N ||S|2 + |N |2|S|)) where
the two terms correspond to the size of the two cliques
for inference in the 2-slice DBN after O and A are elim-
inated. The complexity of computing the expectations
from α and β is O(|N ||A|(|S|2 + |S||O|)+ |N |2|S||O|),
which corresponds to the clique sizes of the 2-slice
DBN including O and A.

In comparison, 2-level hierarchical and factored con-
trollers with |N top| = |N base| = |N |0.5 nodes at each

2The first expectation of the E-step does not need to be
computed since Pr(N top

0 = 1) = 1.

Table 1: Number of parameters and computational
complexity for the flat controller with |N | nodes and
a 2-layer factored controller with |N top| = |N base| =
|N |0.5 nodes.
parameters
flat |O||N |2 + |A||N |
fact. 2|O||N |1.5 + |A||N |0.5

forward-backward complexity
flat O(tmax(|N ||S|2 + |N |2|S|))
fact. O(tmax(|N ||S|2 + |N |1.5|S|))
expectation complexity
flat O(|N ||A|(|S|2 + |S||O|) + |N |2|S||O|)
fact. O(|N ||A|(|S|2 + |S||O|) + |N |1.5|O||S|+ |N |2|O|)

level have fewer parameters and a smaller complexity,
but also a smaller policy space due to the structure im-
posed by the hierarchy/factorization. While there is a
tradeoff between policy space and complexity, hierar-
chical and factored controllers are often advantageous
in practice since they can find more quickly a good
hierarchical/factored policy when there exists one.

A 2-level factored controller with |N |0.5 nodes at each
level has 2|O||N |1.5 parameters for pn′top|o′nbasentop

and pn′base|n′topo′nbase , and |A||N |0.5 parameters for
pa|nbase . The complexity of the forward (back-
ward) procedure is O(tmax(|N ||S|2 + |N |1.5|S|)) and
the complexity of computing the expectations is
O(|N ||A|(|S|2 + |S||O|) + |N |1.5|O||S| + |N |2|O|). A
2-level hierarchical controller is further restricted and
therefore has fewer parameters, but the same time
complexity.

5 Experiments

We first compared the performance of the maximum
likelihood (ML) approach to previous optimization-
based approaches from [4]. Table 2 summarizes the re-
sults for 2-layer controllers with certain combinations
of |N base| and |N top|. The problems include paint,
shuttle and 4x4 maze (previously used in [4]) and
three additional problems: chain-of-chains (described
below), hand-washing (reduced version from [8]) and
cheese-taxi (variant from [12]). On the first three
problems, ML reaches the same values as the previ-
ous optimization-based approaches, but with larger
controllers. We attribute this to EM’s weaker abil-
ity to avoid local optima than the optimization-based
approaches. However, the optimization-based ap-
proaches run out of memory on the last three prob-
lems (memory needs exceed 2 Gb of RAM), while ML
scales gracefully (as analyzed in Sect. 4.2.4). ML ap-
proach demonstrates that hierarchy discovery can be
tackled with tractable algorithms. We also report the
values reached with a state of the art point-based value

Table 2: V ∗ denotes optimal values (with truncated trajectories) [3] except for handwashing and cheese-taxi
where we show the optimal value of the equivalent fully-observable problem. HSVI2 found a solution in less than
1s for every problem except handwashing where the algorithm was halted after 12 hours of computation. The
ML approach optimizes a factored controller for 200 EM iterations with a planning horizon of tmax=100. (5,3)
nodes means |N base|= 5 and |N top|= 3. For cheese-taxi, we get a maximum value of 2.25. N/A indicates that
the solver did not complete successfully. All tests are done on a dual-core x64 processor @2.2GHz.

Problem
|S|, |A|, |O| V ∗ HSVI2 Best results from [4] ML approach (avg. over 10 runs)

V nodes t(s) V nodes t(s) V
paint 4, 4, 2 3.28 3.29±0.04 (1,3) <1 3.29 (5,3) 0.96±0.3 3.26±0.004
shuttle 8, 3, 5 32.7 32.9±0.8 (1,3) 2 31.87 (5,3) 2.81±0.2 31.6±0.5
4x4 maze 16, 4, 2 3.7 3.75±0.1 (1,2) 30 3.73 (3,3) 2.8±0.8 3.72±8e−5
chain-of-chains 10, 4, 1 157.1 157.1±0 (3,3) 10 0.0 (10,3) 6.4±0.2 151.6±2.6
handwashing 84, 7, 12 61052 N/A N/A (10,5) 655±2 984±1
cheese-taxi 33, 7, 10 65.3 2.53±0.3 N/A (10,3) 311±14 −9±11(2.25∗)

iteration method (HSVI2 [15]).

The next question is whether there are computational
savings when automatically discovering a hierarchy.
Recall that previous work has shown that policy op-
timization is simplified when a hierarchy is known a
priori since the space of policies is restricted. The
next experiment demonstrates that policy optimiza-
tion while discovering a hierarchy can be done faster
and/or yield higher value when there exists good hi-
erarchical policies. Table 3 compares the performance
when optimizing flat, hierarchical and factored con-
trollers on chain-of-chains, hand-washing and cheese-
taxi. Here, the factored and hierarchical controllers
have two levels and correspond respectively to the
DBNs in Fig. 3(a) and 3(b).3 The x-axis is the num-
ber of nodes for flat controllers and the product of the
number of nodes at each level for hierarchical and fac-
tored controllers. Taking the product is justified by the
fact that the equivalent flat controllers of some hier-
archical/factored controllers require that many nodes.
The graphs in the right column of Table 3 demon-
strate that hierarchical and factored controllers can
be optimized faster, confirming the analysis done in
Sect. 4.2.4. There is no difference in computational
complexity between the strictly hierarchical and un-
constrained factored architectures. Recall however
that the efficiency gains of the hierarchical and fac-
tored controllers are obtained at the cost of a restricted
policy space. Nevertheless, the graphs in the left col-
umn of Table 3 suggest that hierarchical/factored con-
trollers can still find equally good policies when there
exist one. Factored controllers are generally the most
robust. With a sufficient number of nodes, they find
the best policies on all three problems. Note that fac-
tored and hierarchical controllers need at least a num-
ber of nodes equal to the number of actions in the base
layer in order to represent a policy that uses all actions.

3Factored controllers are hierarchical controllers where
the restrictions imposed by the Et variables are removed.

A

0.84
0.16

Level 1

Level 0 D
C

B

0 1 2 3

Figure 4: Hierarchical controller learnt for the chain-
of-chains. The diamond indicates an exit node, for
which p̂e0|n0 = 1.

This explains why hierarchical and factored controllers
with less than 4 base nodes (for chain-of-chains) and
7 base nodes (for hand-washing and cheese-taxi) do
poorly. The optimization of flat controllers tend to get
stuck in local optima if too many nodes are used. Com-
paring the unconstrained factored architecture versus
hierarchical, we find that the additional constraints
in the hierarchical controller make the optimization
problem harder although there are less parameters to
optimize. As a result, EM gets stuck more often in
local optima.

We also examine whether learnt hierarchies make intu-
itive sense. Good policies for the cheese-taxi and hand-
washing problems can often be represented hierarchi-
cally, however the hierarchical policies found didn’t
match hierarchies expected by the authors. Since these
are non-trivial problems for which there may be many
ways to represent good policies in a hierarchical fash-
ion that is not intuitive, we designed the chain-of-
chains problem, which is much simpler to analyze. The
optimal policy of this problem consists of executing n
times the same chain of n actions followed by a submit
action to earn the only reward. The optimal policy re-
quires n2 + 1 nodes for flat controllers and n+ 1 nodes
at each level for hierarchical controllers. For n = 3,
ML found a hierarchical controller of 4 nodes at each
level, illustrated in Fig. 4. The controller starts in
node 0. Nodes at level 1 are abstract and descend
into concrete nodes at level 0 by following the dashed

Table 3: Left: The reached values depending on the number of nodes in the controller. For the factored
and hierarchical controller we indicate the number of nodes in both layers (e.g., (5,3) means |N base| = 5 and
|N top| = 3) and plot the data point at |N base||N top| on the x-axis. For instance, in the case of handwashing
we see how the performance depends critically on |N base|. Right: The optimization time. In all cases, 200 EM
iterations are performed with a planning horizon of tmax = 100. The results for each controller are the average
of 10 runs with error bars of ±1 standard deviation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

ch
ai

n-
of

-c
ha

in
s:

 v
al

ue

flat
factored(3,3)(3,5)(3,7) (3,10)

(5,3)

(5,5)

(5,7) (5,10)

(7,3)

(7,5)
(7,7) (7,10)

(10,3) (10,5) (10,7) (10,10)

hierarchical
(3,3)(3,5)(3,7) (3,10)

(5,3)

(5,5)
(5,7) (5,10)

(7,3) (7,5) (7,7) (7,10)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

ch
ai

n-
of

-c
ha

in
s:

 ti
m

e
(s

ec
on

ds
) flat

factored
hierarchical

 900

 910

 920

 930

 940

 950

 960

 970

 980

 990

 0 10 20 30 40 50 60 70 80 90 100

ha
nd

w
as

hi
ng

: v
al

ue

flat
factored(3,3)(3,5)(3,7) (3,10)

(5,3)

(5,5) (5,7)
(5,10)

(7,3) (7,5) (7,7) (7,10)

(10,3)
(10,5) (10,7) (10,10)

hierarchical(3,3)(3,5)(3,7)
(3,10)

(5,3) (5,5)
(5,7) (5,10)

(7,3)

(7,5) (7,7)
(7,10)

(10,3)

(10,5)
(10,7) (10,10)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80 90 100

ha
nd

w
as

hi
ng

: t
im

e
(s

ec
on

ds
) flat

factored
hierarchical

-25

-20

-15

-10

-5

 0

 5

 0 10 20 30 40 50 60 70 80 90 100

ch
ee

se
-t

ax
i:

be
st

 v
al

ue

nodes

flat
factored

(3,3)(3,5)(3,7) (3,10)(5,3) (5,5) (5,7) (5,10)(7,3) (7,5)

(7,7)

(7,10)

(10,3) (10,5) (10,7) (10,10)

hierarchical

(3,3)(3,5)(3,7) (3,10)(5,3) (5,5) (5,7) (5,10)(7,3) (7,5) (7,7) (7,10)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90 100

ch
ee

se
-t

ax
i:

tim
e

(s
ec

on
ds

)

nodes

flat
factored

hierarchical

edges. Control is returned to level 1 when an end node
(denoted by a diamond) is reached. Here, the optimal
policy is to do A-B-C three times followed by D. Hence
a natural hierarchy would abstract A-B-C and D into
separate subcontrollers. While the controller in Fig. 4
is not completely optimal (the vertical transition from
abstract node 0 should have probability 1 of reach-
ing node A), it found an equivalent, but less intuitive
abstraction by having subcontrollers that do A-B-C
and D-A-B-C. This suggests that for real-world prob-
lems there will be many valid abstractions that are
not easily interpretable by humans and the odds that
an automated procedure finds an intuitive hierarchy
without any additional guidance are slim.

6 Conclusion

The key advantage of maximum likelihood is that it
can exploit the factored structure in a controller archi-
tecture. This facilitates hierarchy discovery when the
hierarchical structure of the controller is encoded into
a corresponding dynamic Bayesian network (DBN).
Our complexity analysis and the empirical run time
analysis confirm the favorable scaling. In particular,
we solved problems like handwashing and cheese-taxi
that could not be solved with the previous approaches
in [4]. Compared to flat controllers, factored con-
trollers are faster to optimize and less sensitive to local
optima when they have many nodes. Our current im-
plementation does not exploit any factored structure

in the state, action and observation space, however we
envision that a factored implementation would natu-
rally scale to large factored POMDPs.

For the chain-of-chains problem, maximum likelihood
finds a valid hierarchy. For other problems like hand-
washing, there might be many hierarchies and the one
found by our algorithm is usually hard to interpret.
We cannot expect our method to find a hierarchy that
is human readable. Interestingly, although the strictly
hierarchical architectures have less parameters to opti-
mize, they seem to be more susceptible to local optima
as compared to a factored but otherwise unconstrained
controller. Future work will investigate various heuris-
tics to escape local optima during optimization.

In this paper we made explicit assumptions about the
structure – we prefixed the structure of the DBN to
mimic a strict hierarchy or a level-wise factorization
and we fixed the number of nodes in each level. How-
ever, the DBN framework allows us to build on existing
methods for structure learning of graphical models. A
promising extension would be to use such structure
learning techniques to optimize the factored structure
of the controller. Since the computational complexity
for evaluating (training) a single structure is reason-
able, techniques like MCMC could sample and evalu-
ate a variety of structures. This variety might also help
to circumvent local optima, which currently define the
most dominant limit of our approach.

Acknowledgments

Part of this work was completed while Charlin was at

the University of Waterloo. Toussaint acknowledges sup-

port by the German Research Foundation (DFG), Emmy

Noether fellowship TO 409/1-3. Poupart and Charlin were

supported by grants from the Natural Sciences and Engi-

neering Research Council of Canada, the Canada Founda-

tion for Innovation and the Ontario Innovation Trust.

References

[1] C. Amato, D. Bernstein, and S. Zilberstein. Solv-
ing POMDPs using quadratically constrained lin-
ear programs. In IJCAI, pages 2418–2424, 2007.

[2] D. Braziunas and C. Boutilier. Stochastic local
search for POMDP controllers. In AAAI, pages
690–696, 2004.

[3] A. Cassandra. Exact and approximate algorithms
for partially observable Markov decision processes.
PhD thesis, Brown University, Dept. of Computer
Science, 1998.

[4] L. Charlin, P. Poupart, and R. Shioda. Auto-
mated hierarchy discovery for planning in par-

tially observable environments. In NIPS, pages
225–232, 2006.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[6] E. Hansen. An improved policy iteration algo-
rithm for partially observable MDPs. In NIPS,
1998.

[7] E. Hansen and R. Zhou. Synthesis of hierarchical
finite-state controllers for POMDPs. In ICAPS,
pages 113–122, 2003.

[8] J. Hoey, A. von Bertoldi, P. Poupart, and A. Mi-
hailidis. Assisting persons with dementia during
handwashing using a partially observable Markov
decision process. In ICVS, 2007.

[9] N. Meuleau, L. Peshkin, K.-E. Kim, and L. Kael-
bling. Learning finite-state controllers for par-
tially observable environments. In UAI, pages
427–436, 1999.

[10] K. Murphy and M. Paskin. Linear time inference
in hierarchical HMMs. In NIPS, 2001.

[11] R. Neal and G. Hinton. A view of the EM algo-
rithm that justifies incremental, sparse, and other
variants. In M. I. Jordan, editor, Learning in
Graphical Models. Kluwer, 1998.

[12] J. Pineau. Tractable Planning Under Uncertainty:
Exploiting Structure. PhD thesis, Robotics Insti-
tute, Carnegie Mellon University, 2004.

[13] J. Pineau, G. Gordon, and S. Thrun. Policy-
contingent abstraction for robust robot control.
In UAI, pages 477–484, 2003.

[14] P. Poupart and C. Boutilier. Bounded finite state
controllers. In NIPS, 2003.

[15] T. Smith and R. Simmons. Heuristic search value
iteration for POMDPs. In UAI, 2004.

[16] P. Stone and M. Veloso. A layered approach to
learning client behaviors in the RoboCup soccer
server. Applied Artificial Intelligence, 12:165–188,
1998.

[17] G. Theocharous, K. Murphy, and L. Pack Kael-
bling. Representing hierarchical POMDPs as
DBNs for multi-scale robot localization. In ICRA,
pages 1045–1051. IEEE, 2004.

[18] M. Toussaint, S. Harmeling, and A. Storkey.
Probabilistic inference for solving (PO)MDPs.
Technical Report EDI-INF-RR-0934, School of
Informatics, University of Edinburgh, 2006.

